메뉴 건너뛰기




Volumn 64, Issue 3, 2013, Pages 788-800

Modeling of soft sensor for chemical process

Author keywords

Data driven modeling; Identification; Modeling; Nonlinear dynamic modeling; Nonlinear modeling; Soft sensor

Indexed keywords

COMMERCIAL CHEMICALS; DATA-DRIVEN MODELING; DYNAMIC CHARACTERISTICS; MECHANISM MODELING; NONLINEAR MODELING; SOFT SENSORS; SOFT-SENSING MODEL; SOFT-SENSING MODELING;

EID: 84875586422     PISSN: 04381157     EISSN: None     Source Type: Journal    
DOI: 10.3969/j.issn.0438-1157.2013.03.003     Document Type: Review
Times cited : (76)

References (110)
  • 1
    • 0017972806 scopus 로고
    • Inferential control of processes(I): Steady state analysis and design
    • Joseph B, Brosilow C. Inferential control of processes(I): Steady state analysis and design [J]. AIChE Journal, 1978, 24(3): 485-492
    • (1978) AIChE Journal , vol.24 , Issue.3 , pp. 485-492
    • Joseph, B.1    Brosilow, C.2
  • 2
    • 0017972807 scopus 로고
    • Inferential control of processes(II): The structure and dynamics of inferential control systems
    • Brosilow C, Tong M. Inferential control of processes(II): The structure and dynamics of inferential control systems [J]. AIChE Journal, 1978, 24(3): 492-500
    • (1978) AIChE Journal , vol.24 , Issue.3 , pp. 492-500
    • Brosilow, C.1    Tong, M.2
  • 3
    • 0017971592 scopus 로고
    • Inferential control of processes(III): Construction of optimal and suboptimal dynamic estimators
    • Joseph B, Brosilow C. Inferential control of processes(III): Construction of optimal and suboptimal dynamic estimators [J]. AIChE Journal, 1978, 24(2): 500-509
    • (1978) AIChE Journal , vol.24 , Issue.2 , pp. 500-509
    • Joseph, B.1    Brosilow, C.2
  • 4
    • 0030217022 scopus 로고    scopus 로고
    • Computational intelligence and soft computing for space applications
    • McAvoy T J. Computational intelligence and soft computing for space applications [J]. IEEE Aerospace and Electronic Systems Magazine, 1996, 11(8): 8-10
    • (1996) IEEE Aerospace and Electronic Systems Magazine , vol.11 , Issue.8 , pp. 8-10
    • McAvoy, T.J.1
  • 6
    • 0019056894 scopus 로고
    • Least squares parameter estimation
    • Strejc V. Least squares parameter estimation [J]. Automatica, 1980, 16(5): 535-550
    • (1980) Automatica , vol.16 , Issue.5 , pp. 535-550
    • Strejc, V.1
  • 7
    • 84989071162 scopus 로고
    • Steady state simulation of continuous-flow stirred-tank slurry propylene polymerization reactors
    • Sarkar P, Gupta S K. Steady state simulation of continuous-flow stirred-tank slurry propylene polymerization reactors [J]. Polymer Engineering and Science, 1992, 32(11): 732-742
    • (1992) Polymer Engineering and Science , vol.32 , Issue.11 , pp. 732-742
    • Sarkar, P.1    Gupta, S.K.2
  • 8
    • 0027552237 scopus 로고
    • Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors
    • Sarkar P, Gupta S K. Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors [J]. Polymer Engineering and Science, 1993, 33(6): 368-374
    • (1993) Polymer Engineering and Science , vol.33 , Issue.6 , pp. 368-374
    • Sarkar, P.1    Gupta, S.K.2
  • 9
    • 0034661254 scopus 로고    scopus 로고
    • Modeling, simulation and nonlinear control of a gas-phase polymerization process
    • Sato C, Ohtani T, Nishitani H. Modeling, simulation and nonlinear control of a gas-phase polymerization process [J]. Computers & Chemical Engineering, 2000, 24(2): 945-951
    • (2000) Computers & Chemical Engineering , vol.24 , Issue.2 , pp. 945-951
    • Sato, C.1    Ohtani, T.2    Nishitani, H.3
  • 10
    • 0034661658 scopus 로고    scopus 로고
    • Soft sensors development for on-line bioreactor state estimation
    • Adilson J A, Rubens M F. Soft sensors development for on-line bioreactor state estimation [J]. Computers & Chemical Engineering, 2000, 24(7): 1099-1103
    • (2000) Computers & Chemical Engineering , vol.24 , Issue.7 , pp. 1099-1103
    • Adilson, J.A.1    Rubens, M.F.2
  • 12
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • Bhavik R B. Multiscale PCA with application to multivariate statistical process monitoring [J]. AIChE Journal, 1998, 44(7): 1596-1610
    • (1998) AIChE Journal , vol.44 , Issue.7 , pp. 1596-1610
    • Bhavik, R.B.1
  • 13
    • 0026360536 scopus 로고
    • Composition estimator in a pilot-plant distillation column using multiple temperature
    • Mejdell T, Skogestad S. Composition estimator in a pilot-plant distillation column using multiple temperature [J]. Industrial & Engineering Chemistry Research, 1991, 30(12): 255-2564
