메뉴 건너뛰기




Volumn 20, Issue 2, 2010, Pages 139-150

Estimation and regularization techniques for regression models with multidimensional prediction functions

Author keywords

Count data model; Gradient boosting; Multidimensional prediction function; Scale parameter estimation; Variable selection

Indexed keywords


EID: 77953324042     PISSN: 09603174     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11222-009-9162-7     Document Type: Article
Times cited : (22)

References (40)
  • 1
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers (with discussion)
    • Breiman, L.: Arcing classifiers (with discussion). Ann. Stat. 26, 801-849 (1998).
    • (1998) Ann. Stat. , vol.26 , pp. 801-849
    • Breiman, L.1
  • 2
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • Breiman, L.: Prediction games and arcing algorithms. Neural Comput. 11, 1493-1517 (1999).
    • (1999) Neural Comput. , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L.: Random forests. Mach. Learn. 45, 5-32 (2001).
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 4
    • 0003010182 scopus 로고
    • Verification of forecasts expressed in terms of probability
    • Brier, G.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78, 1-3 (1950).
    • (1950) Mon. Weather Rev. , vol.78 , pp. 1-3
    • Brier, G.1
  • 5
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • Bühlmann, P.: Boosting for high-dimensional linear models. Ann. Stat. 34, 559-583 (2006).
    • (2006) Ann. Stat. , vol.34 , pp. 559-583
    • Bühlmann, P.1
  • 6
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization prediction and model fitting (with discussion)
    • Bühlmann, P., Hothorn, T.: Boosting algorithms: Regularization prediction and model fitting (with discussion). Stat. Sci. 22, 477-522 (2007).
    • (2007) Stat. Sci. , vol.22 , pp. 477-522
    • Bühlmann, P.1    Hothorn, T.2
  • 7
    • 0043245810 scopus 로고    scopus 로고
    • 2 loss: Regression and classification
    • 2 loss: Regression and classification. J. Am. Stat. Assoc. 98, 324-338 (2003).
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 324-338
    • Bühlmann, P.1    Yu, B.2
  • 8
    • 84952096957 scopus 로고
    • A generalization of the Poisson distribution
    • Consul, P., Jain, G.: A generalization of the Poisson distribution. Technometrics 15, 791-799 (1973).
    • (1973) Technometrics , vol.15 , pp. 791-799
    • Consul, P.1    Jain, G.2
  • 9
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J., Speed, T. P.: Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc. 97, 77-87 (2002).
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 11
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96, 1348-1360 (2001).
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 12
    • 0023882897 scopus 로고
    • The validity and practicality of sun-reactive skin types I through VI
    • Fitzpatrick, T. B.: The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124, 869-871 (1988).
    • (1988) Arch. Dermatol. , vol.124 , pp. 869-871
    • Fitzpatrick, T.B.1
  • 13
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119-139 (1997).
    • (1997) J. Comput. Syst. Sci. , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 14
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. H.: Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189-1232 (2001).
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 15
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion)
    • Friedman, J. H., Hastie, T., Tibshirani, R.: Additive logistic regression: A statistical view of boosting (with discussion). Ann. Stat. 28, 337-407 (2000).
    • (2000) Ann. Stat. , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 16
    • 0025300332 scopus 로고
    • Suntan, sunburn, and pigmentation factors and the frequency of acquired melanocytic nevi in children. Similarities to melanoma: The Vancouver mole study
    • Gallagher, R. P., McLean, D. I., Yang, C. P., Coldman, A. J., Silver, H. K., Spinelli, J. J., Beagrie, M.: Suntan, sunburn, and pigmentation factors and the frequency of acquired melanocytic nevi in children. Similarities to melanoma: The Vancouver mole study. Arch. Dermatol. 126, 770-776 (1990).
    • (1990) Arch. Dermatol. , vol.126 , pp. 770-776
