-
2
-
-
0034164230
-
Additive Logistic Regression: A Statistical View of Boosting (with Discussion)
-
Friedman J., Hastie T, Tibshirani R. Additive Logistic Regression: A Statistical View of Boosting (with Discussion). The Annals of Statistics 2000; 28: 337-407
-
(2000)
The Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
3
-
-
0035470889
-
Greedy Function Approximation: A Gradient Boosting Machine
-
Friedman JH. Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics 2001; 29: 1189-1232
-
(2001)
The Annals of Statistics
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
4
-
-
84858741510
-
Boosting Into a New Terminological Era
-
Schmid M, Gefeller O, Hothorn T. Boosting Into a New Terminological Era. Methods Inf Med 2012; 51 (2): 150-151
-
(2012)
Methods Inf Med
, vol.51
, Issue.2
, pp. 150-151
-
-
Schmid, M.1
Gefeller, O.2
Hothorn, T.3
-
5
-
-
41549141939
-
Boosting Algorithms: Regularization, Prediction and Model Fitting (with Discussion)
-
Bühlmann P, Hothorn T. Boosting Algorithms: Regularization, Prediction and Model Fitting (with Discussion). Statistical Science 2007; 22: 477-522
-
(2007)
Statistical Science
, vol.22
, pp. 477-522
-
-
Bühlmann, P.1
Hothorn, T.2
-
6
-
-
33845509035
-
Generalized Additive Modeling with Implicit Variable Selection by Likelihoodbased Boosting
-
Tutz G, Binder H. Generalized Additive Modeling with Implicit Variable Selection by Likelihoodbased Boosting. Biometrics 2006; 62: 961-971
-
(2006)
Biometrics
, vol.62
, pp. 961-971
-
-
Tutz, G.1
Binder, H.2
-
7
-
-
84867671668
-
A New Formula for Optimized Weight Estimation in Extreme Fetal Macrosomia (_ 4500 g)
-
Faschingbauer F, Beckmann M, Goecke T, Yazdi B, Siemer J, Schmid M, et al. A New Formula for Optimized Weight Estimation in Extreme Fetal Macrosomia (_ 4500 g). European Journal of Ultrasound 2012; 33 (05): 480-488
-
(2012)
European Journal of Ultrasound
, vol.33
, Issue.5
, pp. 480-488
-
-
Faschingbauer, F.1
Beckmann, M.2
Goecke, T.3
Yazdi, B.4
Siemer, J.5
Schmid, M.6
-
8
-
-
84878616246
-
A Fast Estimate for the Population Recombination Rate Based on Regression
-
Lin K, Futschik A, Li H. A Fast Estimate for the Population Recombination Rate Based on Regression. Genetics 2013; 194 (2): 473-484
-
(2013)
Genetics
, vol.194
, Issue.2
, pp. 473-484
-
-
Lin, K.1
Futschik, A.2
Li, H.3
-
9
-
-
79551706991
-
Gene Expression Profiling Predicts the Development of Oral Cancer
-
Saintigny P, Zhang L, Fan YHH, El-Naggar AK, Papadimitrakopoulou VA, Feng L, et al. Gene Expression Profiling Predicts the Development of Oral Cancer. Cancer Prevention Research 2011; 4 (2): 218-229
-
(2011)
Cancer Prevention Research
, vol.4
, Issue.2
, pp. 218-229
-
-
Saintigny, P.1
Zhang, L.2
Fan, Y.H.H.3
El-Naggar, A.K.4
Papadimitrakopoulou, V.A.5
Feng, L.6
-
10
-
-
19544378196
-
Boosting Proportional Hazards Models Using Smoothing Splines with Applications to High-Dimensional Microarray Data
-
Li H, Luan Y. Boosting Proportional Hazards Models Using Smoothing Splines with Applications to High-Dimensional Microarray Data. Bioinformatics 2005; 21 (10): 2403-2409
-
(2005)
Bioinformatics
, vol.21
, Issue.10
, pp. 2403-2409
-
-
Li, H.1
Luan, Y.2
-
11
-
-
84876443924
-
Tailoring Sparse Multivariable Regression Techniques for Prognostic Single-Nucleotide Polymorphism Signatures
-