    • (1991) Industrial & Engineering Chemistry Research , vol.30 , Issue.12 , pp. 255-2564
    • Mejdell, T.1    Skogestad, S.2
  • 14
    • 53049096060 scopus 로고    scopus 로고
    • Assessment of near infrared and software sensor for biomass monitoring and control
    • Zita I T, Mathieu S, Gerrit V S, et al. Assessment of near infrared and software sensor for biomass monitoring and control [J]. Chemometrics and Intelligent Laboratory Systems, 2008, 94(2): 166-174
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.94 , Issue.2 , pp. 166-174
    • Zita, I.T.1    Mathieu, S.2    Gerrit, V.S.3
  • 15
    • 53649083927 scopus 로고    scopus 로고
    • Bilinear modeling of batch processes(I): Theoretical discussion
    • Jose C, Jesus P, Alberto F. Bilinear modeling of batch processes(I): Theoretical discussion [J]. Journal of Chemometrics, 2008, 22(5): 299-308
    • (2008) Journal of Chemometrics , vol.22 , Issue.5 , pp. 299-308
    • Jose, C.1    Jesus, P.2    Alberto, F.3
  • 16
    • 55349120836 scopus 로고    scopus 로고
    • Bilinear modeling of batch processes(II): A comparison of PLS soft-sensors
    • Jose C, Jesus P. Bilinear modeling of batch processes(II): A comparison of PLS soft-sensors [J]. Journal of Chemometrics, 2008, 22(10): 533-547
    • (2008) Journal of Chemometrics , vol.22 , Issue.10 , pp. 533-547
    • Jose, C.1    Jesus, P.2
  • 17
    • 38449110484 scopus 로고    scopus 로고
    • Fluorescence-based soft-sensor for monitoring beta-lactoglobulin and alpha-lactalbumin solubility during thermal aggregation
    • Rand E, Hector B, Christine M, et al. Fluorescence-based soft-sensor for monitoring beta-lactoglobulin and alpha-lactalbumin solubility during thermal aggregation [J]. Biotechnology and Bioengineering, 2008, 99(3): 567-577
    • (2008) Biotechnology and Bioengineering , vol.99 , Issue.3 , pp. 567-577
    • Rand, E.1    Hector, B.2    Christine, M.3
  • 18
    • 33746991704 scopus 로고    scopus 로고
    • Inferential sensors for estimation of polymer quality parameters: Industry application of a PLS-based soft sensor for a LDPE plant
    • Rumana S, Uttandaraman S, Sirish S, et al. Inferential sensors for estimation of polymer quality parameters: industry application of a PLS-based soft sensor for a LDPE plant [J]. Chemical Engineering Science, 2006, 61(19): 6372-6384
    • (2006) Chemical Engineering Science , vol.61 , Issue.19 , pp. 6372-6384
    • Rumana, S.1    Uttandaraman, S.2    Sirish, S.3
  • 19
    • 33847162850 scopus 로고    scopus 로고
    • A systematic approach for soft sensor development
    • Bao L, Bodil R, Jorgen K H, et al. A systematic approach for soft sensor development [J]. Computers & Chemical Engineering, 2007, 31(5): 419-425
    • (2007) Computers & Chemical Engineering , vol.31 , Issue.5 , pp. 419-425
    • Bao, L.1    Bodil, R.2    Jorgen, K.H.3
  • 20
    • 0036805513 scopus 로고    scopus 로고
    • Process analysis and abnormal situation detection: From theory to practice
    • Kourti T. Process analysis and abnormal situation detection: from theory to practice [J]. IEEE Control Systems Magazine, 2002, 22(5): 10-25
    • (2002) IEEE Control Systems Magazine , vol.22 , Issue.5 , pp. 10-25
    • Kourti, T.1
  • 21
    • 0034301495 scopus 로고    scopus 로고
    • Recursive PCA for adaptive process monitoring
    • Li W, Yue H H, Valle C S, et al. Recursive PCA for adaptive process monitoring [J]. Journal of Process Control, 2000, 10(5): 471-486
    • (2000) Journal of Process Control , vol.10 , Issue.5 , pp. 471-486
    • Li, W.1    Yue, H.H.2    Valle, C.S.3
  • 22
    • 22144480628 scopus 로고    scopus 로고
    • Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method
    • Wang S, Cui J. Sensor-fault detection, diagnosis and estimation for centrifugal chiller systems using principal-component analysis method [J]. Applied Energy, 2005, 82(3): 197-213
    • (2005) Applied Energy , vol.82 , Issue.3 , pp. 197-213
    • Wang, S.1    Cui, J.2
  • 23
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Qin S J. Recursive PLS algorithms for adaptive data modeling [J]. Computers & Chemical Engineering, 1998, 22(4): 503-514
    • (1998) Computers & Chemical Engineering , vol.22 , Issue.4 , pp. 503-514
    • Qin, S.J.1
  • 24
    • 0031168001 scopus 로고    scopus 로고
    • Recursive exponentially weighted PLS and its applications to adaptive control and prediction
    • Dayal B S, MacGregor J F. Recursive exponentially weighted PLS and its applications to adaptive control and prediction [J]. Journal of Process Control, 1997, 7(3): 169-179