    • Gallagher, R.P.1    McLean, D.I.2    Yang, C.P.3    Coldman, A.J.4    Silver, H.K.5    Spinelli, J.J.6    Beagrie, M.7
  • 17
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • Gneiting, T., Raftery, A. E.: Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102, 359-378 (2007).
    • (2007) J. Am. Stat. Assoc. , vol.102 , pp. 359-378
    • Gneiting, T.1    Raftery, A.E.2
  • 25
    • 0000854272 scopus 로고
    • Specification and testing of some modified count data models
    • Mullahy, J.: Specification and testing of some modified count data models. J. Econom. 33, 341-365 (1986).
    • (1986) J. Econom. , vol.33 , pp. 341-365
    • Mullahy, J.1
  • 26
    • 34547849507 scopus 로고    scopus 로고
    • 1-regularization path algorithm for generalized linear models
    • 1-regularization path algorithm for generalized linear models. J. R. Stat. Soc., Ser. B 69, 659-677 (2007).
    • (2007) J. R. Stat. Soc., Ser. B , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 27
    • 1542298852 scopus 로고    scopus 로고
    • Monitoring of nevus density in children as a method to detect shifts in melanoma risk in the population
    • Pfahlberg, A., Uter, W., Kraus, C., Wienecke, W. R., Reulbach, U., Kölmel, K. F., Gefeller, O.: Monitoring of nevus density in children as a method to detect shifts in melanoma risk in the population. Prev. Med. 38, 382-387 (2004).
    • (2004) Prev. Med. , vol.38 , pp. 382-387
    • Pfahlberg, A.1    Uter, W.2    Kraus, C.3    Wienecke, W.R.4    Reulbach, U.5    Kölmel, K.F.6    Gefeller, O.7
  • 28
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team, ISBN 3-900051-07-0, Vienna: R Foundation for Statistical Computing
    • R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2008). http://www. R-project.org. ISBN 3-900051-07-0.
    • (2008) R: A Language and Environment for Statistical Computing
  • 29
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • Schapire, R. E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37, 297-336 (1999).
    • (1999) Mach. Learn. , vol.37 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 30
    • 55549110371 scopus 로고    scopus 로고
    • Boosting additive models using component-wise P-splines
    • Schmid, M., Hothorn, T.: Boosting additive models using component-wise P-splines. Comput. Stat. Data Anal. 53, 298-311 (2008a).
    • (2008) Comput. Stat. Data Anal. , vol.53 , pp. 298-311
    • Schmid, M.1    Hothorn, T.2
  • 31
    • 47349125398 scopus 로고    scopus 로고
    • Schmid, M., Hothorn, T.: Flexible boosting of accelerated failure time models. BMC Bioinform. 9: 269 (2008b).
  • 32
    • 33645581993 scopus 로고    scopus 로고
    • Microarraygene expression data with linked survival phenotypes: Diffuse large-B-cell lymphoma revisited
    • Segal, M. R.: Microarraygene expression data with linked survival phenotypes: Diffuse large-B-cell lymphoma revisited. Biostatistics 7, 268-285 (2006).
    • (2006) Biostatistics , vol.7 , pp. 268-285
    • Segal, M.R.1
  • 33
    • 33846109957 scopus 로고    scopus 로고
    • Unifying multi-class AdaBoost algorithms with binary base learners under the margin framework
    • Sun, Y., Todorovic, S., Li, J.: Unifying multi-class AdaBoost algorithms with binary base learners under the margin framework. Pattern Recognit. Lett. 28, 631-643 (2007).
    • (2007) Pattern Recognit. Lett. , vol.28 , pp. 631-643
    • Sun, Y.1    Todorovic, S.2    Li, J.3
  • 34
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58, 267-288 (1996).
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 37
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68, 49-67 (2006).
    • (2006) J. R. Stat. Soc. Ser. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 38
    • 77953321822 scopus 로고    scopus 로고
    • Zhu, J., Rosset, S., Zou, H., Hastie, T.: A multi-class AdaBoost. Technical Report 430, Department of Statistics, University of Michigan (2005).
  • 39
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101, 1418-1429 (2006).
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 40
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 67, 301-320 (2005).
    • (2005) J. R. Stat. Soc. Ser. B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.