Binder H, Benner A, Bullinger L, Schumacher M. Tailoring Sparse Multivariable Regression Techniques for Prognostic Single-Nucleotide Polymorphism Signatures. Statistics in Medicine 2013; 32 (10): 1778–1791
-
(2013)
Statistics in Medicine
, vol.32
, Issue.10
, pp. 1778-1791
-
-
Binder, H.1
Benner, A.2
Bullinger, L.3
Schumacher, M.4
-
12
-
-
84896968781
-
Boosting the Concordance Index for Survival Data-A Unified Framework to Derive and Evaluate Biomarker Combinations
-
Mayr A, Schmid M. Boosting the Concordance Index for Survival Data-A Unified Framework to Derive and Evaluate Biomarker Combinations. PloS ONE 2014; 9 (1): e84483
-
(2014)
PloS ONE
, vol.9
, Issue.1
-
-
Mayr, A.1
Schmid, M.2
-
13
-
-
84914104651
-
Extending Statistical Boosting-An Overview of Recent Methodological Developments
-
Mayr A, Binder H, Gefeller O, Schmid M. Extending Statistical Boosting-An Overview of Recent Methodological Developments. Methods Inf Med 2014; 53: 428-435
-
(2014)
Methods Inf Med
, vol.53
, pp. 428-435
-
-
Mayr, A.1
Binder, H.2
Gefeller, O.3
Schmid, M.4
-
15
-
-
0024863228
-
Cryptographic Limitations on Learning Boolean Formulae and Finite Automata
-
In: Johnson DS, editor, May 14-17, 1989, Seattle, Washington, USA. ACM
-
Kearns MJ, Valiant LG. Cryptographic Limitations on Learning Boolean Formulae and Finite Automata. In: Johnson DS, editor. Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washington, USA. ACM; 1989. pp 433-444
-
(1989)
Proceedings of the 21st Annual ACM Symposium on Theory of Computing
, pp. 433-444
-
-
Kearns, M.J.1
Valiant, L.G.2
-
17
-
-
0025448521
-
The Strength of Weak Learnability
-
Schapire RE. The Strength of Weak Learnability. Machine Learning 1990; 5 (2): 197–227
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
18
-
-
85043515682
-
Boosting a Weak Learning Algorithm by Majority
-
In: Fulk MA, Case J, editors, COLT 1990, University of Rochester, Rochester, NY, USA, August 6–8, 1990
-
Freund Y. Boosting a Weak Learning Algorithm by Majority. In: Fulk MA, Case J, editors. Proceedings of the Third Annual Workshop on Computational Learning Theory, COLT 1990, University of Rochester, Rochester, NY, USA, August 6–8, 1990; 1990. pp 202–216
-
(1990)
Proceedings of the Third Annual Workshop on Computational Learning Theory
, pp. 202-216
-
-
Freund, Y.1
-
20
-
-
0024766543
-
The Weighted Majority Algorithm. In: Foundations of Computer Science, 1989
-
Littlestone N, Warmuth MK. The Weighted Majority Algorithm. In: Foundations of Computer Science, 1989. 30th Annual Symposium on. IEEE; 1989. pp 256–261
-
30th Annual Symposium on. IEEE
, vol.1989
, pp. 256-261
-
-
Littlestone, N.1
Warmuth, M.K.2
-
23
-
-
0032645080
-
An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants
-
Bauer E, Kohavi R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Journal of Machine Learning 1999; 36: 105-139
-
(1999)
Journal of Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
24
-
-
0030211964
-
Bagging Predictors
-
Breiman L. Bagging Predictors. Machine Learning 1996; 24: 123-140
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
25
-
-
0346786584
-
Arcing Classifiers (with Discussion)
-
Breiman L. Arcing Classifiers (with Discussion). The Annals of Statistics 1998; 26: 801-849
-
(1998)
The Annals of Statistics
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
27
-
-
84976766582
-
Overfitting and Undercomputing in Machine Learning
-