    • (1997) Journal of Process Control , vol.7 , Issue.3 , pp. 169-179
    • Dayal, B.S.1    MacGregor, J.F.2
  • 25
  • 26
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • Dong D, McAvoy T J. Nonlinear principal component analysis-based on principal curves and neural networks [J]. Computers & Chemical Engineering, 1996, 20(1): 65-78
    • (1996) Computers & Chemical Engineering , vol.20 , Issue.1 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 28
    • 60649090799 scopus 로고    scopus 로고
    • Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process
    • Facco P, Doplicher F, Bezzo F, et al. Moving average PLS soft sensor for online product quality estimation in an industrial batch polymerization process [J]. Journal of Process Control, 2009, 19(3): 520-529
    • (2009) Journal of Process Control , vol.19 , Issue.3 , pp. 520-529
    • Facco, P.1    Doplicher, F.2    Bezzo, F.3
  • 29
    • 0003009442 scopus 로고    scopus 로고
    • Multilinear PLS
    • Bro R. Multilinear PLS [J]. Journal of Chemometrics, 1996, 10(1): 47-61
    • (1996) Journal of Chemometrics , vol.10 , Issue.1 , pp. 47-61
    • Bro, R.1
  • 30
    • 33745213366 scopus 로고    scopus 로고
    • Rigid medical image registration using PCA neural network
    • Shang L F, Lü J C, Yi Z. Rigid medical image registration using PCA neural network [J]. Neurocomputing, 2006, 69(14): 1717-1722
    • (2006) Neurocomputing , vol.69 , Issue.14 , pp. 1717-1722
    • Shang, L.F.1    Lü, J.C.2    Yi, Z.3
  • 31
    • 0034301495 scopus 로고    scopus 로고
    • Recursive PCA for adaptive process monitoring
    • Li W, Yue H H, Valle C S, et al. Recursive PCA for adaptive process monitoring [J]. Journal of Process Control, 2000, 10(5): 471-486
    • (2000) Journal of Process Control , vol.10 , Issue.5 , pp. 471-486
    • Li, W.1    Yue, H.H.2    Valle, C.S.3
  • 32
    • 0026853320 scopus 로고
    • Nonlinear PLS modeling using neural networks
    • Qin S J, McAvoy T J. Nonlinear PLS modeling using neural networks [J]. Computers & Chemical Engineering, 1992, 16(4): 379-391
    • (1992) Computers & Chemical Engineering , vol.16 , Issue.4 , pp. 379-391
    • Qin, S.J.1    McAvoy, T.J.2
  • 36
    • 4544350234 scopus 로고    scopus 로고
    • A soft-sensor development for melt-flow-length measurement during injection mold filling
    • Chen X, Gao F R, Chen G H. A soft-sensor development for melt-flow-length measurement during injection mold filling [J]. Materials Science and Engineering A, 2004, 384(1): 245-254
    • (2004) Materials Science and Engineering A , vol.384 , Issue.1 , pp. 245-254
    • Chen, X.1    Gao, F.R.2    Chen, G.H.3
  • 37
    • 0012612350 scopus 로고    scopus 로고
    • The distributed RBF neural network and its application in soft sensor
    • Wang Xudong, Shao Huihe, Luo Rongfu. The distributed RBF neural network and its application in soft sensor [J]. Control Theory & Applications, 1998, 15(4): 558-563
    • (1998) Control Theory & Applications , vol.15 , Issue.4 , pp. 558-563
    • Wang, X.1    Shao, H.2    Luo, R.3
  • 38
    • 0036802284 scopus 로고    scopus 로고
    • Identification of evolving fuzzy rule-based models
    • Angelov P, Buswell R. Identification of evolving fuzzy rule-based models [J]. IEEE Transactions on Fuzzy Systems, 2002, 10(5): 667-677
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.5 , pp. 667-677
    • Angelov, P.1    Buswell, R.2
  • 39
    • 18544392793 scopus 로고    scopus 로고
    • Automatization of a penicillin production process with soft sensors and an adaptive controller based on neuro fuzzy systems
    • Arazo M J, Cano J M, Gmez S E, et al. Automatization of a penicillin production process with soft sensors and an adaptive controller based on neuro fuzzy systems [J]. Control Engineering Practice, 2004, 12(9): 1073-1090
    • (2004) Control Engineering Practice , vol.12 , Issue.9 , pp. 1073-1090
    • Arazo, M.J.1    Cano, J.M.2    Gmez, S.E.3
  • 40
    • 77956773601 scopus 로고    scopus 로고
    • Wavelet networks based soft sensor and predictive control in fermentation process
    • Wang Y H, Huang D X, Gao D J, et al. Wavelet networks based soft sensor and predictive control in fermentation process [J]. Computer Aided Chemical Engineering, 2003, 15(6): 1222-1227
    • (2003) Computer Aided Chemical Engineering , vol.15 , Issue.6 , pp. 1222-1227
    • Wang, Y.H.1    Huang, D.X.2    Gao, D.J.3
  • 41
    • 38949133444 scopus 로고    scopus 로고
