메뉴 건너뛰기




Volumn 53, Issue 6, 2014, Pages 419-427

The evolution of boosting algorithms: From machine learning to statistical modelling

Author keywords

Algorithms; Classification; Machine learning; Statistical computing; Statistical models

Indexed keywords

ALGORITHM; ARTIFICIAL INTELLIGENCE; BIOMEDICINE; MACHINE LEARNING; STATISTICAL MODEL;

EID: 84914169260     PISSN: 00261270     EISSN: 2511705X     Source Type: Journal    
DOI: 10.3414/ME13-01-0122     Document Type: Article
Times cited : (280)

References (57)
  • 2
    • 0034164230 scopus 로고    scopus 로고
    • Additive Logistic Regression: A Statistical View of Boosting (with Discussion)
    • Friedman J., Hastie T, Tibshirani R. Additive Logistic Regression: A Statistical View of Boosting (with Discussion). The Annals of Statistics 2000; 28: 337-407
    • (2000) The Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 3
    • 0035470889 scopus 로고    scopus 로고
    • Greedy Function Approximation: A Gradient Boosting Machine
    • Friedman JH. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics 2001; 29: 1189-1232
    • (2001) The Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 4
    • 84858741510 scopus 로고    scopus 로고
    • Boosting Into a New Terminological Era
    • Schmid M, Gefeller O, Hothorn T. Boosting Into a New Terminological Era. Methods Inf Med 2012; 51 (2): 150-151
    • (2012) Methods Inf Med , vol.51 , Issue.2 , pp. 150-151
    • Schmid, M.1    Gefeller, O.2    Hothorn, T.3
  • 5
    • 41549141939 scopus 로고    scopus 로고
    • Boosting Algorithms: Regularization, Prediction and Model Fitting (with Discussion)
    • Bühlmann P, Hothorn T. Boosting Algorithms: Regularization, Prediction and Model Fitting (with Discussion). Statistical Science 2007; 22: 477-522
    • (2007) Statistical Science , vol.22 , pp. 477-522
    • Bühlmann, P.1    Hothorn, T.2
  • 6
    • 33845509035 scopus 로고    scopus 로고
    • Generalized Additive Modeling with Implicit Variable Selection by Likelihoodbased Boosting
    • Tutz G, Binder H. Generalized Additive Modeling with Implicit Variable Selection by Likelihoodbased Boosting. Biometrics 2006; 62: 961-971
    • (2006) Biometrics , vol.62 , pp. 961-971
    • Tutz, G.1    Binder, H.2
  • 8
    • 84878616246 scopus 로고    scopus 로고
    • A Fast Estimate for the Population Recombination Rate Based on Regression
    • Lin K, Futschik A, Li H. A Fast Estimate for the Population Recombination Rate Based on Regression. Genetics 2013; 194 (2): 473-484
    • (2013) Genetics , vol.194 , Issue.2 , pp. 473-484
    • Lin, K.1    Futschik, A.2    Li, H.3
  • 10
    • 19544378196 scopus 로고    scopus 로고
    • Boosting Proportional Hazards Models Using Smoothing Splines with Applications to High-Dimensional Microarray Data
    • Li H, Luan Y. Boosting Proportional Hazards Models Using Smoothing Splines with Applications to High-Dimensional Microarray Data. Bioinformatics 2005; 21 (10): 2403-2409
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2403-2409
    • Li, H.1    Luan, Y.2
  • 11
    • 84876443924 scopus 로고    scopus 로고
    • Tailoring Sparse Multivariable Regression Techniques for Prognostic Single-Nucleotide Polymorphism Signatures
    • Binder H, Benner A, Bullinger L, Schumacher M. Tailoring Sparse Multivariable Regression Techniques for Prognostic Single-Nucleotide Polymorphism Signatures. Statistics in Medicine 2013; 32 (10): 1778–1791
    • (2013) Statistics in Medicine , vol.32 , Issue.10 , pp. 1778-1791
    • Binder, H.1    Benner, A.2    Bullinger, L.3    Schumacher, M.4
  • 12
    • 84896968781 scopus 로고    scopus 로고
    • Boosting the Concordance Index for Survival Data-A Unified Framework to Derive and Evaluate Biomarker Combinations
    • Mayr A, Schmid M. Boosting the Concordance Index for Survival Data-A Unified Framework to Derive and Evaluate Biomarker Combinations. PloS ONE 2014; 9 (1): e84483
    • (2014) PloS ONE , vol.9 , Issue.1
    • Mayr, A.1    Schmid, M.2
  • 13
    • 84914104651 scopus 로고    scopus 로고
    • Extending Statistical Boosting-An Overview of Recent Methodological Developments
    • Mayr A, Binder H, Gefeller O, Schmid M. Extending Statistical Boosting-An Overview of Recent Methodological Developments. Methods Inf Med 2014; 53: 428-435
