-
1
-
-
0017972806
-
Inferential control of processes(I): Steady state analysis and design
-
Joseph B, Brosilow C. Inferential control of processes(I): Steady state analysis and design [J]. AIChE Journal, 1978, 24(3): 485-492
-
(1978)
AIChE Journal
, vol.24
, Issue.3
, pp. 485-492
-
-
Joseph, B.1
Brosilow, C.2
-
2
-
-
0017972807
-
Inferential control of processes(II): The structure and dynamics of inferential control systems
-
Brosilow C, Tong M. Inferential control of processes(II): The structure and dynamics of inferential control systems [J]. AIChE Journal, 1978, 24(3): 492-500
-
(1978)
AIChE Journal
, vol.24
, Issue.3
, pp. 492-500
-
-
Brosilow, C.1
Tong, M.2
-
3
-
-
0017971592
-
Inferential control of processes(III): Construction of optimal and suboptimal dynamic estimators
-
Joseph B, Brosilow C. Inferential control of processes(III): Construction of optimal and suboptimal dynamic estimators [J]. AIChE Journal, 1978, 24(2): 500-509
-
(1978)
AIChE Journal
, vol.24
, Issue.2
, pp. 500-509
-
-
Joseph, B.1
Brosilow, C.2
-
4
-
-
0030217022
-
Computational intelligence and soft computing for space applications
-
McAvoy T J. Computational intelligence and soft computing for space applications [J]. IEEE Aerospace and Electronic Systems Magazine, 1996, 11(8): 8-10
-
(1996)
IEEE Aerospace and Electronic Systems Magazine
, vol.11
, Issue.8
, pp. 8-10
-
-
McAvoy, T.J.1
-
6
-
-
0019056894
-
Least squares parameter estimation
-
Strejc V. Least squares parameter estimation [J]. Automatica, 1980, 16(5): 535-550
-
(1980)
Automatica
, vol.16
, Issue.5
, pp. 535-550
-
-
Strejc, V.1
-
7
-
-
84989071162
-
Steady state simulation of continuous-flow stirred-tank slurry propylene polymerization reactors
-
Sarkar P, Gupta S K. Steady state simulation of continuous-flow stirred-tank slurry propylene polymerization reactors [J]. Polymer Engineering and Science, 1992, 32(11): 732-742
-
(1992)
Polymer Engineering and Science
, vol.32
, Issue.11
, pp. 732-742
-
-
Sarkar, P.1
Gupta, S.K.2
-
8
-
-
0027552237
-
Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors
-
Sarkar P, Gupta S K. Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors [J]. Polymer Engineering and Science, 1993, 33(6): 368-374
-
(1993)
Polymer Engineering and Science
, vol.33
, Issue.6
, pp. 368-374
-
-
Sarkar, P.1
Gupta, S.K.2
-
9
-
-
0034661254
-
Modeling, simulation and nonlinear control of a gas-phase polymerization process
-
Sato C, Ohtani T, Nishitani H. Modeling, simulation and nonlinear control of a gas-phase polymerization process [J]. Computers & Chemical Engineering, 2000, 24(2): 945-951
-
(2000)
Computers & Chemical Engineering
, vol.24
, Issue.2
, pp. 945-951
-
-
Sato, C.1
Ohtani, T.2
Nishitani, H.3
-
10
-
-
0034661658
-
Soft sensors development for on-line bioreactor state estimation
-
Adilson J A, Rubens M F. Soft sensors development for on-line bioreactor state estimation [J]. Computers & Chemical Engineering, 2000, 24(7): 1099-1103
-
(2000)
Computers & Chemical Engineering
, vol.24
, Issue.7
, pp. 1099-1103
-
-
Adilson, J.A.1
Rubens, M.F.2
-
11
-
-
0028460607
-
Development of inferential process models using PLS
-
Kresta J V, Marlin T E, MacGregor J F. Development of inferential process models using PLS [J]. Computers & Chemical Engineering, 1994, 18(7): 597-611
-
(1994)
Computers & Chemical Engineering
, vol.18
, Issue.7
, pp. 597-611
-
-
Kresta, J.V.1
Marlin, T.E.2
MacGregor, J.F.3
-
12
-
-
0032118892
-
Multiscale PCA with application to multivariate statistical process monitoring
-
Bhavik R B. Multiscale PCA with application to multivariate statistical process monitoring [J]. AIChE Journal, 1998, 44(7): 1596-1610
-
(1998)
AIChE Journal
, vol.44
, Issue.7
, pp. 1596-1610
-
-
Bhavik, R.B.1
-
13
-
-
0026360536
-
Composition estimator in a pilot-plant distillation column using multiple temperature
-
Mejdell T, Skogestad S. Composition estimator in a pilot-plant distillation column using multiple temperature [J]. Industrial & Engineering Chemistry Research, 1991, 30(12): 255-2564
-
(1991)
Industrial & Engineering Chemistry Research
, vol.30
, Issue.12
, pp. 255-2564
-
-
Mejdell, T.1
Skogestad, S.2
-
14
-
-
53049096060
-
Assessment of near infrared and software sensor for biomass monitoring and control
-
