-
1
-
-
0025448521
-
The Strength of Weak Learnability
-
Schapire RE. The Strength of Weak Learnability. Machine Learning 1990; 5 (2): 197-227
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
2
-
-
85043515682
-
Boosting a Weak Learning Algorithm by Majority
-
In: Fulk MA, Case J, editors, COLT 1990, University of Rochester, Rochester, NY, USA, August 6–8, 1990
-
Freund Y. Boosting a Weak Learning Algorithm by Majority. In: Fulk MA, Case J, editors. Proceedings of the Third Annual Workshop on Computational Learning Theory, COLT 1990, University of Rochester, Rochester, NY, USA, August 6–8, 1990; 1990. pp 202-216
-
(1990)
Proceedings of the Third Annual Workshop on Computational Learning Theory
, pp. 202-216
-
-
Freund, Y.1
-
4
-
-
84914169260
-
The Evolution of Boosting Algorithms-From Machine Learning to Statistical Modelling
-
Mayr A, Binder H, Gefeller O, Schmid M. The Evolution of Boosting Algorithms-From Machine Learning to Statistical Modelling. Methods Inf Med 2014; 53: 419-427
-
(2014)
Methods Inf Med
, vol.53
, pp. 419-427
-
-
Mayr, A.1
Binder, H.2
Gefeller, O.3
Schmid, M.4
-
6
-
-
25444532788
-
Flexible Smoothing with B-splines and Penalties (with discussion)
-
Eilers PHC, Marx BD. Flexible Smoothing with B-splines and Penalties (with discussion). Statistical Science 1996; 11: 89-121
-
(1996)
Statistical Science
, vol.11
, pp. 89-121
-
-
Eilers, P.H.C.1
Marx, B.D.2
-
7
-
-
84903610080
-
Probability Estimation with Machine Learning Methods for Dichotomous and Multi-Category Outcome: Theory
-
Available from
-
Kruppa J, Liu Y, Biau G, Kohler M, König IR, Malley JD, et al. Probability Estimation with Machine Learning Methods for Dichotomous and Multi-Category Outcome: Theory. Biometrical Journal 2014. Available from: http://dx.doi.org/10.1002/ bimj.201300068
-
(2014)
Biometrical Journal
-
-
Kruppa, J.1
Liu, Y.2
Biau, G.3
Kohler, M.4
König, I.R.5
Malley, J.D.6
-
8
-
-
84903629415
-
Machine Learning Versus Statistical Modeling
-
Available from
-
Boulesteix AL, Schmid M. Discussion: Machine Learning Versus Statistical Modeling. Biometrical Journal 2014. Available from: http://dx.doi.org/ 10.1002/bimj.201300226
-
(2014)
Biometrical Journal
-
-
Boulesteix, A.L.1
Discussion, S.M.2
-
9
-
-
0035470889
-
Greedy Function Approximation: A Gradient Boosting Machine
-
Friedman JH. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics 2001; 29: 1189-1232
-
(2001)
The Annals of Statistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
10
-
-
41549141939
-
Boosting Algorithms: Regularization, Prediction and Model Fitting (with Discussion)
-
Bühlmann P, Hothorn T. Boosting Algorithms: Regularization, Prediction and Model Fitting (with Discussion). Statistical Science 2007; 22: 477–522
-
(2007)
Statistical Science
, vol.22
, pp. 477-522
-
-
Bühlmann, P.1
Hothorn, T.2
-
11
-
-
33845509035
-
Generalized Additive Modeling with Implicit Variable Selection by Likelihoodbased Boosting
-
Tutz G, Binder H. Generalized Additive Modeling with Implicit Variable Selection by Likelihoodbased Boosting. Biometrics 2006; 62: 961-971
-
(2006)
Biometrics
, vol.62
, pp. 961-971
-
-
Tutz, G.1
Binder, H.2
-
13
-
-
66949120727
-
Variable Selection and Model Choice in Geoadditive Regression Models
-
Kneib T, Hothorn T, Tutz G. Variable Selection and Model Choice in Geoadditive Regression Models. Biometrics 2009; 65 (2): 626-634
-
(2009)
Biometrics
, vol.65
, Issue.2
