메뉴 건너뛰기




Volumn 53, Issue 6, 2014, Pages 428-435

Extending statistical boosting: An overview of recent methodological developments

Author keywords

Algorithms; Classification; Machine learning; Statistical computing; Statistical models

Indexed keywords

ALGORITHM; HUMAN; MATHEMATICAL COMPUTING; MEDICAL RESEARCH; REGRESSION ANALYSIS; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA;

EID: 84914104651     PISSN: 00261270     EISSN: 2511705X     Source Type: Journal    
DOI: 10.3414/ME13-01-0123     Document Type: Article
Times cited : (52)

References (86)
  • 1
    • 0025448521 scopus 로고
    • The Strength of Weak Learnability
    • Schapire RE. The Strength of Weak Learnability. Machine Learning 1990; 5 (2): 197-227
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 2
    • 85043515682 scopus 로고
    • Boosting a Weak Learning Algorithm by Majority
    • In: Fulk MA, Case J, editors, COLT 1990, University of Rochester, Rochester, NY, USA, August 6–8, 1990
    • Freund Y. Boosting a Weak Learning Algorithm by Majority. In: Fulk MA, Case J, editors. Proceedings of the Third Annual Workshop on Computational Learning Theory, COLT 1990, University of Rochester, Rochester, NY, USA, August 6–8, 1990; 1990. pp 202-216
    • (1990) Proceedings of the Third Annual Workshop on Computational Learning Theory , pp. 202-216
    • Freund, Y.1
  • 4
    • 84914169260 scopus 로고    scopus 로고
    • The Evolution of Boosting Algorithms-From Machine Learning to Statistical Modelling
    • Mayr A, Binder H, Gefeller O, Schmid M. The Evolution of Boosting Algorithms-From Machine Learning to Statistical Modelling. Methods Inf Med 2014; 53: 419-427
    • (2014) Methods Inf Med , vol.53 , pp. 419-427
    • Mayr, A.1    Binder, H.2    Gefeller, O.3    Schmid, M.4
  • 6
    • 25444532788 scopus 로고    scopus 로고
    • Flexible Smoothing with B-splines and Penalties (with discussion)
    • Eilers PHC, Marx BD. Flexible Smoothing with B-splines and Penalties (with discussion). Statistical Science 1996; 11: 89-121
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 7
    • 84903610080 scopus 로고    scopus 로고
    • Probability Estimation with Machine Learning Methods for Dichotomous and Multi-Category Outcome: Theory
    • Available from
    • Kruppa J, Liu Y, Biau G, Kohler M, König IR, Malley JD, et al. Probability Estimation with Machine Learning Methods for Dichotomous and Multi-Category Outcome: Theory. Biometrical Journal 2014. Available from: http://dx.doi.org/10.1002/ bimj.201300068
    • (2014) Biometrical Journal
    • Kruppa, J.1    Liu, Y.2    Biau, G.3    Kohler, M.4    König, I.R.5    Malley, J.D.6
  • 8
    • 84903629415 scopus 로고    scopus 로고
    • Machine Learning Versus Statistical Modeling
    • Available from
    • Boulesteix AL, Schmid M. Discussion: Machine Learning Versus Statistical Modeling. Biometrical Journal 2014. Available from: http://dx.doi.org/ 10.1002/bimj.201300226
    • (2014) Biometrical Journal
    • Boulesteix, A.L.1    Discussion, S.M.2
  • 9
    • 0035470889 scopus 로고    scopus 로고
    • Greedy Function Approximation: A Gradient Boosting Machine
    • Friedman JH. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics 2001; 29: 1189-1232
    • (2001) The Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 10
    • 41549141939 scopus 로고    scopus 로고
