메뉴 건너뛰기




Volumn 145, Issue 2, 2008, Pages 290-307

Modelling and nonlinear predictive control of a yeast fermentation biochemical reactor using neural networks

Author keywords

Linearisation; Model predictive control; Neural networks; Optimisation; Process control; Quadratic programming; Yeast fermentation

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOCHEMICAL ENGINEERING; BIOREACTORS; BOOLEAN FUNCTIONS; CLOSED LOOP CONTROL SYSTEMS; COMPUTATIONAL COMPLEXITY; CONTROL THEORY; DISTURBANCE REJECTION; FERMENTATION; FORECASTING; MATHEMATICAL PROGRAMMING; NETWORK PROTOCOLS; NEURAL NETWORKS; NONLINEAR PROGRAMMING; PREDICTIVE CONTROL SYSTEMS; QUADRATIC PROGRAMMING; SENSOR NETWORKS; YEAST;

EID: 53949093475     PISSN: 13858947     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cej.2008.08.005     Document Type: Article
Times cited : (65)

References (39)
  • 2
    • 33748290194 scopus 로고    scopus 로고
    • A neural network model predictive controller
    • Åkesson B.M., and Toivonen H.T. A neural network model predictive controller. J. Proc. Control 16 3 (2006) 937-946
    • (2006) J. Proc. Control , vol.16 , Issue.3 , pp. 937-946
    • Åkesson, B.M.1    Toivonen, H.T.2
  • 3
    • 0023310961 scopus 로고
    • Generalized predictive control-I. The basic algorithm, II. Extensions and interpretations
    • Clarke D.W., Mohtadi C., and Tuffs P.S. Generalized predictive control-I. The basic algorithm, II. Extensions and interpretations. Automatica 23 2 (1987) 137-160
    • (1987) Automatica , vol.23 , Issue.2 , pp. 137-160
    • Clarke, D.W.1    Mohtadi, C.2    Tuffs, P.S.3
  • 4
    • 0000885451 scopus 로고
    • Properties of Generalized Predictive Control
    • Clarke D.W., and Mohtadi C. Properties of Generalized Predictive Control. Automatica 25 6 (1989) 859-875
    • (1989) Automatica , vol.25 , Issue.6 , pp. 859-875
    • Clarke, D.W.1    Mohtadi, C.2
  • 5
    • 0025464263 scopus 로고    scopus 로고
    • Haber, R., Unbehauen, H., Structure identification of nonlinear dynamic systems - a survey of input/output approaches, Automatica 26, 651-677.
    • Haber, R., Unbehauen, H., Structure identification of nonlinear dynamic systems - a survey of input/output approaches, Automatica 26, 651-677.
  • 6
    • 53949108565 scopus 로고    scopus 로고
    • L.K. Hansen, M.W. Pedersen, Controlled growth of cascade correlationnets in: M. Marino, P.G. Morasso (Eds.), Proceedings of the International Conference on Artificial Neural Networks, ICANN 1994, Sorento, Italy, pp. 797-800.
    • L.K. Hansen, M.W. Pedersen, Controlled growth of cascade correlationnets in: M. Marino, P.G. Morasso (Eds.), Proceedings of the International Conference on Artificial Neural Networks, ICANN 1994, Sorento, Italy, pp. 797-800.
  • 7
    • 0001234705 scopus 로고
    • Second order derivatives for network prunning: Optimal brain surgeon
    • Touretzky D. (Ed), Morgan Kaufmann, San Mateo
    • Hassibi B., and Stork B. Second order derivatives for network prunning: Optimal brain surgeon. In: Touretzky D. (Ed). Advances of NIPS5 (1993), Morgan Kaufmann, San Mateo 164-171
    • (1993) Advances of NIPS5 , pp. 164-171
    • Hassibi, B.1    Stork, B.2
  • 9
    • 0032455115 scopus 로고    scopus 로고
    • Nonlinear model predictive control: current status and future directions
    • Henson M.A. Nonlinear model predictive control: current status and future directions. Comput. Chem. Eng. 23 2 (1998) 187-202
    • (1998) Comput. Chem. Eng. , vol.23 , Issue.2 , pp. 187-202
    • Henson, M.A.1
  • 10
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 5 (1989) 359-366
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 11
    • 0030415759 scopus 로고    scopus 로고
    • Huang, Y., Lu, W. M., Nonlinear optimal control: alternatives to Hamilton-Jacobi equation, Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, 1996. 3942-3947.
    • Huang, Y., Lu, W. M., Nonlinear optimal control: alternatives to Hamilton-Jacobi equation, Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, 1996. 3942-3947.
