메뉴 건너뛰기




Volumn 52, Issue 1, 2013, Pages 19-29

Development and comparison of neural network based soft sensors for online estimation of cement clinker quality

Author keywords

Back propagation neural network; Cement kiln modeling; Radial basis function neural network; Regression neural network; Soft sensor

Indexed keywords

BACKPROPAGATION; CEMENTS; KILNS; RADIAL BASIS FUNCTION NETWORKS; REGRESSION ANALYSIS; TORSIONAL STRESS;

EID: 84871925041     PISSN: 00190578     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isatra.2012.07.004     Document Type: Article
Times cited : (73)

References (37)
  • 3
    • 57049112694 scopus 로고    scopus 로고
    • ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process
    • J.C.B. Gonzagaa, L.A.C. Meleirob, C. Kianga, and R.M. Filho ANN-based soft-sensor for real-time process monitoring and control of an industrial polymerization process Computers and Chemical Engineering 33 2009 43 49
    • (2009) Computers and Chemical Engineering , vol.33 , pp. 43-49
    • Gonzagaa, J.C.B.1    Meleirob, L.A.C.2    Kianga, C.3    Filho, R.M.4
  • 4
    • 58049194220 scopus 로고    scopus 로고
    • A neuro-coevolutionary genetic fuzzy system to design soft sensors
    • M.R. Delgado, E.Y. Nagai, and L.V.R. Arruda A neuro-coevolutionary genetic fuzzy system to design soft sensors Soft Computing 13 2009 481 495
    • (2009) Soft Computing , vol.13 , pp. 481-495
    • Delgado, M.R.1    Nagai, E.Y.2    Arruda, L.V.R.3
  • 8
  • 9
    • 0031162750 scopus 로고    scopus 로고
    • Importance of input data normalization for the application of neural networks to complex industrial problems
    • J. Sola, and J. Sevilla Importance of input data normalization for the application of neural networks to complex industrial problems IEEE Transactions on Nuclear Science 1997 1464 1468
    • (1997) IEEE Transactions on Nuclear Science , pp. 1464-1468
    • Sola, J.1    Sevilla, J.2
  • 11
    • 30344468127 scopus 로고    scopus 로고
    • Modeling of the polluting emissions from a cement production plant by partial least-squares, principal component regression, and artificial neural networks
    • E. Marengo, M. Bobba, E. Robotti, and M.C. Liparota Modeling of the polluting emissions from a cement production plant by partial least-squares, principal component regression, and artificial neural networks Environmental Science and Technology 40 2006 272 280
    • (2006) Environmental Science and Technology , vol.40 , pp. 272-280
    • Marengo, E.1    Bobba, M.2    Robotti, E.3    Liparota, M.C.4
  • 12
    • 0037065279 scopus 로고    scopus 로고
    • Predictive modeling of large-scale commercial water desalination plants: Data-based neural network and model-based process simulation
    • K.A. Al-Shayji, and Y.A. Liu Predictive modeling of large-scale commercial water desalination plants: data-based neural network and model-based process simulation Industrial and Engineering Chemistry Research 41 2002 6460 6474
    • (2002) Industrial and Engineering Chemistry Research , vol.41 , pp. 6460-6474
    • Al-Shayji, K.A.1    Liu, Y.A.2
  • 13
    • 33847622042 scopus 로고    scopus 로고
    • Use of artificial neural networks for estimating water content of natural gases
    • A.H. Mohammadi, and D. Richon Use of artificial neural networks for estimating water content of natural gases Industrial and Engineering Chemistry Research 46 2007 1431 1438
    • (2007) Industrial and Engineering Chemistry Research , vol.46 , pp. 1431-1438
    • Mohammadi, A.H.1    Richon, D.2
  • 14
    • 0009713430 scopus 로고    scopus 로고
    • Comparing classical and neural regression techniques in modeling crude oil viscosity
    • A.M. Elsharkwy, and R.B.C. Gharbi Comparing classical and neural regression techniques in modeling crude oil viscosity Advances in Engineering Software 32 2001 215 224
    • (2001) Advances in Engineering Software , vol.32 , pp. 215-224
    • Elsharkwy, A.M.1    Gharbi, R.B.C.2
  • 17
    • 0030980424 scopus 로고    scopus 로고
    • Neural networks as 'software sensors' in enzyme production
    • S. Linko, J. Luopa, and Y.H. Zhu Neural networks as 'software sensors' in enzyme production Journal of Biotechnology 52 1997 257 266
    • (1997) Journal of Biotechnology , vol.52 , pp. 257-266
    • Linko, S.1    Luopa, J.2    Zhu, Y.H.3
  • 19
    • 4444265327 scopus 로고    scopus 로고
    • Artificial neural network estimator design for the inferential model predictive control of an industrial distillation column
    • C.Ozgen Bahar Artificial neural network estimator design for the inferential model predictive control of an industrial distillation column Industrial and Engineering Chemistry Research 2004 6102 6111
    • (2004) Industrial and Engineering Chemistry Research , pp. 6102-6111
    • Bahar, C.O.1
  • 20
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, C.F.N. Cowan, and P.M. Grant Orthogonal least squares learning algorithm for radial basis function networks IEEE Transactions on Neural Networks 1991)302 309