    • Boosting Algorithms: Regularization, Prediction and Model Fitting (with Discussion)
    • Bühlmann P, Hothorn T. Boosting Algorithms: Regularization, Prediction and Model Fitting (with Discussion). Statistical Science 2007; 22: 477–522
    • (2007) Statistical Science , vol.22 , pp. 477-522
    • Bühlmann, P.1    Hothorn, T.2
  • 11
    • 33845509035 scopus 로고    scopus 로고
    • Generalized Additive Modeling with Implicit Variable Selection by Likelihoodbased Boosting
    • Tutz G, Binder H. Generalized Additive Modeling with Implicit Variable Selection by Likelihoodbased Boosting. Biometrics 2006; 62: 961-971
    • (2006) Biometrics , vol.62 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 13
    • 66949120727 scopus 로고    scopus 로고
    • Variable Selection and Model Choice in Geoadditive Regression Models
    • Kneib T, Hothorn T, Tutz G. Variable Selection and Model Choice in Geoadditive Regression Models. Biometrics 2009; 65 (2): 626-634
    • (2009) Biometrics , vol.65 , Issue.2 , pp. 626-634
    • Kneib, T.1    Hothorn, T.2    Tutz, G.3
  • 14
    • 77949352853 scopus 로고    scopus 로고
    • A Selective Overview of Variable Selection in High Dimensional Feature Space
    • Fan J, Lv J. A Selective Overview of Variable Selection in High Dimensional Feature Space. Statistica Sinica 2010; 20: 101–148
    • (2010) Statistica Sinica , vol.20 , pp. 101-148
    • Fan, J.1    Lv, J.2
  • 16
    • 84940730859 scopus 로고    scopus 로고
    • Bagging, Boosting and Ensemble Methods
    • In: Gentle YJE, Härdle W, Mori Y, editors, . Springer Handbooks
    • Bühlmann P. Bagging, Boosting and Ensemble Methods. In: Gentle YJE, Härdle W, Mori Y, editors. Handbook of Computational Statistics. Springer Handbooks; 2012. pp 985-1022
    • (2012) Handbook of Computational Statistics , pp. 985-1022
    • Bühlmann, P.1
  • 17
    • 0141879236 scopus 로고    scopus 로고
    • Model Selection and the Principle of Minimum Description Length
    • Hansen MH, Yu B. Model Selection and the Principle of Minimum Description Length. Journal of the American Statistical Association 2001; 96 (454): 746-774
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.454 , pp. 746-774
    • Hansen, M.H.1    Yu, B.2
  • 18
    • 70349119250 scopus 로고
    • Tsai CL.Regression and Time Series Model Selection in Small Samples
    • Hurvich CM, Tsai CL.Regression and Time Series Model Selection in Small Samples. Biometrika 1989; 76 (2): 237-397
    • (1989) Biometrika , vol.76 , Issue.2 , pp. 237-397
    • Hurvich, C.M.1
  • 19
    • 78651278795 scopus 로고    scopus 로고
    • On the Behaviour of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models
    • Greven S, Kneib T. On the Behaviour of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models. Biometrika 2010; 97 (4): 773-789
    • (2010) Biometrika , vol.97 , Issue.4 , pp. 773-789
    • Greven, S.1    Kneib, T.2
  • 20
    • 49749102427 scopus 로고    scopus 로고
    • Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting
    • Hastie T. Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting. Statistical Science 2007; 22 (4): 513-515
    • (2007) Statistical Science , vol.22 , Issue.4 , pp. 513-515
    • Hastie, T.1
  • 21
    • 84858743801 scopus 로고    scopus 로고
    • The Importance of Knowing When to Stop-A Sequential Stopping Rule for Component-Wise Gradient Boosting