Zita I T, Mathieu S, Gerrit V S, et al. Assessment of near infrared and software sensor for biomass monitoring and control [J]. Chemometrics and Intelligent Laboratory Systems, 2008, 94(2): 166-174
-
(2008)
Chemometrics and Intelligent Laboratory Systems
, vol.94
, Issue.2
, pp. 166-174
-
-
Zita, I.T.1
Mathieu, S.2
Gerrit, V.S.3
-
15
-
-
53649083927
-
Bilinear modeling of batch processes(I): Theoretical discussion
-
Jose C, Jesus P, Alberto F. Bilinear modeling of batch processes(I): Theoretical discussion [J]. Journal of Chemometrics, 2008, 22(5): 299-308
-
(2008)
Journal of Chemometrics
, vol.22
, Issue.5
, pp. 299-308
-
-
Jose, C.1
Jesus, P.2
Alberto, F.3
-
16
-
-
55349120836
-
Bilinear modeling of batch processes(II): A comparison of PLS soft-sensors
-
Jose C, Jesus P. Bilinear modeling of batch processes(II): A comparison of PLS soft-sensors [J]. Journal of Chemometrics, 2008, 22(10): 533-547
-
(2008)
Journal of Chemometrics
, vol.22
, Issue.10
, pp. 533-547
-
-
Jose, C.1
Jesus, P.2
-
17
-
-
38449110484
-
Fluorescence-based soft-sensor for monitoring beta-lactoglobulin and alpha-lactalbumin solubility during thermal aggregation
-
Rand E, Hector B, Christine M, et al. Fluorescence-based soft-sensor for monitoring beta-lactoglobulin and alpha-lactalbumin solubility during thermal aggregation [J]. Biotechnology and Bioengineering, 2008, 99(3): 567-577
-
(2008)
Biotechnology and Bioengineering
, vol.99
, Issue.3
, pp. 567-577
-
-
Rand, E.1
Hector, B.2
Christine, M.3
-
18
-
-
33746991704
-
Inferential sensors for estimation of polymer quality parameters: Industry application of a PLS-based soft sensor for a LDPE plant
-
Rumana S, Uttandaraman S, Sirish S, et al. Inferential sensors for estimation of polymer quality parameters: industry application of a PLS-based soft sensor for a LDPE plant [J]. Chemical Engineering Science, 2006, 61(19): 6372-6384
-
(2006)
Chemical Engineering Science
, vol.61
, Issue.19
, pp. 6372-6384
-
-
Rumana, S.1
Uttandaraman, S.2
Sirish, S.3
-
19
-
-
33847162850
-
A systematic approach for soft sensor development
-
Bao L, Bodil R, Jorgen K H, et al. A systematic approach for soft sensor development [J]. Computers & Chemical Engineering, 2007, 31(5): 419-425
-
(2007)
Computers & Chemical Engineering
, vol.31
, Issue.5
, pp. 419-425
-
-
Bao, L.1
Bodil, R.2
Jorgen, K.H.3
-
20
-
-
0036805513
-
Process analysis and abnormal situation detection: From theory to practice
-
Kourti T. Process analysis and abnormal situation detection: from theory to practice [J]. IEEE Control Systems Magazine, 2002, 22(5): 10-25
-
(2002)
IEEE Control Systems Magazine
, vol.22
, Issue.5
, pp. 10-25
-
-
Kourti, T.1
-
21
-
-
0034301495
-
Recursive PCA for adaptive process monitoring
-
Li W, Yue H H, Valle C S, et al. Recursive PCA for adaptive process monitoring [J]. Journal of Process Control, 2000, 10(5): 471-486
-
(2000)
Journal of Process Control
, vol.10
, Issue.5
, pp. 471-486
-
-
Li, W.1
Yue, H.H.2
Valle, C.S.3
-
22
-
-
22144480628
-
Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method
-
Wang S, Cui J. Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method [J]. Applied Energy, 2005, 82(3): 197-213
-
(2005)
Applied Energy
, vol.82
, Issue.3
, pp. 197-213
-
-
Wang, S.1
Cui, J.2
-
23
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Qin S J. Recursive PLS algorithms for adaptive data modeling [J]. Computers & Chemical Engineering, 1998, 22(4): 503-514
-
(1998)
Computers & Chemical Engineering
, vol.22
, Issue.4
, pp. 503-514
-
-
Qin, S.J.1
-
24
-
-
0031168001
-
Recursive exponentially weighted PLS and its applications to adaptive control and prediction
-
Dayal B S, MacGregor J F. Recursive exponentially weighted PLS and its applications to adaptive control and prediction [J]. Journal of Process Control, 1997, 7(3): 169-179
-
(1997)
Journal of Process Control
, vol.7
, Issue.3
, pp. 169-179
-
-
Dayal, B.S.1
MacGregor, J.F.2
-
26
-
-
0043015539
-
Nonlinear principal component analysis-based on principal curves and neural networks
-
Dong D, McAvoy T J. Nonlinear principal component analysis-based on principal curves and neural networks [J]. Computers & Chemical Engineering, 1996, 20(1): 65-78
-
(1996)
Computers & Chemical Engineering
, vol.20
, Issue.1
, pp. 65-78
-
-
Dong, D.1
McAvoy, T.J.2
-
27
-
-
0037191667
-
Nonlinear PLS modeling with fuzzy inference system
-