    • (2014) Methods Inf Med , vol.53 , pp. 428-435
    • Mayr, A.1    Binder, H.2    Gefeller, O.3    Schmid, M.4
  • 15
    • 0024863228 scopus 로고
    • Cryptographic Limitations on Learning Boolean Formulae and Finite Automata
    • In: Johnson DS, editor, May 14-17, 1989, Seattle, Washington, USA. ACM
    • Kearns MJ, Valiant LG. Cryptographic Limitations on Learning Boolean Formulae and Finite Automata. In: Johnson DS, editor. Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washington, USA. ACM; 1989. pp 433-444
    • (1989) Proceedings of the 21st Annual ACM Symposium on Theory of Computing , pp. 433-444
    • Kearns, M.J.1    Valiant, L.G.2
  • 17
    • 0025448521 scopus 로고
    • The Strength of Weak Learnability
    • Schapire RE. The Strength of Weak Learnability. Machine Learning 1990; 5 (2): 197–227
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 18
    • 85043515682 scopus 로고
    • Boosting a Weak Learning Algorithm by Majority
    • In: Fulk MA, Case J, editors, COLT 1990, University of Rochester, Rochester, NY, USA, August 6–8, 1990
    • Freund Y. Boosting a Weak Learning Algorithm by Majority. In: Fulk MA, Case J, editors. Proceedings of the Third Annual Workshop on Computational Learning Theory, COLT 1990, University of Rochester, Rochester, NY, USA, August 6–8, 1990; 1990. pp 202–216
    • (1990) Proceedings of the Third Annual Workshop on Computational Learning Theory , pp. 202-216
    • Freund, Y.1
  • 20
    • 0024766543 scopus 로고    scopus 로고
    • The Weighted Majority Algorithm. In: Foundations of Computer Science, 1989
    • Littlestone N, Warmuth MK. The Weighted Majority Algorithm. In: Foundations of Computer Science, 1989. 30th Annual Symposium on. IEEE; 1989. pp 256–261
    • 30th Annual Symposium on. IEEE , vol.1989 , pp. 256-261
    • Littlestone, N.1    Warmuth, M.K.2
  • 23
    • 0032645080 scopus 로고    scopus 로고
    • An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
    • Bauer E, Kohavi R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Journal of Machine Learning 1999; 36: 105-139
    • (1999) Journal of Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 24
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman L. Bagging Predictors. Machine Learning 1996; 24: 123-140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 25
    • 0346786584 scopus 로고    scopus 로고
    • Arcing Classifiers (with Discussion)
    • Breiman L. Arcing Classifiers (with Discussion). The Annals of Statistics 1998; 26: 801-849
    • (1998) The Annals of Statistics , vol.26 , pp. 801-849
    • Breiman, L.1
  • 27
    • 84976766582 scopus 로고
    • Overfitting and Undercomputing in Machine Learning
    • Dietterich T. Overfitting and Undercomputing in Machine Learning. ACM Computing Surveys (CSUR) 1995; 27 (3): 326-327
    • (1995) ACM Computing Surveys (CSUR) , vol.27 , Issue.3 , pp. 326-327
    • Dietterich, T.1
  • 28
    • 0031638384 scopus 로고    scopus 로고
    • Boosting in the Limit: Maximizing the Margin of Learned Ensembles
    • John Wiley & Sons Ltd
    • Grove AJ, Schuurmans D. Boosting in the Limit: Maximizing the Margin of Learned Ensembles. In: Proceeding of the AAAI-98. John Wiley & Sons Ltd; 1998. pp 692-699
    • (1998) In: Proceeding of the AAAI-98 , pp. 692-699
    • Grove, A.J.1    Schuurmans, D.2
  • 31
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods
    • Schapire RE, Freund Y, Bartlett P, Lee WS. Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods. The Annals of Statistics 1998; 26 (5): 1651–1686
    • (1998) The Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 33
    • 0000275022 scopus 로고    scopus 로고
    • Prediction Games and Arcing Algorithms
    • Breiman L. Prediction Games and Arcing Algorithms. Neural Computation 1999; 11: 1493-1517
    • (1999) Neural Computation , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 35
    • 49749147915 scopus 로고    scopus 로고
    • Rejoinder: Boosting Algorithms: Regularization, Prediction and Model Fitting
    • Bühlmann P, Hothorn T. Rejoinder: Boosting Algorithms: Regularization, Prediction and Model Fitting. Statistical Science 2007; 22: 516-522
    • (2007) Statistical Science , vol.22 , pp. 516-522