    • Mayr A, Hofner B, Schmid M. The Importance of Knowing When to Stop-A Sequential Stopping Rule for Component-Wise Gradient Boosting. Methods Inf Med 2012; 51 (2): 178-186
    • (2012) Methods Inf Med , vol.51 , Issue.2 , pp. 178-186
    • Mayr, A.1    Hofner, B.2    Schmid, M.3
  • 23
    • 77953318018 scopus 로고    scopus 로고
    • Improved Feature Selection and Prediction
    • Bühlmann P, Hothorn T. Twin Boosting: Improved Feature Selection and Prediction. Statistics and Computing 2010; 20 (2): 119-138
    • (2010) Statistics and Computing , vol.20 , Issue.2 , pp. 119-138
    • Bühlmann, P.1    Boosting, H.T.T.2
  • 27
    • 0027081755 scopus 로고
    • A Bootstrap Resampling Procedure for Model-Building-Application to the Cox Regression-Model
    • Sauerbrei W, Schumacher W. A Bootstrap Resampling Procedure for Model-Building-Application to the Cox Regression-Model. Statistics in Medicine 1992; 11: 2093-2109
    • (1992) Statistics in Medicine , vol.11 , pp. 2093-2109
    • Sauerbrei, W.1    Schumacher, W.2
  • 28
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for High-Dimensional Linear Models
    • Bühlmann P. Boosting for High-Dimensional Linear Models. The Annals of Statistics 2006; 34: 559-583
    • (2006) The Annals of Statistics , vol.34 , pp. 559-583
    • Bühlmann, P.1
  • 35
    • 84858711420 scopus 로고    scopus 로고
    • Regularization for Generalized Additive Mixed Models by Likelihood-based Boosting
    • Groll A, Tutz G. Regularization for Generalized Additive Mixed Models by Likelihood-based Boosting. Methods Inf Med 2012; 51 (2): 168-177
    • (2012) Methods Inf Med , vol.51 , Issue.2 , pp. 168-177
    • Groll, A.1    Tutz, G.2
  • 37
    • 34648835120 scopus 로고    scopus 로고
    • Generalized Monotonic Regression based on B-splines with an Application to Air Pollution Data
    • Leitenstorfer F, Tutz G. Generalized Monotonic Regression based on B-splines with an Application to Air Pollution Data. Biostatistics 2007; 8 (3): 654-673
    • (2007) Biostatistics , vol.8 , Issue.3 , pp. 654-673
    • Leitenstorfer, F.1    Tutz, G.2
  • 41
    • 77749280569 scopus 로고    scopus 로고
    • Feature Extraction in Signal Regression: A Boosting Technique for Functional Data Regression
    • Tutz G, Gertheiss J. Feature Extraction in Signal Regression: A Boosting Technique for Functional Data Regression. Journal of Computational and Graphical Statistics 2010; 19: 154-174
    • (2010) Journal of Computational and Graphical Statistics , vol.19 , pp. 154-174
    • Tutz, G.1    Gertheiss, J.2
  • 42
    • 58549087708 scopus 로고    scopus 로고
    • Additive Prediction and Boosting for Functional Data
    • Ferraty F, Vieu P. Additive Prediction and Boosting for Functional Data. Computational Statistics & Data Analysis 2009; 53 (4): 1400-1413
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.4 , pp. 1400-1413
    • Ferraty, F.1    Vieu, P.2
  • 43
    • 79954618626 scopus 로고    scopus 로고
    • Selection of Ordinally Scaled Independent Variables with Applications to International Classification of Functioning Core Sets
    • Gertheiss J, Hogger S, Oberhauser C, Tutz G. Selection of Ordinally Scaled Independent Variables with Applications to International Classification of Functioning Core Sets. Applied Statistics 2010; 60 (3): 377–395
    • (2010) Applied Statistics , vol.60 , Issue.3 , pp. 377-395