Bang Y H, Yoo C K, Lee I B. Nonlinear PLS modeling with fuzzy inference system [J]. Chemometrics and Intelligent Laboratory Systems, 2003, 64(2): 137-155
-
(2003)
Chemometrics and Intelligent Laboratory Systems
, vol.64
, Issue.2
, pp. 137-155
-
-
Bang, Y.H.1
Yoo, C.K.2
Lee, I.B.3
-
28
-
-
60649090799
-
Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
-
Facco P, Doplicher F, Bezzo F, et al. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process [J]. Journal of Process Control, 2009, 19(3): 520-529
-
(2009)
Journal of Process Control
, vol.19
, Issue.3
, pp. 520-529
-
-
Facco, P.1
Doplicher, F.2
Bezzo, F.3
-
29
-
-
0003009442
-
Multilinear PLS
-
Bro R. Multilinear PLS [J]. Journal of Chemometrics, 1996, 10(1): 47-61
-
(1996)
Journal of Chemometrics
, vol.10
, Issue.1
, pp. 47-61
-
-
Bro, R.1
-
30
-
-
33745213366
-
Rigid medical image registration using PCA neural network
-
Shang L F, Lü J C, Yi Z. Rigid medical image registration using PCA neural network [J]. Neurocomputing, 2006, 69(14): 1717-1722
-
(2006)
Neurocomputing
, vol.69
, Issue.14
, pp. 1717-1722
-
-
Shang, L.F.1
Lü, J.C.2
Yi, Z.3
-
31
-
-
0034301495
-
Recursive PCA for adaptive process monitoring
-
Li W, Yue H H, Valle C S, et al. Recursive PCA for adaptive process monitoring [J]. Journal of Process Control, 2000, 10(5): 471-486
-
(2000)
Journal of Process Control
, vol.10
, Issue.5
, pp. 471-486
-
-
Li, W.1
Yue, H.H.2
Valle, C.S.3
-
32
-
-
0026853320
-
Nonlinear PLS modeling using neural networks
-
Qin S J, McAvoy T J. Nonlinear PLS modeling using neural networks [J]. Computers & Chemical Engineering, 1992, 16(4): 379-391
-
(1992)
Computers & Chemical Engineering
, vol.16
, Issue.4
, pp. 379-391
-
-
Qin, S.J.1
McAvoy, T.J.2
-
35
-
-
0037186591
-
Regularization and statistical learning theory for data analysis
-
Theodoros E, Tomaso P, Massimiliano P. Regularization and statistical learning theory for data analysis [J]. Computational Statistics and Data Analysis, 2002, 38(4): 421-432
-
(2002)
Computational Statistics and Data Analysis
, vol.38
, Issue.4
, pp. 421-432
-
-
Theodoros, E.1
Tomaso, P.2
Massimiliano, P.3
-
36
-
-
4544350234
-
A soft-sensor development for melt-flow-length measurement during injection mold filling
-
Chen X, Gao F R, Chen G H. A soft-sensor development for melt-flow-length measurement during injection mold filling [J]. Materials Science and Engineering A, 2004, 384(1): 245-254
-
(2004)
Materials Science and Engineering A
, vol.384
, Issue.1
, pp. 245-254
-
-
Chen, X.1
Gao, F.R.2
Chen, G.H.3
-
37
-
-
0012612350
-
The distributed RBF neural network and its application in soft sensor
-
Wang Xudong, Shao Huihe, Luo Rongfu. The distributed RBF neural network and its application in soft sensor [J]. Control Theory & Applications, 1998, 15(4): 558-563
-
(1998)
Control Theory & Applications
, vol.15
, Issue.4
, pp. 558-563
-
-
Wang, X.1
Shao, H.2
Luo, R.3
-
38
-
-
0036802284
-
Identification of evolving fuzzy rule-based models
-
Angelov P, Buswell R. Identification of evolving fuzzy rule-based models [J]. IEEE Transactions on Fuzzy Systems, 2002, 10(5): 667-677
-
(2002)
IEEE Transactions on Fuzzy Systems
, vol.10
, Issue.5
, pp. 667-677
-
-
Angelov, P.1
Buswell, R.2
-
39
-
-
18544392793
-
Automatization of a penicillin production process with soft sensors and an adaptive controller based on neuro fuzzy systems
-
Arazo M J, Cano J M, Gmez S E, et al. Automatization of a penicillin production process with soft sensors and an adaptive controller based on neuro fuzzy systems [J]. Control Engineering Practice, 2004, 12(9): 1073-1090
-
(2004)
Control Engineering Practice
, vol.12
, Issue.9
, pp. 1073-1090
-
-
Arazo, M.J.1
Cano, J.M.2
Gmez, S.E.3
-
40
-
-
77956773601
-
Wavelet networks based soft sensor and predictive control in fermentation process
-
Wang Y H, Huang D X, Gao D J, et al. Wavelet networks based soft sensor and predictive control in fermentation process [J]. Computer Aided Chemical Engineering, 2003, 15(6): 1222-1227
-
(2003)
Computer Aided Chemical Engineering
, vol.15
, Issue.6
, pp. 1222-1227
-
-
Wang, Y.H.1
Huang, D.X.2
Gao, D.J.3
-
41
-
-
38949133444
-
A sensor-software based on artificial neural network for the optimization of olive oil elaboration process
-
Jimenez A, Beltran G, Aguilera M P, et al. A sensor-software based on artificial neural network for the optimization of olive oil elaboration process [J]. Sensors and Actuators: B. Chemical, 2008, 129(2): 985-990