, pp. 626-634
-
-
Kneib, T.1
Hothorn, T.2
Tutz, G.3
-
14
-
-
77949352853
-
A Selective Overview of Variable Selection in High Dimensional Feature Space
-
Fan J, Lv J. A Selective Overview of Variable Selection in High Dimensional Feature Space. Statistica Sinica 2010; 20: 101–148
-
(2010)
Statistica Sinica
, vol.20
, pp. 101-148
-
-
Fan, J.1
Lv, J.2
-
16
-
-
84940730859
-
Bagging, Boosting and Ensemble Methods
-
In: Gentle YJE, Härdle W, Mori Y, editors, . Springer Handbooks
-
Bühlmann P. Bagging, Boosting and Ensemble Methods. In: Gentle YJE, Härdle W, Mori Y, editors. Handbook of Computational Statistics. Springer Handbooks; 2012. pp 985-1022
-
(2012)
Handbook of Computational Statistics
, pp. 985-1022
-
-
Bühlmann, P.1
-
17
-
-
0141879236
-
Model Selection and the Principle of Minimum Description Length
-
Hansen MH, Yu B. Model Selection and the Principle of Minimum Description Length. Journal of the American Statistical Association 2001; 96 (454): 746-774
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.454
, pp. 746-774
-
-
Hansen, M.H.1
Yu, B.2
-
18
-
-
70349119250
-
Tsai CL.Regression and Time Series Model Selection in Small Samples
-
Hurvich CM, Tsai CL.Regression and Time Series Model Selection in Small Samples. Biometrika 1989; 76 (2): 237-397
-
(1989)
Biometrika
, vol.76
, Issue.2
, pp. 237-397
-
-
Hurvich, C.M.1
-
19
-
-
78651278795
-
On the Behaviour of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models
-
Greven S, Kneib T. On the Behaviour of Marginal and Conditional Akaike Information Criteria in Linear Mixed Models. Biometrika 2010; 97 (4): 773-789
-
(2010)
Biometrika
, vol.97
, Issue.4
, pp. 773-789
-
-
Greven, S.1
Kneib, T.2
-
20
-
-
49749102427
-
Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting
-
Hastie T. Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting. Statistical Science 2007; 22 (4): 513-515
-
(2007)
Statistical Science
, vol.22
, Issue.4
, pp. 513-515
-
-
Hastie, T.1
-
21
-
-
84858743801
-
The Importance of Knowing When to Stop-A Sequential Stopping Rule for Component-Wise Gradient Boosting
-
Mayr A, Hofner B, Schmid M. The Importance of Knowing When to Stop-A Sequential Stopping Rule for Component-Wise Gradient Boosting. Methods Inf Med 2012; 51 (2): 178-186
-
(2012)
Methods Inf Med
, vol.51
, Issue.2
, pp. 178-186
-
-
Mayr, A.1
Hofner, B.2
Schmid, M.3
-
23
-
-
77953318018
-
Improved Feature Selection and Prediction
-
Bühlmann P, Hothorn T. Twin Boosting: Improved Feature Selection and Prediction. Statistics and Computing 2010; 20 (2): 119-138
-
(2010)
Statistics and Computing
, vol.20
, Issue.2
, pp. 119-138
-
-
Bühlmann, P.1
Boosting, H.T.T.2
-
27
-
-
0027081755
-
A Bootstrap Resampling Procedure for Model-Building-Application to the Cox Regression-Model
-
Sauerbrei W, Schumacher W. A Bootstrap Resampling Procedure for Model-Building-Application to the Cox Regression-Model. Statistics in Medicine 1992; 11: 2093-2109
-
(1992)
Statistics in Medicine
, vol.11
, pp. 2093-2109
-
-
Sauerbrei, W.1
Schumacher, W.2
-
28
-
-
33745157294
-
Boosting for High-Dimensional Linear Models
-
Bühlmann P. Boosting for High-Dimensional Linear Models. The Annals of Statistics 2006; 34: 559-583
-
(2006)
The Annals of Statistics
, vol.34
, pp. 559-583
-
-
Bühlmann, P.1
-
29
-
-
84873517125
-
A PAUCbased Estimation Technique for Disease Classification and Biomarker Selection
-