    • Gertheiss, J.1    Hogger, S.2    Oberhauser, C.3    Tutz, G.4
  • 44
    • 67650653486 scopus 로고    scopus 로고
    • Penalized Regression with Correlation-Based Penalty
    • Tutz G, Ulbricht J. Penalized Regression with Correlation-Based Penalty. Statistical Computing 2008; 19: 239-253
    • (2008) Statistical Computing , vol.19 , pp. 239-253
    • Tutz, G.1    Ulbricht, J.2
  • 48
    • 39449093646 scopus 로고    scopus 로고
    • Allowing for Mandatory Covariates in Boosting Estimation of Sparse-High-Dimensional Survival Models
    • Binder H, Schumacher M. Allowing for Mandatory Covariates in Boosting Estimation of Sparse-High-Dimensional Survival Models. BMC Bioinformatics 2008; 9 (14), doi: 10.1186/1471-2105-9-14
    • (2008) BMC Bioinformatics , Issue.14 , pp. 9
    • Binder, H.1    Schumacher, M.2
  • 49
    • 84878621391 scopus 로고    scopus 로고
    • Variable Selection and Model Choice in Structured Survival Models
    • Hofner B, Hothorn T, Kneib T. Variable Selection and Model Choice in Structured Survival Models. Computational Statistics 2013; 28 (3): 1079-1101
    • (2013) Computational Statistics , vol.28 , Issue.3 , pp. 1079-1101
    • Hofner, B.1    Hothorn, T.2    Kneib, T.3
  • 50
    • 63549089131 scopus 로고    scopus 로고
    • Boosting for High-Dimensional Time-to-Event Data with Competing Risks
    • Binder H, Allignol A, Schumacher M, Beyersmann J. Boosting for High-Dimensional Time-to-Event Data with Competing Risks. Bioinformatics 2009; 25 (7): 890-896
    • (2009) Bioinformatics , vol.25 , Issue.7 , pp. 890-896
    • Binder, H.1    Allignol, A.2    Schumacher, M.3    Beyersmann, J.4
  • 51
    • 47349125398 scopus 로고    scopus 로고
    • Flexible Boosting of Accelerated Failure Time Models
    • Schmid M, Hothorn T. Flexible Boosting of Accelerated Failure Time Models. BMC Bioinformatics 2008; 9 (269)
    • (2008) BMC Bioinformatics , vol.9 , Issue.269
    • Schmid, M.1    Hothorn, T.2
  • 52
    • 77953324042 scopus 로고    scopus 로고
    • Estimation and Regularization Techniques for Regression Models with Multidimensional Pre-diction Functions
    • Schmid M, Potapov S, Pfahlberg A, Hothorn T. Estimation and Regularization Techniques for Regression Models with Multidimensional Pre-diction Functions. Statistics and Computing 2010; 20: 139-150
    • (2010) Statistics and Computing , vol.20 , pp. 139-150
    • Schmid, M.1    Potapov, S.2    Pfahlberg, A.3    Hothorn, T.4
  • 53
    • 84863338220 scopus 로고    scopus 로고
    • Identification of Breast Cancer Prognosis Markers Using Integrative Sparse Boosting
    • Ma S, Huang J, Xie Y, Yi N. Identification of Breast Cancer Prognosis Markers Using Integrative Sparse Boosting. Methods Inf Med 2012; 51 (2): 152-161
    • (2012) Methods Inf Med , vol.51 , Issue.2 , pp. 152-161
    • Ma, S.1    Huang, J.2    Xie, Y.3    Yi, N.4
  • 54
    • 84873372941 scopus 로고    scopus 로고
    • Survival Ensembles by the Sum of Pairwise Differences with Application to Lung Cancer Microarray Studies
    • Johnson BA, Long Q. Survival Ensembles by the Sum of Pairwise Differences with Application to Lung Cancer Microarray Studies. The Annals of Applied Statistics 2011; 5 (2A): 1081–1101
    • (2011) The Annals of Applied Statistics , vol.5 , Issue.2A , pp. 1081-1101
    • Johnson, B.A.1    Long, Q.2
  • 58
    • 18544382833 scopus 로고    scopus 로고