-
(2008)
Sensors and Actuators: B. Chemical
, vol.129
, Issue.2
, pp. 985-990
-
-
Jimenez, A.1
Beltran, G.2
Aguilera, M.P.3
-
42
-
-
34548443322
-
Some studies on soft sensor technology and their applications to industry process
-
Hangzhou: Zhejiang University
-
Liu Ruilan. Some studies on soft sensor technology and their applications to industry process [D]. Hangzhou: Zhejiang University, 2004
-
(2004)
-
-
Liu, R.1
-
43
-
-
33645070541
-
Sequential adaptive fuzzy inference system for nonlinear system identification and prediction
-
Rong H J, Sundararajan N, Huang G B, et al. Sequential adaptive fuzzy inference system for nonlinear system identification and prediction [J]. Fuzzy Sets and Systems, 2006, 157(9): 1260-1275
-
(2006)
Fuzzy Sets and Systems
, vol.157
, Issue.9
, pp. 1260-1275
-
-
Rong, H.J.1
Sundararajan, N.2
Huang, G.B.3
-
44
-
-
3142570943
-
Fuzzy neural network model of 4-CBA concentration for industrial purified terephthalic acid oxidation process
-
Liu Ruilan, Su Hongye, Mu Shengjing, et al. Fuzzy neural network model of 4-CBA concentration for industrial purified terephthalic acid oxidation process [J]. Journal of Chemical Industry and Engineering(China), 2004, 12(2): 234-239
-
(2004)
Journal of Chemical Industry and Engineering(China)
, vol.12
, Issue.2
, pp. 234-239
-
-
Liu, R.1
Su, H.2
Mu, S.3
-
45
-
-
0344925615
-
Modeling and optimization of a refining process for fiber board production
-
Runkler T A, Gerstorfer E, Schlang M, et al. Modeling and optimization of a refining process for fiber board production [J]. Control Engineering Practice, 2003, 11(11): 1229-1241
-
(2003)
Control Engineering Practice
, vol.11
, Issue.11
, pp. 1229-1241
-
-
Runkler, T.A.1
Gerstorfer, E.2
Schlang, M.3
-
47
-
-
0033873291
-
Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer
-
Lin F J, Wai R J, Lin C H, et al. Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer [J]. IEEE Transactions on Industrial Electronics, 2000, 47(2): 356-367
-
(2000)
IEEE Transactions on Industrial Electronics
, vol.47
, Issue.2
, pp. 356-367
-
-
Lin, F.J.1
Wai, R.J.2
Lin, C.H.3
-
48
-
-
0033358684
-
An intelligent robotic system based on a fuzzy approach
-
Fukuda T, Kubota N. An intelligent robotic system based on a fuzzy approach [J]. Proceedings of the IEEE, 1999, 87(9): 1448-1470
-
(1999)
Proceedings of the IEEE
, vol.87
, Issue.9
, pp. 1448-1470
-
-
Fukuda, T.1
Kubota, N.2
-
49
-
-
84875588747
-
Study on soft sensor modeling methods and applications
-
Hangzhou: Zhejiang University
-
Li Xiuliang. Study on soft sensor modeling methods and applications [D]. Hangzhou: Zhejiang University, 2009
-
(2009)
-
-
Li, X.1
-
52
-
-
0032638628
-
Least squares support vector machines classifiers
-
Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural Network Letters, 1999, 9(3): 293-300
-
(1999)
Neural Network Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
53
-
-
0037186591
-
Regularization and statistical learning theory for data analysis
-
Theodoros E, Tomaso P, Massimiliano P. Regularization and statistical learning theory for data analysis [J]. Computational Statistics and Data Analysis, 2002, 38(4): 421-432
-
(2002)
Computational Statistics and Data Analysis
, vol.38
, Issue.4
, pp. 421-432
-
-
Theodoros, E.1
Tomaso, P.2
Massimiliano, P.3
-
54
-
-
33748076461
-
A GA-based feature selection and parameters optimization for support vector machines
-
Huang C L, Wang C J. A GA-based feature selection and parameters optimization for support vector machines [J]. Expert Systems with Applications, 2006, 31(2): 231-240
-
(2006)
Expert Systems with Applications
, vol.31
, Issue.2
, pp. 231-240
-
-
Huang, C.L.1
Wang, C.J.2
-
55
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression [J]. Neural Networks, 2004, 17(1): 113-126
-
(2004)
Neural Networks
, vol.17
, Issue.1
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
56
-
-
39649114069
-
Parameter selection of support vector machine for function approximation based on chaos optimization
-
Yuan X F, Wang Y N. Parameter selection of support vector machine for function approximation based on chaos optimization [J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 191-197
-
(2008)
Journal of Systems Engineering and Electronics