Schmid M, Hothorn T, Krause F, Rabe C. A PAUCbased Estimation Technique for Disease Classification and Biomarker Selection. Statistical Applications in Genetics and Molecular Biology 2012; 11 (5), doi: 10.1515/1544-6115.1792
-
(2012)
Statistical Applications in Genetics and Molecular Biology
, Issue.5
, pp. 11
-
-
Schmid, M.1
Hothorn, T.2
Krause, F.3
Rabe, C.4
-
35
-
-
84858711420
-
Regularization for Generalized Additive Mixed Models by Likelihood-based Boosting
-
Groll A, Tutz G. Regularization for Generalized Additive Mixed Models by Likelihood-based Boosting. Methods Inf Med 2012; 51 (2): 168-177
-
(2012)
Methods Inf Med
, vol.51
, Issue.2
, pp. 168-177
-
-
Groll, A.1
Tutz, G.2
-
37
-
-
34648835120
-
Generalized Monotonic Regression based on B-splines with an Application to Air Pollution Data
-
Leitenstorfer F, Tutz G. Generalized Monotonic Regression based on B-splines with an Application to Air Pollution Data. Biostatistics 2007; 8 (3): 654-673
-
(2007)
Biostatistics
, vol.8
, Issue.3
, pp. 654-673
-
-
Leitenstorfer, F.1
Tutz, G.2
-
41
-
-
77749280569
-
Feature Extraction in Signal Regression: A Boosting Technique for Functional Data Regression
-
Tutz G, Gertheiss J. Feature Extraction in Signal Regression: A Boosting Technique for Functional Data Regression. Journal of Computational and Graphical Statistics 2010; 19: 154-174
-
(2010)
Journal of Computational and Graphical Statistics
, vol.19
, pp. 154-174
-
-
Tutz, G.1
Gertheiss, J.2
-
42
-
-
58549087708
-
Additive Prediction and Boosting for Functional Data
-
Ferraty F, Vieu P. Additive Prediction and Boosting for Functional Data. Computational Statistics & Data Analysis 2009; 53 (4): 1400-1413
-
(2009)
Computational Statistics & Data Analysis
, vol.53
, Issue.4
, pp. 1400-1413
-
-
Ferraty, F.1
Vieu, P.2
-
43
-
-
79954618626
-
Selection of Ordinally Scaled Independent Variables with Applications to International Classification of Functioning Core Sets
-
Gertheiss J, Hogger S, Oberhauser C, Tutz G. Selection of Ordinally Scaled Independent Variables with Applications to International Classification of Functioning Core Sets. Applied Statistics 2010; 60 (3): 377–395
-
(2010)
Applied Statistics
, vol.60
, Issue.3
, pp. 377-395
-
-
Gertheiss, J.1
Hogger, S.2
Oberhauser, C.3
Tutz, G.4
-
44
-
-
67650653486
-
Penalized Regression with Correlation-Based Penalty
-
Tutz G, Ulbricht J. Penalized Regression with Correlation-Based Penalty. Statistical Computing 2008; 19: 239-253
-
(2008)
Statistical Computing
, vol.19
, pp. 239-253
-
-
Tutz, G.1
Ulbricht, J.2
-
46
-
-
33745466826
-
Survival Ensembles
-
Hothorn T, Bühlmann P, Dudoit S, Molinaro A, Van Der Laan MJ. Survival Ensembles. Biostatistics 2006; 7 (3): 355-373
-
(2006)
Biostatistics
, vol.7
, Issue.3
, pp. 355-373
-
-
Hothorn, T.1
Bühlmann, P.2
Dudoit, S.3
Molinaro, A.4
Van Der Laan, M.J.5
-
48
-
-
39449093646
-
Allowing for Mandatory Covariates in Boosting Estimation of Sparse-High-Dimensional Survival Models
-
Binder H, Schumacher M. Allowing for Mandatory Covariates in Boosting Estimation of Sparse-High-Dimensional Survival Models. BMC Bioinformatics 2008; 9 (14), doi: 10.1186/1471-2105-9-14
-
(2008)
BMC Bioinformatics
, Issue.14
, pp. 9
-
-
Binder, H.1
Schumacher, M.2
-
49
-
-
84878621391
-
Variable Selection and Model Choice in Structured Survival Models
-
Hofner B, Hothorn T, Kneib T. Variable Selection and Model Choice in Structured Survival Models. Computational Statistics 2013; 28 (3): 1079-1101
