-
1
-
-
0032092924
-
Extremophiles
-
Persidis A. Extremophiles. Nat. Biotechnol. 1998, 16:593-594.
-
(1998)
Nat. Biotechnol.
, vol.16
, pp. 593-594
-
-
Persidis, A.1
-
2
-
-
61549106933
-
Thermus thermophilus as biological model
-
Cava F., Hidalgo A., Berenguer J. Thermus thermophilus as biological model. Extremophiles 2009, 13:213-231.
-
(2009)
Extremophiles
, vol.13
, pp. 213-231
-
-
Cava, F.1
Hidalgo, A.2
Berenguer, J.3
-
3
-
-
34147150667
-
Potential and utilization of thermophiles and thermostable enzymes in biorefining
-
Turner P., Mamo G., Karlsson E.N. Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb. Cell Fact. 2007, 6:9.
-
(2007)
Microb. Cell Fact.
, vol.6
, pp. 9
-
-
Turner, P.1
Mamo, G.2
Karlsson, E.N.3
-
4
-
-
77955055053
-
Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes
-
Honda K., Maya S., Omasa T., Hirota R., Kuroda A., Ohtake H. Production of 2-deoxyribose 5-phosphate from fructose to demonstrate a potential of artificial bio-synthetic pathway using thermophilic enzymes. J.Biotechnol. 2010, 148:204-207.
-
(2010)
J.Biotechnol.
, vol.148
, pp. 204-207
-
-
Honda, K.1
Maya, S.2
Omasa, T.3
Hirota, R.4
Kuroda, A.5
Ohtake, H.6
-
5
-
-
84865800305
-
Synthetic metabolic engineering - a novel, simple technology for designing a chimeric metabolic pathway
-
Ye X., Honda K., Sakai T., Okano K., Omasa T., Hirota R., Kuroda A., Ohtake H. Synthetic metabolic engineering - a novel, simple technology for designing a chimeric metabolic pathway. Microb. Cell Fact. 2012, 11:120.
-
(2012)
Microb. Cell Fact.
, vol.11
, pp. 120
-
-
Ye, X.1
Honda, K.2
Sakai, T.3
Okano, K.4
Omasa, T.5
Hirota, R.6
Kuroda, A.7
Ohtake, H.8
-
6
-
-
84875113761
-
Direct conversion of glucose to malate by synthetic metabolic engineering
-
Ye X., Honda K., Morimoto Y., Okano K., Ohtake H. Direct conversion of glucose to malate by synthetic metabolic engineering. J.Biotechnol. 2013, 164:34-40.
-
(2013)
J.Biotechnol.
, vol.164
, pp. 34-40
-
-
Ye, X.1
Honda, K.2
Morimoto, Y.3
Okano, K.4
Ohtake, H.5
-
7
-
-
45749146134
-
- fixation into pyruvic acid to synthesize l-malic acid with enzymatic coenzyme regeneration
-
- fixation into pyruvic acid to synthesize l-malic acid with enzymatic coenzyme regeneration. Biosci. Biotechnol. Biochem. 2008, 72:1278-1282.
-
(2008)
Biosci. Biotechnol. Biochem.
, vol.72
, pp. 1278-1282
-
-
Ohno, Y.1
Nakamori, T.2
Zheng, H.3
Suye, S.4
-
8
-
-
58149299431
-
- by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method
-
- by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method. J.Biosci. Bioeng. 2009, 107:16-20.
-
(2009)
J.Biosci. Bioeng.
, vol.107
, pp. 16-20
-
-
Zheng, H.1
Ohno, T.2
Nakamori, T.3
Suye, S.4
-
9
-
-
20144386178
-
Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1
-
Fukuda W., Ismail Y.S., Fukui T., Atomi H., Imanaka T. Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Archaea 2005, 1:293-301.
-
(2005)
Archaea
, vol.1
, pp. 293-301
-
-
Fukuda, W.1
Ismail, Y.S.2
Fukui, T.3
Atomi, H.4
Imanaka, T.5
-
10
-
-
0022893844
-
Stability of NADPH: effect of various factors on the kinetics of degradation
-
Wu J.T., Wu L.H., Knight J.A. Stability of NADPH: effect of various factors on the kinetics of degradation. Clin. Chem. 1986, 32:314-319.
-
(1986)
Clin. Chem.
, vol.32
, pp. 314-319
-
-
Wu, J.T.1
Wu, L.H.2
Knight, J.A.3
-
11
-
-
21144466098
-
Thermodynamics of enzyme-catalyzed reactions: part 1. Oxidoreductases
-
Goldberg R.N., Tewari Y.B., Bell D., Fazio K., Anderson E. Thermodynamics of enzyme-catalyzed reactions: part 1. Oxidoreductases. J.Phys. Chem. Ref.Data 1993, 22:515-579.