, vol.19
, Issue.1
, pp. 191-197
-
-
Yuan, X.F.1
Wang, Y.N.2
-
57
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry [J]. Computers & Chemical Engineering, 2009, 33(4): 795-814
-
(2009)
Computers & Chemical Engineering
, vol.33
, Issue.4
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
58
-
-
36148952503
-
Development of support vector regression-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas-liquid systems
-
Ankti B G, Jyeshtharaj B J, Valadi K J, et al. Development of support vector regression-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas-liquid systems [J]. Chemical Engineering Science, 2007, 62(24): 7078-7089
-
(2007)
Chemical Engineering Science
, vol.62
, Issue.24
, pp. 7078-7089
-
-
Ankti, B.G.1
Jyeshtharaj, B.J.2
Valadi, K.J.3
-
59
-
-
33947663944
-
Endpoint prediction of EAF based on multiple support vector machines
-
Yuan P, Mao Z Z, Wang F L. Endpoint prediction of EAF based on multiple support vector machines [J]. Journal of Iron and Steel Research, 2007, 14(2): 20-24
-
(2007)
Journal of Iron and Steel Research
, vol.14
, Issue.2
, pp. 20-24
-
-
Yuan, P.1
Mao, Z.Z.2
Wang, F.L.3
-
60
-
-
0033873291
-
Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer
-
Lin F J, Wai R J, Lin C H, et al. Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer [J]. IEEE Transactions on Industrial Electronics, 2000, 47(2): 356-367
-
(2000)
IEEE Transactions on Industrial Electronics
, vol.47
, Issue.2
, pp. 356-367
-
-
Lin, F.J.1
Wai, R.J.2
Lin, C.H.3
-
61
-
-
2342567014
-
Soft sensing modeling based on support vector machine and Bayesian model selection
-
Yan W, Shao H, Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection [J]. Computers & Chemical Engineering, 2004, 28(8): 1489-1498
-
(2004)
Computers & Chemical Engineering
, vol.28
, Issue.8
, pp. 1489-1498
-
-
Yan, W.1
Shao, H.2
Wang, X.3
-
62
-
-
52949129443
-
Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression
-
Fernando D S, Adriana N A. Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression [J]. Computers & Chemical Engineering, 2008, 32(12): 3264-3273
-
(2008)
Computers & Chemical Engineering
, vol.32
, Issue.12
, pp. 3264-3273
-
-
Fernando, D.S.1
Adriana, N.A.2
-
63
-
-
44549084178
-
Explicit stochastic predictive control of combustion plants based on Gaussian process models
-
Alexandra G, Jus K, Tor A J. Explicit stochastic predictive control of combustion plants based on Gaussian process models [J]. Automatica, 2008, 44(6): 1621-1631
-
(2008)
Automatica
, vol.44
, Issue.6
, pp. 1621-1631
-
-
Alexandra, G.1
Jus, K.2
Tor, A.J.3
-
64
-
-
49549124024
-
Gas-liquid separator modeling and simulation with Gaussian-process models
-
Kocijan J, Likar B. Gas-liquid separator modeling and simulation with Gaussian-process models [J]. Simulation Modelling Practice and Theory, 2008, 16(8): 910-922
-
(2008)
Simulation Modelling Practice and Theory
, vol.16
, Issue.8
, pp. 910-922
-
-
Kocijan, J.1
Likar, B.2
-
65
-
-
35548981797
-
Multiple-step-ahead prediction in control systems with Gaussian process models and TS-fuzzy models
-
Rainer P. Multiple-step-ahead prediction in control systems with Gaussian process models and TS-fuzzy models [J]. Engineering Applications of Artificial Intelligence, 2007, 20(8): 1023-1035
-
(2007)
Engineering Applications of Artificial Intelligence
, vol.20
, Issue.8
, pp. 1023-1035
-
-
Rainer, P.1
-
66
-
-
33845659986
-
Predictive control of a gas-liquid separation plant based on a Gaussian process model
-
Bojan L, Jus K. Predictive control of a gas-liquid separation plant based on a Gaussian process model [J]. Computers & Chemical Engineering, 2007, 31(3): 142-152
-
(2007)
Computers & Chemical Engineering
, vol.31
, Issue.3
, pp. 142-152
-
-
Bojan, L.1
Jus, K.2
-
67
-
-
61349165676
-
Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine
-
Li Xiuliang, Su Hongye, Chu Jian. Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine [J]. CIESC Journal, 2009, 17(1): 95-99
-
(2009)
CIESC Journal
, vol.17
, Issue.1
, pp. 95-99
-
-
Li, X.1
Su, H.2
Chu, J.3
-
68
-
-
84875625271
-
Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process
-
Fu Yongfeng, Su Hongye, Zhang Ying, et al. Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process [J]. Journal of Chemical Industry and Engineering(China), 2008, 59(5): 746-751
-
(2008)