    • A sensor-software based on artificial neural network for the optimization of olive oil elaboration process
    • Jimenez A, Beltran G, Aguilera M P, et al. A sensor-software based on artificial neural network for the optimization of olive oil elaboration process [J]. Sensors and Actuators: B. Chemical, 2008, 129(2): 985-990
    • (2008) Sensors and Actuators: B. Chemical , vol.129 , Issue.2 , pp. 985-990
    • Jimenez, A.1    Beltran, G.2    Aguilera, M.P.3
  • 42
    • 34548443322 scopus 로고    scopus 로고
    • Some studies on soft sensor technology and their applications to industry process
    • Hangzhou: Zhejiang University
    • Liu Ruilan. Some studies on soft sensor technology and their applications to industry process [D]. Hangzhou: Zhejiang University, 2004
    • (2004)
    • Liu, R.1
  • 43
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system for nonlinear system identification and prediction
    • Rong H J, Sundararajan N, Huang G B, et al. Sequential adaptive fuzzy inference system for nonlinear system identification and prediction [J]. Fuzzy Sets and Systems, 2006, 157(9): 1260-1275
    • (2006) Fuzzy Sets and Systems , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3
  • 44
    • 3142570943 scopus 로고    scopus 로고
    • Fuzzy neural network model of 4-CBA concentration for industrial purified terephthalic acid oxidation process
    • Liu Ruilan, Su Hongye, Mu Shengjing, et al. Fuzzy neural network model of 4-CBA concentration for industrial purified terephthalic acid oxidation process [J]. Journal of Chemical Industry and Engineering(China), 2004, 12(2): 234-239
    • (2004) Journal of Chemical Industry and Engineering(China) , vol.12 , Issue.2 , pp. 234-239
    • Liu, R.1    Su, H.2    Mu, S.3
  • 45
    • 0344925615 scopus 로고    scopus 로고
    • Modeling and optimization of a refining process for fiber board production
    • Runkler T A, Gerstorfer E, Schlang M, et al. Modeling and optimization of a refining process for fiber board production [J]. Control Engineering Practice, 2003, 11(11): 1229-1241
    • (2003) Control Engineering Practice , vol.11 , Issue.11 , pp. 1229-1241
    • Runkler, T.A.1    Gerstorfer, E.2    Schlang, M.3
  • 47
    • 0033873291 scopus 로고    scopus 로고
    • Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer
    • Lin F J, Wai R J, Lin C H, et al. Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer [J]. IEEE Transactions on Industrial Electronics, 2000, 47(2): 356-367
    • (2000) IEEE Transactions on Industrial Electronics , vol.47 , Issue.2 , pp. 356-367
    • Lin, F.J.1    Wai, R.J.2    Lin, C.H.3
  • 48
    • 0033358684 scopus 로고    scopus 로고
    • An intelligent robotic system based on a fuzzy approach
    • Fukuda T, Kubota N. An intelligent robotic system based on a fuzzy approach [J]. Proceedings of the IEEE, 1999, 87(9): 1448-1470
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1448-1470
    • Fukuda, T.1    Kubota, N.2
  • 49
    • 84875588747 scopus 로고    scopus 로고
    • Study on soft sensor modeling methods and applications
    • Hangzhou: Zhejiang University
    • Li Xiuliang. Study on soft sensor modeling methods and applications [D]. Hangzhou: Zhejiang University, 2009
    • (2009)
    • Li, X.1
  • 52
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machines classifiers
    • Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural Network Letters, 1999, 9(3): 293-300
    • (1999) Neural Network Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 54
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimization for support vector machines
    • Huang C L, Wang C J. A GA-based feature selection and parameters optimization for support vector machines [J]. Expert Systems with Applications, 2006, 31(2): 231-240
    • (2006) Expert Systems with Applications , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.L.1    Wang, C.J.2
  • 55
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V, Ma Y. Practical selection of SVM parameters and noise estimation for SVM regression [J]. Neural Networks, 2004, 17(1): 113-126
    • (2004) Neural Networks , vol.17 , Issue.1 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 56
    • 39649114069 scopus 로고    scopus 로고
    • Parameter selection of support vector machine for function approximation based on chaos optimization
    • Yuan X F, Wang Y N. Parameter selection of support vector machine for function approximation based on chaos optimization [J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 191-197