    • Stasinopoulos DM. Generalized Additive Models for Location, Scale and Shape (with discussion)
    • Rigby RA, Stasinopoulos DM. Generalized Additive Models for Location, Scale and Shape (with discussion). Applied Statistics 2005; 54: 507-554
    • (2005) Applied Statistics , vol.54 , pp. 507-554
    • Rigby, R.A.1
  • 60
    • 84881218921 scopus 로고    scopus 로고
    • Beyond Mean Regression
    • Kneib T. Beyond Mean Regression. Statistical Modelling 2013; 13 (4): 275-303
    • (2013) Statistical Modelling , vol.13 , Issue.4 , pp. 275-303
    • Kneib, T.1
  • 61
    • 79960127235 scopus 로고    scopus 로고
    • Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression
    • Fenske N, Kneib T, Hothorn T. Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression. Journal of the American Statistical Association 2011; 106 (494): 494-510
    • (2011) Journal of the American Statistical Association , vol.106 , Issue.494 , pp. 494-510
    • Fenske, N.1    Kneib, T.2    Hothorn, T.3
  • 62
    • 84856094557 scopus 로고    scopus 로고
    • Prediction Intervals for Future BMI Values of Individual Children-A Non-Parametric Approach by Quantile Boosting
    • Mayr A, Hothorn T, Fenske N. Prediction Intervals for Future BMI Values of Individual Children-A Non-Parametric Approach by Quantile Boosting. BMC Medical Research Methodology 2012; 12 (6), doi: 10.1186/1471-2288-12-6
    • (2012) BMC Medical Research Methodology , Issue.6 , pp. 12
    • Mayr, A.1    Hothorn, T.2    Fenske, N.3
  • 64
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for Tumor Classification with Gene Expression Data
    • Dettling M, Bühlmann P. Boosting for Tumor Classification with Gene Expression Data. Bioinformatics 2003; 19 (9): 1061–1069
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1061-1069
    • Dettling, M.1    Bühlmann, P.2
  • 65
    • 77949911450 scopus 로고    scopus 로고
    • Testing the Additional Predictive Value of High-Dimensional Molecular Data
    • Boulesteix AL, Hothorn T. Testing the Additional Predictive Value of High-Dimensional Molecular Data. BMC Bioinformatics 2010; 11 (78)
    • (2010) BMC Bioinformatics , Issue.78 , pp. 11
    • Boulesteix, A.L.1    Hothorn, T.2
  • 66
    • 61449157892 scopus 로고    scopus 로고
    • Incorporating Pathway Information into Boosting Estimation of High-Dimensional Risk Prediction Models
    • Binder H, Schumacher M. Incorporating Pathway Information into Boosting Estimation of High-Dimensional Risk Prediction Models. BMC Bio-informatics 2009; 10 (18)
    • (2009) BMC Bio-informatics , Issue.18 , pp. 10
    • Binder, H.1    Schumacher, M.2
  • 67
    • 83755187980 scopus 로고    scopus 로고
    • Graph based Fusion of miRNA and mRNA Expression Data Improves Clinical Outcome Prediction in Prostate Cancer
    • Gade S, Porzelius C, Fälth M, Brase JC, Wuttig D, Kuner R, et al. Graph based Fusion of miRNA and mRNA Expression Data Improves Clinical Outcome Prediction in Prostate Cancer. BMC Bio-informatics 2011; 12 (488)
    • (2011) BMC Bio-informatics , Issue.488 , pp. 12
    • Gade, S.1    Porzelius, C.2    Fälth, M.3    Brase, J.C.4    Wuttig, D.5    Kuner, R.6
  • 68
    • 84876443924 scopus 로고    scopus 로고
    • Tailoring Sparse Multivariable Regression Techniques for Prognostic Single-Nucleotide Poly-morphism Signatures