Journal of Chemical Industry and Engineering(China)
, vol.59
, Issue.5
, pp. 746-751
-
-
Fu, Y.1
Su, H.2
Zhang, Y.3
-
69
-
-
77957870107
-
A cluster validity index for fuzzy clustering
-
Babak R. A cluster validity index for fuzzy clustering [J]. Fuzzy Sets and Systems, 2010, 161(6): 3014-3025
-
(2010)
Fuzzy Sets and Systems
, vol.161
, Issue.6
, pp. 3014-3025
-
-
Babak, R.1
-
70
-
-
0033166113
-
A hybrid neural network-first principles model for fixed-bed reactor
-
Qi H Y, Zhou X G, Liu L H, et al. A hybrid neural network-first principles model for fixed-bed reactor [J]. Chemical Engineering Science, 1999, 54(14): 2512-2526
-
(1999)
Chemical Engineering Science
, vol.54
, Issue.14
, pp. 2512-2526
-
-
Qi, H.Y.1
Zhou, X.G.2
Liu, L.H.3
-
71
-
-
60649108327
-
Research on hybrid modeling method in batch cooking process
-
Li Xiangyang, Zhu Xuefeng, Liu Huanbin. Research on hybrid modeling method in batch cooking process [J]. Transactions of China Pulp and Paper, 2001, 16(2): 24-28
-
(2001)
Transactions of China Pulp and Paper
, vol.16
, Issue.2
, pp. 24-28
-
-
Li, X.1
Zhu, X.2
Liu, H.3
-
72
-
-
0036532920
-
Product property and production rate control of styrene polymerization
-
Prasad V, Schley M, Russo L P, et al. Product property and production rate control of styrene polymerization [J]. Journal of Process Control, 2002, 12(3): 353-372
-
(2002)
Journal of Process Control
, vol.12
, Issue.3
, pp. 353-372
-
-
Prasad, V.1
Schley, M.2
Russo, L.P.3
-
73
-
-
2642557095
-
MIMO soft sensors for hydrocracking fractionators via fuzzy artmap
-
Zhong Wei, Yu Jinshou. MIMO soft sensors for hydrocracking fractionators via fuzzy artmap [J]. Journal of Chemical Industry and Engineering(China), 2000, 51(5): 671-675
-
(2000)
Journal of Chemical Industry and Engineering(China)
, vol.51
, Issue.5
, pp. 671-675
-
-
Zhong, W.1
Yu, J.2
-
74
-
-
67349089877
-
Data-driven soft sensors in the process industry
-
Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry [J]. Computers & Chemical Engineering, 2009, 33(4): 795-814
-
(2009)
Computers & Chemical Engineering
, vol.33
, Issue.4
, pp. 795-814
-
-
Kadlec, P.1
Gabrys, B.2
Strandt, S.3
-
75
-
-
24344446381
-
Discuss about dynamic soft-sensing modeling
-
Ma Yong, Huang Dexian, Jin Yihui. Discuss about dynamic soft-sensing modeling [J]. Journal of Chemical Industry and Engineering(China), 2005, 56(8): 1516-1519
-
(2005)
Journal of Chemical Industry and Engineering(China)
, vol.56
, Issue.8
, pp. 1516-1519
-
-
Ma, Y.1
Huang, D.2
Jin, Y.3
-
76
-
-
33746777157
-
Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant
-
Dae S L, Min W L, Seung H W, et al. Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant [J]. Process Biochemistry, 2006, 41(5): 2050-2057
-
(2006)
Process Biochemistry
, vol.41
, Issue.5
, pp. 2050-2057
-
-
Dae, S.L.1
Min, W.L.2
Seung, H.W.3
-
78
-
-
50849083804
-
Accounts of experiences in the application of artificial neural networks in chemical engineering
-
David M H. Accounts of experiences in the application of artificial neural networks in chemical engineering [J]. Industrial & Engineering Chemistry Research, 2008, 47(16): 5782-5796
-
(2008)
Industrial & Engineering Chemistry Research
, vol.47
, Issue.16
, pp. 5782-5796
-
-
David, M.H.1
-
79
-
-
77952369152
-
Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach
-
Tian H P, David S H W, Jang S S. Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach [J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4738-4747
-
(2010)
Industrial & Engineering Chemistry Research
, vol.49
, Issue.10
, pp. 4738-4747
-
-
Tian, H.P.1
David, S.H.W.2
Jang, S.S.3
-
80
-
-
84875610480
-
Soft sensor modeling of moisture content in drying process based on LSSVM
-
Cui J.P. and Qi J.M. (ed.). Beijing, China: Institute of Electrical and Electronics
-
Zhang D Y, Cao J, Sun L P. Soft sensor modeling of moisture content in drying process based on LSSVM//Cui J P, Qi J M. Proceedings of the 9th International Conference on Electronic Measurement & Instruments [C]. Beijing, China: Institute of Electrical and Electronics, 2009: 989-993
-
(2009)
Proceedings of the 9th International Conference on Electronic Measurement & Instruments
, pp. 989-993
-
-
Zhang, D.Y.1
Cao, J.2
Sun, L.P.3
-
82
-
-
79953832419
-
A reduced order soft sensor approach and its application to a continuous digester