    • (2008) Journal of Systems Engineering and Electronics , vol.19 , Issue.1 , pp. 191-197
    • Yuan, X.F.1    Wang, Y.N.2
  • 58
    • 36148952503 scopus 로고    scopus 로고
    • Development of support vector regression-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas-liquid systems
    • Ankti B G, Jyeshtharaj B J, Valadi K J, et al. Development of support vector regression-based correlation for prediction of overall gas hold-up in bubble column reactors for various gas-liquid systems [J]. Chemical Engineering Science, 2007, 62(24): 7078-7089
    • (2007) Chemical Engineering Science , vol.62 , Issue.24 , pp. 7078-7089
    • Ankti, B.G.1    Jyeshtharaj, B.J.2    Valadi, K.J.3
  • 59
    • 33947663944 scopus 로고    scopus 로고
    • Endpoint prediction of EAF based on multiple support vector machines
    • Yuan P, Mao Z Z, Wang F L. Endpoint prediction of EAF based on multiple support vector machines [J]. Journal of Iron and Steel Research, 2007, 14(2): 20-24
    • (2007) Journal of Iron and Steel Research , vol.14 , Issue.2 , pp. 20-24
    • Yuan, P.1    Mao, Z.Z.2    Wang, F.L.3
  • 60
    • 0033873291 scopus 로고    scopus 로고
    • Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer
    • Lin F J, Wai R J, Lin C H, et al. Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer [J]. IEEE Transactions on Industrial Electronics, 2000, 47(2): 356-367
    • (2000) IEEE Transactions on Industrial Electronics , vol.47 , Issue.2 , pp. 356-367
    • Lin, F.J.1    Wai, R.J.2    Lin, C.H.3
  • 61
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W, Shao H, Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection [J]. Computers & Chemical Engineering, 2004, 28(8): 1489-1498
    • (2004) Computers & Chemical Engineering , vol.28 , Issue.8 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 62
    • 52949129443 scopus 로고    scopus 로고
    • Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression
    • Fernando D S, Adriana N A. Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression [J]. Computers & Chemical Engineering, 2008, 32(12): 3264-3273
    • (2008) Computers & Chemical Engineering , vol.32 , Issue.12 , pp. 3264-3273
    • Fernando, D.S.1    Adriana, N.A.2
  • 63
    • 44549084178 scopus 로고    scopus 로고
    • Explicit stochastic predictive control of combustion plants based on Gaussian process models
    • Alexandra G, Jus K, Tor A J. Explicit stochastic predictive control of combustion plants based on Gaussian process models [J]. Automatica, 2008, 44(6): 1621-1631
    • (2008) Automatica , vol.44 , Issue.6 , pp. 1621-1631
    • Alexandra, G.1    Jus, K.2    Tor, A.J.3
  • 64
    • 49549124024 scopus 로고    scopus 로고
    • Gas-liquid separator modeling and simulation with Gaussian-process models
    • Kocijan J, Likar B. Gas-liquid separator modeling and simulation with Gaussian-process models [J]. Simulation Modelling Practice and Theory, 2008, 16(8): 910-922
    • (2008) Simulation Modelling Practice and Theory , vol.16 , Issue.8 , pp. 910-922
    • Kocijan, J.1    Likar, B.2
  • 65
    • 35548981797 scopus 로고    scopus 로고
    • Multiple-step-ahead prediction in control systems with Gaussian process models and TS-fuzzy models
    • Rainer P. Multiple-step-ahead prediction in control systems with Gaussian process models and TS-fuzzy models [J]. Engineering Applications of Artificial Intelligence, 2007, 20(8): 1023-1035
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.8 , pp. 1023-1035
    • Rainer, P.1
  • 66
    • 33845659986 scopus 로고    scopus 로고
    • Predictive control of a gas-liquid separation plant based on a Gaussian process model
    • Bojan L, Jus K. Predictive control of a gas-liquid separation plant based on a Gaussian process model [J]. Computers & Chemical Engineering, 2007, 31(3): 142-152
    • (2007) Computers & Chemical Engineering , vol.31 , Issue.3 , pp. 142-152
    • Bojan, L.1    Jus, K.2
  • 67
    • 61349165676 scopus 로고    scopus 로고
    • Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine
    • Li Xiuliang, Su Hongye, Chu Jian. Multiple model soft sensor based on affinity propagation, Gaussian process and Bayesian committee machine [J]. CIESC Journal, 2009, 17(1): 95-99
    • (2009) CIESC Journal , vol.17 , Issue.1 , pp. 95-99
    • Li, X.1    Su, H.2    Chu, J.3
  • 68
    • 84875625271 scopus 로고    scopus 로고
    • Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process
    • Fu Yongfeng, Su Hongye, Zhang Ying, et al. Adaptive soft-sensor modeling algorithm based on FCMISVM and its application in PX adsorption separation process [J]. Journal of Chemical Industry and Engineering(China), 2008, 59(5): 746-751