-
(2013)
Computational Statistics
, vol.28
, Issue.3
, pp. 1079-1101
-
-
Hofner, B.1
Hothorn, T.2
Kneib, T.3
-
50
-
-
63549089131
-
Boosting for High-Dimensional Time-to-Event Data with Competing Risks
-
Binder H, Allignol A, Schumacher M, Beyersmann J. Boosting for High-Dimensional Time-to-Event Data with Competing Risks. Bioinformatics 2009; 25 (7): 890-896
-
(2009)
Bioinformatics
, vol.25
, Issue.7
, pp. 890-896
-
-
Binder, H.1
Allignol, A.2
Schumacher, M.3
Beyersmann, J.4
-
51
-
-
47349125398
-
Flexible Boosting of Accelerated Failure Time Models
-
Schmid M, Hothorn T. Flexible Boosting of Accelerated Failure Time Models. BMC Bioinformatics 2008; 9 (269)
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.269
-
-
Schmid, M.1
Hothorn, T.2
-
52
-
-
77953324042
-
Estimation and Regularization Techniques for Regression Models with Multidimensional Pre-diction Functions
-
Schmid M, Potapov S, Pfahlberg A, Hothorn T. Estimation and Regularization Techniques for Regression Models with Multidimensional Pre-diction Functions. Statistics and Computing 2010; 20: 139-150
-
(2010)
Statistics and Computing
, vol.20
, pp. 139-150
-
-
Schmid, M.1
Potapov, S.2
Pfahlberg, A.3
Hothorn, T.4
-
53
-
-
84863338220
-
Identification of Breast Cancer Prognosis Markers Using Integrative Sparse Boosting
-
Ma S, Huang J, Xie Y, Yi N. Identification of Breast Cancer Prognosis Markers Using Integrative Sparse Boosting. Methods Inf Med 2012; 51 (2): 152-161
-
(2012)
Methods Inf Med
, vol.51
, Issue.2
, pp. 152-161
-
-
Ma, S.1
Huang, J.2
Xie, Y.3
Yi, N.4
-
54
-
-
84873372941
-
Survival Ensembles by the Sum of Pairwise Differences with Application to Lung Cancer Microarray Studies
-
Johnson BA, Long Q. Survival Ensembles by the Sum of Pairwise Differences with Application to Lung Cancer Microarray Studies. The Annals of Applied Statistics 2011; 5 (2A): 1081–1101
-
(2011)
The Annals of Applied Statistics
, vol.5
, Issue.2A
, pp. 1081-1101
-
-
Johnson, B.A.1
Long, Q.2
-
56
-
-
81555220933
-
Geoadditive Regression Modeling of Stream Biological Condition
-
Schmid M, Hothorn T, Maloney KO, Weller DE, Potapov S. Geoadditive Regression Modeling of Stream Biological Condition. Environmental and Ecological Statistics 2011; 18: 709-733
-
(2011)
Environmental and Ecological Statistics
, vol.18
, pp. 709-733
-
-
Schmid, M.1
Hothorn, T.2
Maloney, K.O.3
Weller, D.E.4
Potapov, S.5
-
57
-
-
84859815011
-
Generalized Additive Models for Location, Scale and Shape for High-Dimensional Data-A Flexible Aproach Based on Boosting
-
Mayr A, Fenske N, Hofner B, Kneib T, Schmid M. Generalized Additive Models for Location, Scale and Shape for High-Dimensional Data-A Flexible Aproach Based on Boosting. Journal of the Royal Statistical Society: Series C (Applied Statistics) 2012; 61 (3): 403-427
-
(2012)
Journal of the Royal Statistical Society: Series C (Applied Statistics)
, vol.61
, Issue.3
, pp. 403-427
-
-
Mayr, A.1
Fenske, N.2
Hofner, B.3
Kneib, T.4
Schmid, M.5
-
58
-
-
18544382833
-
Stasinopoulos DM. Generalized Additive Models for Location, Scale and Shape (with discussion)
-
Rigby RA, Stasinopoulos DM. Generalized Additive Models for Location, Scale and Shape (with discussion). Applied Statistics 2005; 54: 507-554
-
(2005)
Applied Statistics
, vol.54
, pp. 507-554
-
-
Rigby, R.A.1
-
59
-
-
84876556361
-
Boosted Beta Regression
-