    • Binder H, Benner A, Bullinger L, Schumacher M. Tailoring Sparse Multivariable Regression Techniques for Prognostic Single-Nucleotide Poly-morphism Signatures. Statistics in Medicine 2013; 32 (10): 1778-1791
    • (2013) Statistics in Medicine , vol.32 , Issue.10 , pp. 1778-1791
    • Binder, H.1    Benner, A.2    Bullinger, L.3    Schumacher, M.4
  • 69
    • 84896973299 scopus 로고    scopus 로고
    • Transforming RNASeq Data to Improve the Performance of Prognostic Gene Signatures
    • Zwiener I, Frisch B, Binder H. Transforming RNASeq Data to Improve the Performance of Prognostic Gene Signatures. PLoS ONE 2014; 9 (1): e85150
    • (2014) PLoS ONE , vol.9 , Issue.1
    • Zwiener, I.1    Frisch, B.2    Binder, H.3
  • 71
    • 28944437658 scopus 로고    scopus 로고
    • Regularized ROC Method for Disease Classification and Biomarker Selection with Microarray Data
    • Ma S, Huang J. Regularized ROC Method for Disease Classification and Biomarker Selection with Microarray Data. Bioinformatics 2005; 21 (24): 4356-4362
    • (2005) Bioinformatics , vol.21 , Issue.24 , pp. 4356-4362
    • Ma, S.1    Huang, J.2
  • 72
    • 79952327113 scopus 로고    scopus 로고
    • HingeBoost: ROC-Based Boost for Classification and Variable Selection
    • Wang Z. HingeBoost: ROC-Based Boost for Classification and Variable Selection. The International Journal of Biostatistics 2011; 7 (1): 1–30
    • (2011) The International Journal of Biostatistics , vol.7 , Issue.1 , pp. 1-30
    • Wang, Z.1
  • 73
    • 38049156384 scopus 로고    scopus 로고
    • Hinge Rank Loss and the Area Under the ROC Curve
    • Springer
    • Steck H. Hinge Rank Loss and the Area Under the ROC Curve. In: Machine Learning: ECML 2007. Springer; 2007. pp 347–358
    • (2007) In: Machine Learning: ECML 2007 , pp. 347-358
    • Steck, H.1
  • 74
    • 84863338146 scopus 로고    scopus 로고
    • Multi-class HingeBoost. Method and Application to the Classification of Cancer Types Using Gene Expression Data
    • Wang Z. Multi-class HingeBoost. Method and Application to the Classification of Cancer Types Using Gene Expression Data. Methods Inf Med 2012; 51 (2): 162–167
    • (2012) Methods Inf Med , vol.51 , Issue.2 , pp. 162-167
    • Wang, Z.1
  • 75
    • 77953243025 scopus 로고    scopus 로고
    • A Boosting Method for Maximizing the Partial Area Under the ROC Curve
    • Komori O, Eguchi S. A Boosting Method for Maximizing the Partial Area Under the ROC Curve. BMC Bioinformatics 2010; 11 (314)
    • (2010) BMC Bioinformatics , Issue.314 , pp. 11
    • Komori, O.1    Eguchi, S.2
  • 76
    • 79953154460 scopus 로고    scopus 로고
    • Marker Selection via Maximizing the Partial Area Under the ROC Curve of Linear Risk Scores
    • Wang Z, Chang YCI. Marker Selection via Maximizing the Partial Area Under the ROC Curve of Linear Risk Scores. Biostatistics 2011; 12 (2): 369-385
    • (2011) Biostatistics , vol.12 , Issue.2 , pp. 369-385
    • Wang, Z.1    Chang, C.I.2
  • 78
    • 15044357936 scopus 로고    scopus 로고
    • Survival Model Predictive Accuracy and ROC Curves
    • Heagerty PJ, Zheng Y. Survival Model Predictive Accuracy and ROC Curves. Biometrics 2005; 61 (1): 92–105
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 92-105
    • Heagerty, P.J.1    Zheng, Y.2
  • 79
    • 84890101314 scopus 로고    scopus 로고
    • A Gradient Boosting Algorithm for Survival Analysis via Direct Optimization of Concordance Index