  • 12
    • 0032735194 scopus 로고    scopus 로고
    • Review of the applications of neural networks in chemical process control- simulation and online implmementation
    • Hussain M.A. Review of the applications of neural networks in chemical process control- simulation and online implmementation. Artif. Intell. Eng. 13 1 (1999) 55-68
    • (1999) Artif. Intell. Eng. , vol.13 , Issue.1 , pp. 55-68
    • Hussain, M.A.1
  • 14
    • 0032289111 scopus 로고    scopus 로고
    • Predictive control for non-linear systems using neural networks
    • Liu G.P., Kadirkamanathan V., and Billings S.A. Predictive control for non-linear systems using neural networks. Int. J. Control 71 6 (1998) 1119-1132
    • (1998) Int. J. Control , vol.71 , Issue.6 , pp. 1119-1132
    • Liu, G.P.1    Kadirkamanathan, V.2    Billings, S.A.3
  • 16
    • 48449086024 scopus 로고    scopus 로고
    • A computationally efficient stable dual-mode type nonlinear predictive control algorithm
    • Ławryńczuk M., and Tadej W. A computationally efficient stable dual-mode type nonlinear predictive control algorithm. Control Cybernet. 37 1 (2008) 99-132
    • (2008) Control Cybernet. , vol.37 , Issue.1 , pp. 99-132
    • Ławryńczuk, M.1    Tadej, W.2
  • 17
    • 34547506325 scopus 로고    scopus 로고
    • A family of model predictive control algorithms with artificial neural networks
    • Ławryńczuk M. A family of model predictive control algorithms with artificial neural networks. Int. J. Appl. Math. Comp. Sci. 17 2 (2007) 217-232
    • (2007) Int. J. Appl. Math. Comp. Sci. , vol.17 , Issue.2 , pp. 217-232
    • Ławryńczuk, M.1
  • 18
    • 33746219699 scopus 로고    scopus 로고
    • An efficient nonlinear predictive control algorithm with neural models and its application to a high-purity distillation process
    • (Rutkowski, L., Tadeusiewicz, R., Zadeh, L. A., Zurada, J. M. (eds.): Proceedings of the Eighth International Conference on Artificial Intelligence and Soft Computing, ICAISC 2006, Zakopane, Poland)
    • Ławryńczuk M., and Tatjewski P. An efficient nonlinear predictive control algorithm with neural models and its application to a high-purity distillation process. Lecture Notes in Artificial Intelligence 4029 (2006) 76-85 (Rutkowski, L., Tadeusiewicz, R., Zadeh, L. A., Zurada, J. M. (eds.): Proceedings of the Eighth International Conference on Artificial Intelligence and Soft Computing, ICAISC 2006, Zakopane, Poland)
    • (2006) Lecture Notes in Artificial Intelligence , vol.4029 , pp. 76-85
    • Ławryńczuk, M.1    Tatjewski, P.2
  • 20
    • 0033876326 scopus 로고    scopus 로고
    • Constrained model predictive control:stability and optimality
    • Mayne D.Q., Rawlings J.B., Rao C.V., and Scokaert P.O.M. Constrained model predictive control:stability and optimality. Automatica 36 6 (2000) 789-814
    • (2000) Automatica , vol.36 , Issue.6 , pp. 789-814
    • Mayne, D.Q.1    Rawlings, J.B.2    Rao, C.V.3    Scokaert, P.O.M.4
  • 22
    • 33646781869 scopus 로고    scopus 로고
    • Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers
    • Marusak P., and Tatjewski P. Stability analysis of nonlinear control systems with unconstrained fuzzy predictive controllers. Arch. Control Sci. 12 (2002) 267-288
    • (2002) Arch. Control Sci. , vol.12 , pp. 267-288
    • Marusak, P.1    Tatjewski, P.2
  • 23
    • 0027701879 scopus 로고
    • Robust receding horizon control of constrained nonlinear systems
    • Michalska H., and Mayne D.Q. Robust receding horizon control of constrained nonlinear systems. IEEE Trans. Automatic Control 38 11 (1993) 1623-1633
    • (1993) IEEE Trans. Automatic Control , vol.38 , Issue.11 , pp. 1623-1633
    • Michalska, H.1    Mayne, D.Q.2
  • 24
    • 0033135677 scopus 로고    scopus 로고
    • Model predictive control: past, present and future
    • Morari M., and Lee J.H. Model predictive control: past, present and future. Comput. Chem. Eng. 23 4/5 (1999) 667-682
    • (1999) Comput. Chem. Eng. , vol.23 , Issue.4-5 , pp. 667-682