    • (2008) Journal of Chemical Industry and Engineering(China) , vol.59 , Issue.5 , pp. 746-751
    • Fu, Y.1    Su, H.2    Zhang, Y.3
  • 69
    • 77957870107 scopus 로고    scopus 로고
    • A cluster validity index for fuzzy clustering
    • Babak R. A cluster validity index for fuzzy clustering [J]. Fuzzy Sets and Systems, 2010, 161(6): 3014-3025
    • (2010) Fuzzy Sets and Systems , vol.161 , Issue.6 , pp. 3014-3025
    • Babak, R.1
  • 70
    • 0033166113 scopus 로고    scopus 로고
    • A hybrid neural network-first principles model for fixed-bed reactor
    • Qi H Y, Zhou X G, Liu L H, et al. A hybrid neural network-first principles model for fixed-bed reactor [J]. Chemical Engineering Science, 1999, 54(14): 2512-2526
    • (1999) Chemical Engineering Science , vol.54 , Issue.14 , pp. 2512-2526
    • Qi, H.Y.1    Zhou, X.G.2    Liu, L.H.3
  • 71
    • 60649108327 scopus 로고    scopus 로고
    • Research on hybrid modeling method in batch cooking process
    • Li Xiangyang, Zhu Xuefeng, Liu Huanbin. Research on hybrid modeling method in batch cooking process [J]. Transactions of China Pulp and Paper, 2001, 16(2): 24-28
    • (2001) Transactions of China Pulp and Paper , vol.16 , Issue.2 , pp. 24-28
    • Li, X.1    Zhu, X.2    Liu, H.3
  • 72
    • 0036532920 scopus 로고    scopus 로고
    • Product property and production rate control of styrene polymerization
    • Prasad V, Schley M, Russo L P, et al. Product property and production rate control of styrene polymerization [J]. Journal of Process Control, 2002, 12(3): 353-372
    • (2002) Journal of Process Control , vol.12 , Issue.3 , pp. 353-372
    • Prasad, V.1    Schley, M.2    Russo, L.P.3
  • 73
    • 2642557095 scopus 로고    scopus 로고
    • MIMO soft sensors for hydrocracking fractionators via fuzzy artmap
    • Zhong Wei, Yu Jinshou. MIMO soft sensors for hydrocracking fractionators via fuzzy artmap [J]. Journal of Chemical Industry and Engineering(China), 2000, 51(5): 671-675
    • (2000) Journal of Chemical Industry and Engineering(China) , vol.51 , Issue.5 , pp. 671-675
    • Zhong, W.1    Yu, J.2
  • 76
    • 33746777157 scopus 로고    scopus 로고
    • Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant
    • Dae S L, Min W L, Seung H W, et al. Nonlinear dynamic partial least squares modeling of a full-scale biological wastewater treatment plant [J]. Process Biochemistry, 2006, 41(5): 2050-2057
    • (2006) Process Biochemistry , vol.41 , Issue.5 , pp. 2050-2057
    • Dae, S.L.1    Min, W.L.2    Seung, H.W.3
  • 78
    • 50849083804 scopus 로고    scopus 로고
    • Accounts of experiences in the application of artificial neural networks in chemical engineering
    • David M H. Accounts of experiences in the application of artificial neural networks in chemical engineering [J]. Industrial & Engineering Chemistry Research, 2008, 47(16): 5782-5796
    • (2008) Industrial & Engineering Chemistry Research , vol.47 , Issue.16 , pp. 5782-5796
    • David, M.H.1
  • 79
    • 77952369152 scopus 로고    scopus 로고
    • Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach
    • Tian H P, David S H W, Jang S S. Development of a novel soft sensor using a local model network with an adaptive subtractive clustering approach [J]. Industrial & Engineering Chemistry Research, 2010, 49(10): 4738-4747
    • (2010) Industrial & Engineering Chemistry Research , vol.49 , Issue.10 , pp. 4738-4747
    • Tian, H.P.1    David, S.H.W.2    Jang, S.S.3
  • 80
    • 84875610480 scopus 로고    scopus 로고
    • Soft sensor modeling of moisture content in drying process based on LSSVM
    • Cui J.P. and Qi J.M. (ed.). Beijing, China: Institute of Electrical and Electronics
    • Zhang D Y, Cao J, Sun L P. Soft sensor modeling of moisture content in drying process based on LSSVM//Cui J P, Qi J M. Proceedings of the 9th International Conference on Electronic Measurement & Instruments [C]. Beijing, China: Institute of Electrical and Electronics, 2009: 989-993
    • (2009) Proceedings of the 9th International Conference on Electronic Measurement & Instruments , pp. 989-993
    • Zhang, D.Y.1    Cao, J.2    Sun, L.P.3
  • 82
    • 79953832419 scopus 로고    scopus 로고
    • A reduced order soft sensor approach and its application to a continuous digester
    • Hector J G, Heb Q P, Wang J. A reduced order soft sensor approach and its application to a continuous digester [J]. Journal of Process Control, 2011, 21(4): 489-500