-
(1993)
J.Phys. Chem. Ref.Data
, vol.22
, pp. 515-579
-
-
Goldberg, R.N.1
Tewari, Y.B.2
Bell, D.3
Fazio, K.4
Anderson, E.5
-
12
-
-
0004122931
-
-
Saunders College Publishing, Harcourt Brace College Publishers, Orlando
-
Garrett R.H., Grisham C.M. Biochemistry 1998, Saunders College Publishing, Harcourt Brace College Publishers, Orlando.
-
(1998)
Biochemistry
-
-
Garrett, R.H.1
Grisham, C.M.2
-
13
-
-
0036149469
-
+-dependent malic enzyme
-
+-dependent malic enzyme. Protein Sci. 2002, 11:332-341.
-
(2002)
Protein Sci.
, vol.11
, pp. 332-341
-
-
Yang, Z.1
Zhang, H.2
Hung, H.3
Kuo, C.4
Tsai, L.5
Yuan, H.S.6
Chou, W.7
Chang, G.8
Tong, L.9
-
15
-
-
80053329009
-
Determinants of nucleotide-binding selectivity of malic enzyme
-
Hsieh J.Y., Chen M.C., Hung H.C. Determinants of nucleotide-binding selectivity of malic enzyme. PLoS One 2011, 6:e25312.
-
(2011)
PLoS One
, vol.6
-
-
Hsieh, J.Y.1
Chen, M.C.2
Hung, H.C.3
-
16
-
-
0004155427
-
-
WH Freeman Co., New York
-
Stryer L. Biochemistry 1995, WH Freeman Co., New York.
-
(1995)
Biochemistry
-
-
Stryer, L.1
-
18
-
-
0034049525
-
Structure of a closed form of human malic enzyme and implications for catalytic mechanisms
-
Yang Z., Floyd D.L., Loeber G., Tong L. Structure of a closed form of human malic enzyme and implications for catalytic mechanisms. Nat. Struct. Biol. 2000, 7:251-257.
-
(2000)
Nat. Struct. Biol.
, vol.7
, pp. 251-257
-
-
Yang, Z.1
Floyd, D.L.2
Loeber, G.3
Tong, L.4
-
20
-
-
84867640438
-
Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants
-
Rosgaard L., de Porcellinis A.J., Jacobsen J.H., Frigaard N.-U., Sakuragi Y. Bioengineering of carbon fixation, biofuels, and biochemicals in cyanobacteria and plants. J.Biotechnol. 2012, 162:134-147.
-
(2012)
J.Biotechnol.
, vol.162
, pp. 134-147
-
-
Rosgaard, L.1
de Porcellinis, A.J.2
Jacobsen, J.H.3
Frigaard, N.-U.4
Sakuragi, Y.5
-
21
-
-
84859111827
-
2 to higher alcohol
-
2 to higher alcohol. Science 2012, 335:1596.
-
(2012)
Science
, vol.335
, pp. 1596
-
-
Li, H.1
Opgenorth, P.H.2
Wenick, D.G.3
Rogers, S.4
Wu, T.5
Higashide, W.6
Malati, P.7
Huo, Y.8
Cho, K.M.9
Liao, J.C.10
-
22
-
-
84872862096
-
Cyanobacterial conversion of carbon dioxide to 2,3-butanediol
-
Oliver J.W.K., Machado I.M.P., Yoneda H., Atsumi S. Cyanobacterial conversion of carbon dioxide to 2,3-butanediol. Proc. Natl. Acad. Sci. USA 2013, 110:1249-1254.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 1249-1254
-
-
Oliver, J.W.K.1
Machado, I.M.P.2
Yoneda, H.3
Atsumi, S.4
-
23
-
-
84876029446
-
Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide
-
Keller M.W., Schut G.J., Lipscomb G.L., Menon A.L., Iwuchukwu I.J., Leuko T.T., Thorgersen M.P., Nixon W.J., Hawkins A.S., Kelly R.M., Adams M.W.W. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc. Natl. Acad. Sci. USA 2013, 110:5840-5845.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 5840-5845
-
-
Keller, M.W.1
Schut, G.J.2
Lipscomb, G.L.3
Menon, A.L.4
Iwuchukwu, I.J.5
Leuko, T.T.6
Thorgersen, M.P.7
Nixon, W.J.8
Hawkins, A.S.9
Kelly, R.M.10
Adams, M.W.W.11
|