    • (1991) IEEE Transactions on Neural Networks , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 22
    • 77952419473 scopus 로고    scopus 로고
    • Radial basis function network for ore grade estimation
    • B. Samanta Radial basis function network for ore grade estimation Natural Resources Research 19 2010 91 102
    • (2010) Natural Resources Research , vol.19 , pp. 91-102
    • Samanta, B.1
  • 23
    • 0037138659 scopus 로고    scopus 로고
    • A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space
    • H. Sarimveis, A. Alexandridis, G. Tsekouras, and G. Bafas A fast and efficient algorithm for training radial basis function neural networks based on a fuzzy partition of the input space Industrial & Engineering Chemistry Research 41 2002 751 759
    • (2002) Industrial & Engineering Chemistry Research , vol.41 , pp. 751-759
    • Sarimveis, H.1    Alexandridis, A.2    Tsekouras, G.3    Bafas, G.4
  • 24
    • 0038355079 scopus 로고    scopus 로고
    • Automatic basis selection techniques for RBF networks
    • A. Ghodsi, and D. Schuurmans Automatic basis selection techniques for RBF networks Neural Networks 16 2003 809 816
    • (2003) Neural Networks , vol.16 , pp. 809-816
    • Ghodsi, A.1    Schuurmans, D.2
  • 25
    • 0034266934 scopus 로고    scopus 로고
    • On-line learning in RBF neural networks: A stochastic approach
    • M. Marinaro, and S. Scarpetta On-line learning in RBF neural networks: a stochastic approach Neural Networks 13 2000 719 729
    • (2000) Neural Networks , vol.13 , pp. 719-729
    • Marinaro, M.1    Scarpetta, S.2
  • 26
    • 15744379003 scopus 로고    scopus 로고
    • Nonlinear time series modeling and prediction using RBF network with improved clustering algorithm
    • Li C, Ye H, Wang G. Nonlinear time series modeling and prediction using RBF network with improved clustering algorithm. IEEE International Conference on Systems, Man and Cybernetics, vol. 4; 2004. p. 3513-8.
    • (2004) IEEE International Conference on Systems, Man and Cybernetics , vol.4 , pp. 3513-3518
    • Li, C.1    Ye, H.2    Wang, G.3
  • 27
    • 0028835062 scopus 로고
    • Radial basis function network configuration using genetic algorithms
    • Steve A. Billings, and G.L. Zheng Radial basis function network configuration using genetic algorithms Neural Networks 8 1995 877 890
    • (1995) Neural Networks , vol.8 , pp. 877-890
    • Billings, S.A.1    Zheng, G.L.2
  • 29
    • 0032860604 scopus 로고    scopus 로고
    • Soil laboratory data interpretation using generalized regression neural network
    • A.T.C. Goh Soil laboratory data interpretation using generalized regression neural network Civil Engineering and Environmental Systems 16 1999 175 195
    • (1999) Civil Engineering and Environmental Systems , vol.16 , pp. 175-195
    • Goh, A.T.C.1
  • 30
    • 27544493548 scopus 로고    scopus 로고
    • Generalized regression neural network in modeling river sediment yield
    • H.K. Cigizoglu, and M. Alp Generalized regression neural network in modeling river sediment yield Advances in Engineering Software 37 2006 63 68
    • (2006) Advances in Engineering Software , vol.37 , pp. 63-68
    • Cigizoglu, H.K.1    Alp, M.2
  • 31
    • 26844476841 scopus 로고    scopus 로고
    • Prediction of grindability with multivariable regression and neural network in Chinese coal
    • L. Peishenga, X. Youhuia, Y. Dunxia, and S. Xuexin Prediction of grindability with multivariable regression and neural network in Chinese coal Fuel 84 2005 2384 2388
    • (2005) Fuel , vol.84 , pp. 2384-2388
    • Peishenga, L.1    Youhuia, X.2    Dunxia, Y.3    Xuexin, S.4
  • 32
    • 57049130949 scopus 로고    scopus 로고
    • Modeling of plasma process data using a multi-parameterized generalized regression neural network
    • B. Kim, M. Kwon, and S.H. Kwon Modeling of plasma process data using a multi-parameterized generalized regression neural network Microelectronic Engineering 86 2009 63 67
    • (2009) Microelectronic Engineering , vol.86 , pp. 63-67
    • Kim, B.1    Kwon, M.2    Kwon, S.H.3
  • 34
    • 76249108297 scopus 로고    scopus 로고
    • Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks
    • S. Dehghan, Gh. Sattari, C.S. Chelgani, and M.A. Aliabadi Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks Mining Science and Technology 20 2010 41 46
    • (2010) Mining Science and Technology , vol.20 , pp. 41-46
    • Dehghan, S.1    Sattari, Gh.2    Chelgani, C.S.3    Aliabadi, M.A.4
  • 37
    • 0037114379 scopus 로고    scopus 로고
    • Neural virtual sensor for the inferential prediction of product quality from process variables
    • R. Rallo, J. Ferre-Gine, A. Arenas, and F. Giralt Neural virtual sensor for the inferential prediction of product quality from process variables Computers and Chemical Engineering 26 2002 1735 1754
    • (2002) Computers and Chemical Engineering , vol.26 , pp. 1735-1754
    • Rallo, R.1    Ferre-Gine, J.2    Arenas, A.3    Giralt, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.