    • (2011) Journal of Process Control , vol.21 , Issue.4 , pp. 489-500
    • Hector, J.G.1    Heb, Q.P.2    Wang, J.3
  • 84
    • 0030128761 scopus 로고    scopus 로고
    • Estimating second-order dead time parameters from under damped process transients
    • Rangaiah G P, Krishnaswamy P R. Estimating second-order dead time parameters from under damped process transients [J]. Chemical Engineering Science, 1996, 51(7): 1149-1155
    • (1996) Chemical Engineering Science , vol.51 , Issue.7 , pp. 1149-1155
    • Rangaiah, G.P.1    Krishnaswamy, P.R.2
  • 85
    • 68049143320 scopus 로고    scopus 로고
    • Soft-sensor development using correlation-based just-in-time modeling
    • Fujiwara K, Kano M, Hasebe S, et al. Soft-sensor development using correlation-based just-in-time modeling [J]. AIChE Journal, 2009, 55(7): 1754-1765
    • (2009) AIChE Journal , vol.55 , Issue.7 , pp. 1754-1765
    • Fujiwara, K.1    Kano, M.2    Hasebe, S.3
  • 86
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku W, Storer R, Georgakis C. Disturbance detection and isolation by dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems, 1995, 30(1): 179-196
    • (1995) Chemometrics and Intelligent Laboratory Systems , vol.30 , Issue.1 , pp. 179-196
    • Ku, W.1    Storer, R.2    Georgakis, C.3
  • 87
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell E, Chiang L, Braatz R. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis [J]. Chemometrics and Intelligent Laboratory Systems, 2000, 51(8): 81-93
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , Issue.8 , pp. 81-93
    • Russell, E.1    Chiang, L.2    Braatz, R.3
  • 89
    • 78149381934 scopus 로고    scopus 로고
    • Soft sensor modeling with dynamic interpolation neural network for multirate system
    • Wu Yao, Luo Xiongling, Yuan Zhihong. Soft sensor modeling with dynamic interpolation neural network for multirate system [J]. Chemical Industry and Engineering Progress, 2009, 28(8): 1323-1327
    • (2009) Chemical Industry and Engineering Progress , vol.28 , Issue.8 , pp. 1323-1327
    • Wu, Y.1    Luo, X.2    Yuan, Z.3
  • 90
    • 84875599874 scopus 로고    scopus 로고
    • Dynamic soft-sensing modeling method and its application in industrial process
    • Fu Y F. Dynamic soft-sensing modeling method and its application in industrial process [J]. Process of Automation Instrumentation, 2011, 32(9): 67-70
    • (2011) Process of Automation Instrumentation , vol.32 , Issue.9 , pp. 67-70
    • Fu, Y.F.1
  • 91
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modeling
    • Lin Y H, George A C. A new approach to fuzzy-neural system modeling [J]. IEEE Transactions on Fuzzy System, 1995, 3(2): 190-198
    • (1995) IEEE Transactions on Fuzzy System , vol.3 , Issue.2 , pp. 190-198
    • Lin, Y.H.1    George, A.C.2
  • 92
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J L. Finding structure in time [J]. Cognitive Science, 1990, 14(2): 179-211
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 93
    • 40849136053 scopus 로고    scopus 로고
    • Soft-sensor for on-line estimation of ethanol concentrations in wine stills
    • Daniel O, Perez C J R, Eduardo A, et al. Soft-sensor for on-line estimation of ethanol concentrations in wine stills [J]. Journal of Food Engineering, 2008, 87(4): 571-577
    • (2008) Journal of Food Engineering , vol.87 , Issue.4 , pp. 571-577
    • Daniel, O.1    Perez, C.J.R.2    Eduardo, A.3
  • 95
    • 33646775297 scopus 로고    scopus 로고
    • Assumed inherent sensor inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process
    • Dai X Z, Wang W C, Ding Y H, et al. Assumed inherent sensor inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process [J]. Computers & Chemical Engineering, 2006, 30(8): 1203-1225
    • (2006) Computers & Chemical Engineering , vol.30 , Issue.8 , pp. 1203-1225
    • Dai, X.Z.1    Wang, W.C.2    Ding, Y.H.3
  • 96
    • 0032041454 scopus 로고    scopus 로고
    • Monitoring the process of curing of epoxy/graphite fiber composites with a recurrent neural network as a soft sensor
    • Hong B S, Fan L T, John R S. Monitoring the process of curing of epoxy/graphite fiber composites with a recurrent neural network as a soft sensor [J]. Artificial Intelligence, 1998, 11(2): 293-306
    • (1998) Artificial Intelligence , vol.11 , Issue.2 , pp. 293-306
    • Hong, B.S.1    Fan, L.T.2    John, R.S.3
  • 97
  • 98
    • 1642602905 scopus 로고    scopus 로고
    • Developing dynamic soft sensors using multiple neural networks