Schmid M, Wickler F, Maloney KO, Mitchell R, Fenske N, Mayr A. Boosted Beta Regression. PloS ONE 2013; 8 (4): e61623
-
(2013)
PloS ONE
, vol.8
, Issue.4
-
-
Schmid, M.1
Wickler, F.2
Maloney, K.O.3
Mitchell, R.4
Fenske, N.5
Mayr, A.6
-
60
-
-
84881218921
-
Beyond Mean Regression
-
Kneib T. Beyond Mean Regression. Statistical Modelling 2013; 13 (4): 275-303
-
(2013)
Statistical Modelling
, vol.13
, Issue.4
, pp. 275-303
-
-
Kneib, T.1
-
61
-
-
79960127235
-
Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression
-
Fenske N, Kneib T, Hothorn T. Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression. Journal of the American Statistical Association 2011; 106 (494): 494-510
-
(2011)
Journal of the American Statistical Association
, vol.106
, Issue.494
, pp. 494-510
-
-
Fenske, N.1
Kneib, T.2
Hothorn, T.3
-
62
-
-
84856094557
-
Prediction Intervals for Future BMI Values of Individual Children-A Non-Parametric Approach by Quantile Boosting
-
Mayr A, Hothorn T, Fenske N. Prediction Intervals for Future BMI Values of Individual Children-A Non-Parametric Approach by Quantile Boosting. BMC Medical Research Methodology 2012; 12 (6), doi: 10.1186/1471-2288-12-6
-
(2012)
BMC Medical Research Methodology
, Issue.6
, pp. 12
-
-
Mayr, A.1
Hothorn, T.2
Fenske, N.3
-
64
-
-
0038391397
-
Boosting for Tumor Classification with Gene Expression Data
-
Dettling M, Bühlmann P. Boosting for Tumor Classification with Gene Expression Data. Bioinformatics 2003; 19 (9): 1061–1069
-
(2003)
Bioinformatics
, vol.19
, Issue.9
, pp. 1061-1069
-
-
Dettling, M.1
Bühlmann, P.2
-
65
-
-
77949911450
-
Testing the Additional Predictive Value of High-Dimensional Molecular Data
-
Boulesteix AL, Hothorn T. Testing the Additional Predictive Value of High-Dimensional Molecular Data. BMC Bioinformatics 2010; 11 (78)
-
(2010)
BMC Bioinformatics
, Issue.78
, pp. 11
-
-
Boulesteix, A.L.1
Hothorn, T.2
-
66
-
-
61449157892
-
Incorporating Pathway Information into Boosting Estimation of High-Dimensional Risk Prediction Models
-
Binder H, Schumacher M. Incorporating Pathway Information into Boosting Estimation of High-Dimensional Risk Prediction Models. BMC Bio-informatics 2009; 10 (18)
-
(2009)
BMC Bio-informatics
, Issue.18
, pp. 10
-
-
Binder, H.1
Schumacher, M.2
-
67
-
-
83755187980
-
Graph based Fusion of miRNA and mRNA Expression Data Improves Clinical Outcome Prediction in Prostate Cancer
-
Gade S, Porzelius C, Fälth M, Brase JC, Wuttig D, Kuner R, et al. Graph based Fusion of miRNA and mRNA Expression Data Improves Clinical Outcome Prediction in Prostate Cancer. BMC Bio-informatics 2011; 12 (488)
-
(2011)
BMC Bio-informatics
, Issue.488
, pp. 12
-
-
Gade, S.1
Porzelius, C.2
Fälth, M.3
Brase, J.C.4
Wuttig, D.5
Kuner, R.6
-
68
-
-
84876443924
-
Tailoring Sparse Multivariable Regression Techniques for Prognostic Single-Nucleotide Poly-morphism Signatures
-
Binder H, Benner A, Bullinger L, Schumacher M. Tailoring Sparse Multivariable Regression Techniques for Prognostic Single-Nucleotide Poly-morphism Signatures. Statistics in Medicine 2013; 32 (10): 1778-1791
-
(2013)
Statistics in Medicine
, vol.32
, Issue.10
, pp. 1778-1791
-
-
Binder, H.1
Benner, A.2
Bullinger, L.3
Schumacher, M.4
-
69
-
-
84896973299
-
Transforming RNASeq Data to Improve the Performance of Prognostic Gene Signatures
-
Zwiener I, Frisch B, Binder H. Transforming RNASeq Data to Improve the Performance of Prognostic Gene Signatures. PLoS ONE 2014; 9 (1): e85150