    • Morari, M.1    Lee, J.H.2
  • 26
    • 33846893475 scopus 로고    scopus 로고
    • Model based control of a yeast fermentation bioreactors using optimally designed artificial neural networks
    • Nagy Z.K. Model based control of a yeast fermentation bioreactors using optimally designed artificial neural networks. Chem. Eng. J. 127 1 (2007) 95-109
    • (2007) Chem. Eng. J. , vol.127 , Issue.1 , pp. 95-109
    • Nagy, Z.K.1
  • 27
    • 0037160340 scopus 로고    scopus 로고
    • Åkesson, B. M., Toivonen, H. T., Gain-scheduling controllers based on velocity-form linear parameter-varying models applied to an example process
    • Nyström R.H. Åkesson, B. M., Toivonen, H. T., Gain-scheduling controllers based on velocity-form linear parameter-varying models applied to an example process. Ind. Eng. Chem. Res. 41 (2002) 220-229
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 220-229
    • Nyström, R.H.1
  • 28
    • 0032096305 scopus 로고    scopus 로고
    • Nonlinear stabilization by receding-horizon neural regulators
    • Parisini T., Sanguineti M., and Zoppoli R. Nonlinear stabilization by receding-horizon neural regulators. Int. J. Control 70 3 (1998) 341-362
    • (1998) Int. J. Control , vol.70 , Issue.3 , pp. 341-362
    • Parisini, T.1    Sanguineti, M.2    Zoppoli, R.3
  • 30
    • 0031152395 scopus 로고    scopus 로고
    • A nonlinear predictive control strategy based on radial basis function models
    • Pottmann M., and Seborg D.E. A nonlinear predictive control strategy based on radial basis function models. Comput. Chem. Eng. 21 9 (1997) 965-980
    • (1997) Comput. Chem. Eng. , vol.21 , Issue.9 , pp. 965-980
    • Pottmann, M.1    Seborg, D.E.2
  • 31
    • 0041802770 scopus 로고    scopus 로고
    • A survey of industrial model predictive control technology
    • Qin S.J., and Badgwell T.A. A survey of industrial model predictive control technology. Control Eng. Pract. 11 7 (2003) 733-764
    • (2003) Control Eng. Pract. , vol.11 , Issue.7 , pp. 733-764
    • Qin, S.J.1    Badgwell, T.A.2
  • 34
    • 0025494430 scopus 로고
    • On the choice of the horizon in long-range predictive control-some simple criteria
    • Scattolini R., and Bittanti S. On the choice of the horizon in long-range predictive control-some simple criteria. Automatica 26 5 (1990) 915-917
    • (1990) Automatica , vol.26 , Issue.5 , pp. 915-917
    • Scattolini, R.1    Bittanti, S.2
  • 35
    • 0029208945 scopus 로고
    • Multivariable nonlinear and adaptive control of a distillation column
    • Strömborg K.S., Toivonen H.T., Häggblom K.E., and Waller K.V. Multivariable nonlinear and adaptive control of a distillation column. AIChE J. 41 (1995) 195-199
    • (1995) AIChE J. , vol.41 , pp. 195-199
    • Strömborg, K.S.1    Toivonen, H.T.2    Häggblom, K.E.3    Waller, K.V.4
  • 37
    • 33646814411 scopus 로고    scopus 로고
    • Ławryńczuk, M. Soft computing in model-based predictive control
    • Tatjewski P. Ławryńczuk, M. Soft computing in model-based predictive control. Int. J. Appl. Math. Comp. Sci. 16 1 (2006) 101-120
    • (2006) Int. J. Appl. Math. Comp. Sci. , vol.16 , Issue.1 , pp. 101-120
    • Tatjewski, P.1
  • 38
    • 0032171725 scopus 로고    scopus 로고
    • Neural predictive control for insulin delivery using the subcutaneous route
    • Trajanoski Z., and Wach P. Neural predictive control for insulin delivery using the subcutaneous route. IEEE Trans. Biomed. Eng. 45 9 (1998) 1122-1134
    • (1998) IEEE Trans. Biomed. Eng. , vol.45 , Issue.9 , pp. 1122-1134
    • Trajanoski, Z.1    Wach, P.2
  • 39
    • 0345356987 scopus 로고    scopus 로고
    • Implementation of neural network predictive control to a multivariable chemical reactor
    • Yu D.L., and Gomm J.B. Implementation of neural network predictive control to a multivariable chemical reactor. Control Eng. Practice 11 11 (2003) 1315-1323
    • (2003) Control Eng. Practice , vol.11 , Issue.11 , pp. 1315-1323
    • Yu, D.L.1    Gomm, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.