    • Luo Jianxu, Shao Huihe. Developing dynamic soft sensors using multiple neural networks [J]. Journal of Chemical Industry and Engineering(China), 2003, 54(12): 1770-1773
    • (2003) Journal of Chemical Industry and Engineering(China) , vol.54 , Issue.12 , pp. 1770-1773
    • Luo, J.1    Shao, H.2
  • 99
    • 67650269579 scopus 로고    scopus 로고
    • Dynamic soft sensor modeling based on multiple relevance vector machines
    • Li Chuan, Wang Shilong, Zhang Xianming. Dynamic soft sensor modeling based on multiple relevance vector machines [J]. Journal of System Simulation, 2009, 21(12): 3513-3517
    • (2009) Journal of System Simulation , vol.21 , Issue.12 , pp. 3513-3517
    • Li, C.1    Wang, S.2    Zhang, X.3
  • 102
    • 78651516953 scopus 로고    scopus 로고
    • A decoupled multiple model approach for soft sensors design
    • Elom D, Huang B, Xu F W, et al. A decoupled multiple model approach for soft sensors design [J]. Control Engineering Practice, 2011, 19(2): 126-134
    • (2011) Control Engineering Practice , vol.19 , Issue.2 , pp. 126-134
    • Elom, D.1    Huang, B.2    Xu, F.W.3
  • 103
    • 61349165676 scopus 로고    scopus 로고
    • Multiple model soft sensor development with irregular/missing process output measurement
    • Li X L, Su H Y, Chu J. Multiple model soft sensor development with irregular/missing process output measurement [J]. Control Engineering Practice, 2009, 17(1): 95-99
    • (2009) Control Engineering Practice , vol.17 , Issue.1 , pp. 95-99
    • Li, X.L.1    Su, H.Y.2    Chu, J.3
  • 104
    • 80055094175 scopus 로고    scopus 로고
    • A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy
    • Hiromasa K, Kimito F. A soft sensor method based on values predicted from multiple intervals of time difference for improvement and estimation of prediction accuracy [J]. Chemometrics and Intelligent Laboratory Systems, 2011, 109(2): 197-206
    • (2011) Chemometrics and Intelligent Laboratory Systems , vol.109 , Issue.2 , pp. 197-206
    • Hiromasa, K.1    Kimito, F.2
  • 105
    • 79959784751 scopus 로고    scopus 로고
    • Maintenance-free soft sensor models with time difference of process variables
    • Hiromasa K, Kimito F. Maintenance-free soft sensor models with time difference of process variables [J]. Chemometrics and Intelligent Laboratory Systems, 2011, 107(2): 312-317
    • (2011) Chemometrics and Intelligent Laboratory Systems , vol.107 , Issue.2 , pp. 312-317
    • Hiromasa, K.1    Kimito, F.2
  • 106
    • 67650023032 scopus 로고    scopus 로고
    • Data-driven soft sensor design with multiple-rate sampled data: A comparative study
    • Bao L, Bodil R, Torben M S, et al. Data-driven soft sensor design with multiple-rate sampled data: a comparative study [J]. Industrial & Engineering Chemistry Research, 2009, 48(5): 5379-5387
    • (2009) Industrial & Engineering Chemistry Research , vol.48 , Issue.5 , pp. 5379-5387
    • Bao, L.1    Bodil, R.2    Torben, M.S.3
  • 108
    • 36549010396 scopus 로고    scopus 로고
    • Adaptive soft-sensors for on-line particle size estimation in wet grinding circuits
    • Daniel S, Pedro A, Pablo E, et al. Adaptive soft-sensors for on-line particle size estimation in wet grinding circuits [J]. Control Engineering Practice, 2008, 16(2): 171-178
    • (2008) Control Engineering Practice , vol.16 , Issue.2 , pp. 171-178
    • Daniel, S.1    Pedro, A.2    Pablo, E.3
  • 109
    • 79961020084 scopus 로고    scopus 로고
    • A dynamic soft-sensing method based on impulses response template and parameter estimation with modified DE optimization
    • George S.A. (ed.). Laxenburg, Austria: IFAC Papers Online
    • Lu W X, Yang Q, Huang D X, et al. A dynamic soft-sensing method based on impulses response template and parameter estimation with modified DE optimization//George S A. Proceedings of the 17th International Federation of Automatic Control Congress [C]. Laxenburg, Austria: IFAC Papers Online, 2008: 10983-10988
    • (2008) Proceedings of the 17th International Federation of Automatic Control Congress , pp. 10983-10988
    • Lu, W.X.1    Yang, Q.2    Huang, D.X.3
  • 110
    • 77950346757 scopus 로고    scopus 로고
    • Dynamic soft sensor modeling based on time series error compensation
    • Du Wenli, Guan Zhenqiang, Qian Feng. Dynamic soft sensor modeling based on time series error compensation [J]. CIESC Journal, 2010, 61(2): 439-443
    • (2010) CIESC Journal , vol.61 , Issue.2 , pp. 439-443
    • Du, W.1    Guan, Z.2    Qian, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.