    • Bühlmann, P.1    Hothorn, T.2
  • 36
    • 41549114046 scopus 로고    scopus 로고
    • Evidence Contrary to the Statistical View of Boosting
    • Response to Mease and Wyner
    • Bühlmann P, Yu B. Response to Mease and Wyner, Evidence Contrary to the Statistical View of Boosting. Journal of Machine Learning Research 2008; 9: 187–194
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 187-194
    • Bühlmann, P.1    Yu, B.2
  • 39
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for High-Dimensional Linear Models
    • Bühlmann P. Boosting for High-Dimensional Linear Models. The Annals of Statistics 2006; 34: 559-583
    • (2006) The Annals of Statistics , vol.34 , pp. 559-583
    • Bühlmann, P.1
  • 41
    • 84893967115 scopus 로고    scopus 로고
    • Model-Based Boosting in R: A Hands-on Tutorial Using the R Package mboost
    • Hofner B, Mayr A, Robinzonov N, Schmid M. Model-Based Boosting in R: A Hands-on Tutorial Using the R Package mboost. Computational Statistics 2014; 29: 3–35
    • (2014) Computational Statistics , vol.29 , pp. 3-35
    • Hofner, B.1    Mayr, A.2    Robinzonov, N.3    Schmid, M.4
  • 43
    • 28944437658 scopus 로고    scopus 로고
    • Regularized ROC Method for Disease Classification and Biomarker Selection with Microarray Data
    • Ma S, Huang J. Regularized ROC Method for Disease Classification and Biomarker Selection with Microarray Data. Bioinformatics 2005; 21 (24): 4356-4362
    • (2005) Bioinformatics , vol.21 , Issue.24 , pp. 4356-4362
    • Ma, S.1    Huang, J.2
  • 46
    • 84858711420 scopus 로고    scopus 로고
    • Regularization for Generalized Additive Mixed Models by Likelihood-based Boosting
    • Groll A, Tutz G. Regularization for Generalized Additive Mixed Models by Likelihood-based Boosting. Methods Inf Med 2012; 51 (2): 168-177
    • (2012) Methods Inf Med , vol.51 , Issue.2 , pp. 168-177
    • Groll, A.1    Tutz, G.2
  • 47
    • 39449093646 scopus 로고    scopus 로고
    • Allowing for Man-datory Covariates in Boosting Estimation of Sparse High-Dimensional Survival Models
    • Binder H, Schumacher M. Allowing for Man-datory Covariates in Boosting Estimation of Sparse High-Dimensional Survival Models. BMC Bioinformatics 2008; 9 (14)
    • (2008) BMC Bioinformatics , vol.9 , Issue.14
    • Binder, H.1    Schumacher, M.2
  • 48
    • 84858743801 scopus 로고    scopus 로고
    • The Importance of Knowing When to Stop-A Sequential Stopping Rule for Component-Wise Gradient Boosting
    • Mayr A, Hofner B, Schmid M. The Importance of Knowing When to Stop-A Sequential Stopping Rule for Component-Wise Gradient Boosting. Methods Inf Med 2012; 51 (2): 178-186
    • (2012) Methods Inf Med , vol.51 , Issue.2 , pp. 178-186
    • Mayr, A.1    Hofner, B.2    Schmid, M.3
  • 49
    • 0141879236 scopus 로고    scopus 로고
    • Model Selection and the Principle of Minimum Description Length
    • Hansen MH, Yu B. Model Selection and the Principle of Minimum Description Length. Journal of the American Statistical Association 2001; 96 (454): 746-774
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.454 , pp. 746-774
    • Hansen, M.H.1    Yu, B.2
  • 50
    • 49749102427 scopus 로고    scopus 로고
    • Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting
    • Hastie T. Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting. Statistical Science 2007; 22 (4): 513-515
    • (2007) Statistical Science , vol.22 , Issue.4 , pp. 513-515
    • Hastie, T.1
  • 51
    • 84914136014 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing. Vienna, Austria, ISBN 3-900051-07-0. Available from
    • R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2014. ISBN 3-900051-07-0. Available from: http://www.R-project.org
    • (2014)
  • 57
    • 79960127235 scopus 로고    scopus 로고
    • Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression
    • Fenske N, Kneib T, Hothorn T. Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression. Journal of the American Statistical Association 2011; 106 (494): 494-510.
    • (2011) Journal of the American Statistical Association , vol.106 , Issue.494 , pp. 494-510
    • Fenske, N.1    Kneib, T.2    Hothorn, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.