-
(2014)
PLoS ONE
, vol.9
, Issue.1
-
-
Zwiener, I.1
Frisch, B.2
Binder, H.3
-
70
-
-
84872119864
-
Cluster-localized sparse logistic regression for SNP data
-
Binder H, Müller T, Schwender H, Golka K, Steffens M, Hengstler JG, et al. Cluster-localized sparse logistic regression for SNP data. Statistical Applications ind Genetics and Molecular Biology 2012; 11 (4)
-
(2012)
Statistical Applications ind Genetics and Molecular Biology
, Issue.4
, pp. 11
-
-
Binder, H.1
Müller, T.2
Schwender, H.3
Golka, K.4
Steffens, M.5
Hengstler, J.G.6
-
71
-
-
28944437658
-
Regularized ROC Method for Disease Classification and Biomarker Selection with Microarray Data
-
Ma S, Huang J. Regularized ROC Method for Disease Classification and Biomarker Selection with Microarray Data. Bioinformatics 2005; 21 (24): 4356-4362
-
(2005)
Bioinformatics
, vol.21
, Issue.24
, pp. 4356-4362
-
-
Ma, S.1
Huang, J.2
-
72
-
-
79952327113
-
HingeBoost: ROC-Based Boost for Classification and Variable Selection
-
Wang Z. HingeBoost: ROC-Based Boost for Classification and Variable Selection. The International Journal of Biostatistics 2011; 7 (1): 1–30
-
(2011)
The International Journal of Biostatistics
, vol.7
, Issue.1
, pp. 1-30
-
-
Wang, Z.1
-
73
-
-
38049156384
-
Hinge Rank Loss and the Area Under the ROC Curve
-
Springer
-
Steck H. Hinge Rank Loss and the Area Under the ROC Curve. In: Machine Learning: ECML 2007. Springer; 2007. pp 347–358
-
(2007)
In: Machine Learning: ECML 2007
, pp. 347-358
-
-
Steck, H.1
-
74
-
-
84863338146
-
Multi-class HingeBoost. Method and Application to the Classification of Cancer Types Using Gene Expression Data
-
Wang Z. Multi-class HingeBoost. Method and Application to the Classification of Cancer Types Using Gene Expression Data. Methods Inf Med 2012; 51 (2): 162–167
-
(2012)
Methods Inf Med
, vol.51
, Issue.2
, pp. 162-167
-
-
Wang, Z.1
-
75
-
-
77953243025
-
A Boosting Method for Maximizing the Partial Area Under the ROC Curve
-
Komori O, Eguchi S. A Boosting Method for Maximizing the Partial Area Under the ROC Curve. BMC Bioinformatics 2010; 11 (314)
-
(2010)
BMC Bioinformatics
, Issue.314
, pp. 11
-
-
Komori, O.1
Eguchi, S.2
-
76
-
-
79953154460
-
Marker Selection via Maximizing the Partial Area Under the ROC Curve of Linear Risk Scores
-
Wang Z, Chang YCI. Marker Selection via Maximizing the Partial Area Under the ROC Curve of Linear Risk Scores. Biostatistics 2011; 12 (2): 369-385
-
(2011)
Biostatistics
, vol.12
, Issue.2
, pp. 369-385
-
-
Wang, Z.1
Chang, C.I.2
-
77
-
-
84944363874
-
Evaluating the Yield of Medical Tests
-
Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the Yield of Medical Tests. Journal of the American Medical Association 1982; 247 (18): 2543-2546
-
(1982)
Journal of the American Medical Association
, vol.247
, Issue.18
, pp. 2543-2546
-
-
Harrell, F.E.1
Califf, R.M.2
Pryor, D.B.3
Lee, K.L.4
Rosati, R.A.5
-
78
-
-
15044357936
-
Survival Model Predictive Accuracy and ROC Curves
-
Heagerty PJ, Zheng Y. Survival Model Predictive Accuracy and ROC Curves. Biometrics 2005; 61 (1): 92–105
-
(2005)
Biometrics
, vol.61
, Issue.1
, pp. 92-105
-
-
Heagerty, P.J.1
Zheng, Y.2
-
79
-
-
84890101314
-
A Gradient Boosting Algorithm for Survival Analysis via Direct Optimization of Concordance Index
-
Available from
-