-
Hector J G, Heb Q P, Wang J. A reduced order soft sensor approach and its application to a continuous digester [J]. Journal of Process Control, 2011, 21(4): 489-500
-
(2011)
Journal of Process Control
, vol.21
, Issue.4
, pp. 489-500
-
-
Hector, J.G.1
Heb, Q.P.2
Wang, J.3
-
84
-
-
0030128761
-
Estimating second-order dead time parameters from under damped process transients
-
Rangaiah G P, Krishnaswamy P R. Estimating second-order dead time parameters from under damped process transients [J]. Chemical Engineering Science, 1996, 51(7): 1149-1155
-
(1996)
Chemical Engineering Science
, vol.51
, Issue.7
, pp. 1149-1155
-
-
Rangaiah, G.P.1
Krishnaswamy, P.R.2
-
85
-
-
68049143320
-
Soft-sensor development using correlation-based just-in-time modeling
-
Fujiwara K, Kano M, Hasebe S, et al. Soft-sensor development using correlation-based just-in-time modeling [J]. AIChE Journal, 2009, 55(7): 1754-1765
-
(2009)
AIChE Journal
, vol.55
, Issue.7
, pp. 1754-1765
-
-
Fujiwara, K.1
Kano, M.2
Hasebe, S.3
-
86
-
-
0028892168
-
Disturbance detection and isolation by dynamic principal component analysis
-
Ku W, Storer R, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196
-
(1995)
Chemometrics and Intelligent Laboratory Systems
, vol.30
, Issue.1
, pp. 179-196
-
-
Ku, W.1
Storer, R.2
Georgakis, C.3
-
87
-
-
0034621334
-
Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
-
Russell E, Chiang L, Braatz R. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51(8): 81-93
-
(2000)
Chemometrics and Intelligent Laboratory Systems
, vol.51
, Issue.8
, pp. 81-93
-
-
Russell, E.1
Chiang, L.2
Braatz, R.3
-
89
-
-
78149381934
-
Soft sensor modeling with dynamic interpolation neural network for multirate system
-
Wu Yao, Luo Xiongling, Yuan Zhihong. Soft sensor modeling with dynamic interpolation neural network for multirate system [J]. Chemical Industry and Engineering Progress, 2009, 28(8): 1323-1327
-
(2009)
Chemical Industry and Engineering Progress
, vol.28
, Issue.8
, pp. 1323-1327
-
-
Wu, Y.1
Luo, X.2
Yuan, Z.3
-
90
-
-
84875599874
-
Dynamic soft-sensing modeling method and its application in industrial process
-
Fu Y F. Dynamic soft-sensing modeling method and its application in industrial process [J]. Process of Automation Instrumentation, 2011, 32(9): 67-70
-
(2011)
Process of Automation Instrumentation
, vol.32
, Issue.9
, pp. 67-70
-
-
Fu, Y.F.1
-
91
-
-
84941531642
-
A new approach to fuzzy-neural system modeling
-
Lin Y H, George A C. A new approach to fuzzy-neural system modeling [J]. IEEE Transactions on Fuzzy System, 1995, 3(2): 190-198
-
(1995)
IEEE Transactions on Fuzzy System
, vol.3
, Issue.2
, pp. 190-198
-
-
Lin, Y.H.1
George, A.C.2
-
92
-
-
26444565569
-
Finding structure in time
-
Elman J L. Finding structure in time [J]. Cognitive Science, 1990, 14(2): 179-211
-
(1990)
Cognitive Science
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
93
-
-
40849136053
-
Soft-sensor for on-line estimation of ethanol concentrations in wine stills
-
Daniel O, Perez C J R, Eduardo A, et al. Soft-sensor for on-line estimation of ethanol concentrations in wine stills [J]. Journal of Food Engineering, 2008, 87(4): 571-577
-
(2008)
Journal of Food Engineering
, vol.87
, Issue.4
, pp. 571-577
-
-
Daniel, O.1
Perez, C.J.R.2
Eduardo, A.3
-
95
-
-
33646775297
-
Assumed inherent sensor inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process
-
Dai X Z, Wang W C, Ding Y H, et al. Assumed inherent sensor inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process [J]. Computers & Chemical Engineering, 2006, 30(8): 1203-1225
-
(2006)
Computers & Chemical Engineering
, vol.30
, Issue.8
, pp. 1203-1225
-
-
Dai, X.Z.1
Wang, W.C.2
Ding, Y.H.3
-
96
-
-
0032041454
-
Monitoring the process of curing of epoxy/graphite fiber composites with a recurrent neural network as a soft sensor
-
Hong B S, Fan L T, John R S. Monitoring the process of curing of epoxy/graphite fiber composites with a recurrent neural network as a soft sensor [J]. Artificial Intelligence, 1998, 11(2): 293-306
-
(1998)
Artificial Intelligence
, vol.11
, Issue.2
, pp. 293-306
-
-
Hong, B.S.1
Fan, L.T.2
John, R.S.3
-
98
-
-
1642602905
-
Developing dynamic soft sensors using multiple neural networks
-