    • Available from
    • Chen Y, Jia Z, Mercola D, Xie X. A Gradient Boosting Algorithm for Survival Analysis via Direct Optimization of Concordance Index. Computational and Mathematical Methods in Medicine 2013. Available from: http://dx.doi.org/10.1155/2013/ 873595
    • (2013) Computational and Mathematical Methods in Medicine
    • Chen, Y.1    Jia, Z.2    Mercola, D.3    Xie, X.4
  • 80
    • 84896968781 scopus 로고    scopus 로고
    • Boosting the Concordance Index for Survival Data-A Unified Framework to Derive and Evaluate Biomarker Combinations
    • Mayr A, Schmid M. Boosting the Concordance Index for Survival Data-A Unified Framework to Derive and Evaluate Biomarker Combinations. PloS ONE 2014; 9 (1): e84483
    • (2014) PloS ONE , vol.9 , Issue.1
    • Mayr, A.1    Schmid, M.2
  • 81
    • 79954466848 scopus 로고    scopus 로고
    • On the C-statistics for Evaluating Overall Adequacy of Risk Prediction Procedures with Censored Survival Data
    • Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ. On the C-statistics for Evaluating Overall Adequacy of Risk Prediction Procedures with Censored Survival Data. Statistics in Medicine 2011; 30 (10): 1105-1117
    • (2011) Statistics in Medicine , vol.30 , Issue.10 , pp. 1105-1117
    • Uno, H.1    Cai, T.2    Pencina, M.J.3    D’agostino, R.B.4    Wei, L.J.5
  • 82
    • 84866436885 scopus 로고    scopus 로고
    • A Comparison of Estimators to Evaluate the Discriminatory Power of Time-to-Event Models
    • Schmid M, Potapov S. A Comparison of Estimators to Evaluate the Discriminatory Power of Time-to-Event Models. Statistics in Medicine 2012; 31 (23): 2588-2609
    • (2012) Statistics in Medicine , vol.31 , Issue.23 , pp. 2588-2609
    • Schmid, M.1    Potapov, S.2
  • 83
    • 84874213197 scopus 로고    scopus 로고
    • Can Matching Improve the Performance of Boosting for Identifying Important Genes in Observational Studies?
    • Reiser V, Porzelius C, Stampf S, Schumacher M, Binder H. Can Matching Improve the Performance of Boosting for Identifying Important Genes in Observational Studies? Computational Statistics 2013; 28 (1): 37-49
    • (2013) Computational Statistics , vol.28 , Issue.1 , pp. 37-49
    • Reiser, V.1    Porzelius, C.2    Stampf, S.3    Schumacher, M.4    Binder, H.5
  • 84
    • 80055017365 scopus 로고    scopus 로고
    • Boosting Qualifies Capture-Recapture Methods for Estimating the Comprehensiveness of Literature Searches for Systematic Reviews
    • Rücker G, Reiser V, Motschall E, Binder H, Meerpohl JJ, Antes G, et al. Boosting Qualifies Capture-Recapture Methods for Estimating the Comprehensiveness of Literature Searches for Systematic Reviews. Journal of Clinical Epidemiology 2011; 64 (12): 1364-1372
    • (2011) Journal of Clinical Epidemiology , vol.64 , Issue.12 , pp. 1364-1372
    • Rücker, G.1    Reiser, V.2    Motschall, E.3    Binder, H.4    Meerpohl, J.J.5    Antes, G.6
  • 85
    • 84892623329 scopus 로고    scopus 로고
    • Understanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression
    • Fenske N, Burns J, Hothorn T, Rehfuess EA. Understanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression. PloS ONE 2013; 8 (11): e78692
    • (2013) PloS ONE , vol.8 , Issue.11
    • Fenske, N.1    Burns, J.2    Hothorn, T.3    Rehfuess, E.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.