Chen Y, Jia Z, Mercola D, Xie X. A Gradient Boosting Algorithm for Survival Analysis via Direct Optimization of Concordance Index. Computational and Mathematical Methods in Medicine 2013. Available from: http://dx.doi.org/10.1155/2013/ 873595
-
(2013)
Computational and Mathematical Methods in Medicine
-
-
Chen, Y.1
Jia, Z.2
Mercola, D.3
Xie, X.4
-
80
-
-
84896968781
-
Boosting the Concordance Index for Survival Data-A Unified Framework to Derive and Evaluate Biomarker Combinations
-
Mayr A, Schmid M. Boosting the Concordance Index for Survival Data-A Unified Framework to Derive and Evaluate Biomarker Combinations. PloS ONE 2014; 9 (1): e84483
-
(2014)
PloS ONE
, vol.9
, Issue.1
-
-
Mayr, A.1
Schmid, M.2
-
81
-
-
79954466848
-
On the C-statistics for Evaluating Overall Adequacy of Risk Prediction Procedures with Censored Survival Data
-
Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ. On the C-statistics for Evaluating Overall Adequacy of Risk Prediction Procedures with Censored Survival Data. Statistics in Medicine 2011; 30 (10): 1105-1117
-
(2011)
Statistics in Medicine
, vol.30
, Issue.10
, pp. 1105-1117
-
-
Uno, H.1
Cai, T.2
Pencina, M.J.3
D’agostino, R.B.4
Wei, L.J.5
-
82
-
-
84866436885
-
A Comparison of Estimators to Evaluate the Discriminatory Power of Time-to-Event Models
-
Schmid M, Potapov S. A Comparison of Estimators to Evaluate the Discriminatory Power of Time-to-Event Models. Statistics in Medicine 2012; 31 (23): 2588-2609
-
(2012)
Statistics in Medicine
, vol.31
, Issue.23
, pp. 2588-2609
-
-
Schmid, M.1
Potapov, S.2
-
83
-
-
84874213197
-
Can Matching Improve the Performance of Boosting for Identifying Important Genes in Observational Studies?
-
Reiser V, Porzelius C, Stampf S, Schumacher M, Binder H. Can Matching Improve the Performance of Boosting for Identifying Important Genes in Observational Studies? Computational Statistics 2013; 28 (1): 37-49
-
(2013)
Computational Statistics
, vol.28
, Issue.1
, pp. 37-49
-
-
Reiser, V.1
Porzelius, C.2
Stampf, S.3
Schumacher, M.4
Binder, H.5
-
84
-
-
80055017365
-
Boosting Qualifies Capture-Recapture Methods for Estimating the Comprehensiveness of Literature Searches for Systematic Reviews
-
Rücker G, Reiser V, Motschall E, Binder H, Meerpohl JJ, Antes G, et al. Boosting Qualifies Capture-Recapture Methods for Estimating the Comprehensiveness of Literature Searches for Systematic Reviews. Journal of Clinical Epidemiology 2011; 64 (12): 1364-1372
-
(2011)
Journal of Clinical Epidemiology
, vol.64
, Issue.12
, pp. 1364-1372
-
-
Rücker, G.1
Reiser, V.2
Motschall, E.3
Binder, H.4
Meerpohl, J.J.5
Antes, G.6
-
85
-
-
84892623329
-
Understanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression
-
Fenske N, Burns J, Hothorn T, Rehfuess EA. Understanding Child Stunting in India: A Comprehensive Analysis of Socio-Economic, Nutritional and Environmental Determinants Using Additive Quantile Regression. PloS ONE 2013; 8 (11): e78692
-
(2013)
PloS ONE
, vol.8
, Issue.11
-
-
Fenske, N.1
Burns, J.2
Hothorn, T.3
Rehfuess, E.A.4
-
86
-
-
84867671668
-
A New Formula for Optimized Weight Estimation in Extreme Fetal Macrosomia (_ 4500 g)
-
Faschingbauer F, Beckmann M, Goecke T, Yazdi B, Siemer J, Schmid M, et al. A New Formula for Optimized Weight Estimation in Extreme Fetal Macrosomia (_ 4500 g). European Journal of Ultrasound 2012; 33 (05): 480-488.
-
(2012)
European Journal of Ultrasound
, vol.33
, Issue.5
, pp. 480-488
-
-
Faschingbauer, F.1
Beckmann, M.2
Goecke, T.3
Yazdi, B.4
Siemer, J.5
Schmid, M.6
|