Luo Jianxu, Shao Huihe. Developing dynamic soft sensors using multiple neural networks [J]. Journal of Chemical Industry and Engineering(China), 2003, 54(12): 1770-1773
-
(2003)
Journal of Chemical Industry and Engineering(China)
, vol.54
, Issue.12
, pp. 1770-1773
-
-
Luo, J.1
Shao, H.2
-
99
-
-
67650269579
-
Dynamic soft sensor modeling based on multiple relevance vector machines
-
Li Chuan, Wang Shilong, Zhang Xianming. Dynamic soft sensor modeling based on multiple relevance vector machines [J]. Journal of System Simulation, 2009, 21(12): 3513-3517
-
(2009)
Journal of System Simulation
, vol.21
, Issue.12
, pp. 3513-3517
-
-
Li, C.1
Wang, S.2
Zhang, X.3
-
101
-
-
0033279399
-
High-level canonical piecewise linear representation using a simplicial partition
-
Pedro J L, Alfredo D, Osvaldo A. High-level canonical piecewise linear representation using a simplicial partition [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 1999, 46(4): 463-480
-
(1999)
IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications
, vol.46
, Issue.4
, pp. 463-480
-
-
Pedro, J.L.1
Alfredo, D.2
Osvaldo, A.3
-
102
-
-
78651516953
-
A decoupled multiple model approach for soft sensors design
-
Elom D, Huang B, Xu F W, et al. A decoupled multiple model approach for soft sensors design [J]. Control Engineering Practice, 2011, 19(2): 126-134
-
(2011)
Control Engineering Practice
, vol.19
, Issue.2
, pp. 126-134
-
-
Elom, D.1
Huang, B.2
Xu, F.W.3
-
103
-
-
61349165676
-
Multiple model soft sensor development with irregular/missing process output measurement
-
Li X L, Su H Y, Chu J. Multiple model soft sensor development with irregular/missing process output measurement [J]. Control Engineering Practice, 2009, 17(1): 95-99
-
(2009)
Control Engineering Practice
, vol.17
, Issue.1
, pp. 95-99
-
-
Li, X.L.1
Su, H.Y.2
Chu, J.3
-
104
-
-
80055094175
-
A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
-
Hiromasa K, Kimito F. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy [J]. Chemometrics and Intelligent Laboratory Systems, 2011, 109(2): 197-206
-
(2011)
Chemometrics and Intelligent Laboratory Systems
, vol.109
, Issue.2
, pp. 197-206
-
-
Hiromasa, K.1
Kimito, F.2
-
105
-
-
79959784751
-
Maintenance-free soft sensor models with time difference of process variables
-
Hiromasa K, Kimito F. Maintenance-free soft sensor models with time difference of process variables [J]. Chemometrics and Intelligent Laboratory Systems, 2011, 107(2): 312-317
-
(2011)
Chemometrics and Intelligent Laboratory Systems
, vol.107
, Issue.2
, pp. 312-317
-
-
Hiromasa, K.1
Kimito, F.2
-
106
-
-
67650023032
-
Data-driven soft sensor design with multiple-rate sampled data: A comparative study
-
Bao L, Bodil R, Torben M S, et al. Data-driven soft sensor design with multiple-rate sampled data: a comparative study [J]. Industrial & Engineering Chemistry Research, 2009, 48(5): 5379-5387
-
(2009)
Industrial & Engineering Chemistry Research
, vol.48
, Issue.5
, pp. 5379-5387
-
-
Bao, L.1
Bodil, R.2
Torben, M.S.3
-
108
-
-
36549010396
-
Adaptive soft-sensors for on-line particle size estimation in wet grinding circuits
-
Daniel S, Pedro A, Pablo E, et al. Adaptive soft-sensors for on-line particle size estimation in wet grinding circuits [J]. Control Engineering Practice, 2008, 16(2): 171-178
-
(2008)
Control Engineering Practice
, vol.16
, Issue.2
, pp. 171-178
-
-
Daniel, S.1
Pedro, A.2
Pablo, E.3
-
109
-
-
79961020084
-
A dynamic soft-sensing method based on impulses response template and parameter estimation with modified DE optimization
-
George S.A. (ed.). Laxenburg, Austria: IFAC Papers Online
-
Lu W X, Yang Q, Huang D X, et al. A dynamic soft-sensing method based on impulses response template and parameter estimation with modified DE optimization//George S A. Proceedings of the 17th International Federation of Automatic Control Congress [C]. Laxenburg, Austria: IFAC Papers Online, 2008: 10983-10988
-
(2008)
Proceedings of the 17th International Federation of Automatic Control Congress
, pp. 10983-10988
-
-
Lu, W.X.1
Yang, Q.2
Huang, D.X.3
-
110
-
-
77950346757
-
Dynamic soft sensor modeling based on time series error compensation
-
Du Wenli, Guan Zhenqiang, Qian Feng. Dynamic soft sensor modeling based on time series error compensation [J]. CIESC Journal, 2010, 61(2): 439-443
-
(2010)
CIESC Journal
, vol.61
, Issue.2
, pp. 439-443
-
-
Du, W.1
Guan, Z.2
Qian, F.3
|