Dietterich T. Overfitting and Undercomputing in Machine Learning. ACM Computing Surveys (CSUR) 1995; 27 (3): 326-327
-
(1995)
ACM Computing Surveys (CSUR)
, vol.27
, Issue.3
, pp. 326-327
-
-
Dietterich, T.1
-
28
-
-
0031638384
-
Boosting in the Limit: Maximizing the Margin of Learned Ensembles
-
John Wiley & Sons Ltd
-
Grove AJ, Schuurmans D. Boosting in the Limit: Maximizing the Margin of Learned Ensembles. In: Proceeding of the AAAI-98. John Wiley & Sons Ltd; 1998. pp 692-699
-
(1998)
In: Proceeding of the AAAI-98
, pp. 692-699
-
-
Grove, A.J.1
Schuurmans, D.2
-
31
-
-
0032280519
-
Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods
-
Schapire RE, Freund Y, Bartlett P, Lee WS. Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods. The Annals of Statistics 1998; 26 (5): 1651–1686
-
(1998)
The Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
33
-
-
0000275022
-
Prediction Games and Arcing Algorithms
-
Breiman L. Prediction Games and Arcing Algorithms. Neural Computation 1999; 11: 1493-1517
-
(1999)
Neural Computation
, vol.11
, pp. 1493-1517
-
-
Breiman, L.1
-
35
-
-
49749147915
-
Rejoinder: Boosting Algorithms: Regularization, Prediction and Model Fitting
-
Bühlmann P, Hothorn T. Rejoinder: Boosting Algorithms: Regularization, Prediction and Model Fitting. Statistical Science 2007; 22: 516-522
-
(2007)
Statistical Science
, vol.22
, pp. 516-522
-
-
Bühlmann, P.1
Hothorn, T.2
-
36
-
-
41549114046
-
Evidence Contrary to the Statistical View of Boosting
-
Response to Mease and Wyner
-
Bühlmann P, Yu B. Response to Mease and Wyner, Evidence Contrary to the Statistical View of Boosting. Journal of Machine Learning Research 2008; 9: 187–194
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 187-194
-
-
Bühlmann, P.1
Yu, B.2
-
39
-
-
33745157294
-
Boosting for High-Dimensional Linear Models
-
Bühlmann P. Boosting for High-Dimensional Linear Models. The Annals of Statistics 2006; 34: 559-583
-
(2006)
The Annals of Statistics
, vol.34
, pp. 559-583
-
-
Bühlmann, P.1
-
43
-
-
28944437658
-
Regularized ROC Method for Disease Classification and Biomarker Selection with Microarray Data
-
Ma S, Huang J. Regularized ROC Method for Disease Classification and Biomarker Selection with Microarray Data. Bioinformatics 2005; 21 (24): 4356-4362
-
(2005)
Bioinformatics
, vol.21
, Issue.24
, pp. 4356-4362
-
-
Ma, S.1
Huang, J.2
-
46
-
-
84858711420
-
Regularization for Generalized Additive Mixed Models by Likelihood-based Boosting
-
Groll A, Tutz G. Regularization for Generalized Additive Mixed Models by Likelihood-based Boosting. Methods Inf Med 2012; 51 (2): 168-177
-
(2012)
Methods Inf Med
, vol.51
, Issue.2
, pp. 168-177
-
-
Groll, A.1
Tutz, G.2
-
47
-
-
39449093646
-
Allowing for Man-datory Covariates in Boosting Estimation of Sparse High-Dimensional Survival Models
-
Binder H, Schumacher M. Allowing for Man-datory Covariates in Boosting Estimation of Sparse High-Dimensional Survival Models. BMC Bioinformatics 2008; 9 (14)
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.14
-
-
Binder, H.1
Schumacher, M.2
-
48
-
-
84858743801
-
The Importance of Knowing When to Stop-A Sequential Stopping Rule for Component-Wise Gradient Boosting
-
Mayr A, Hofner B, Schmid M. The Importance of Knowing When to Stop-A Sequential Stopping Rule for Component-Wise Gradient Boosting. Methods Inf Med 2012; 51 (2): 178-186
-
(2012)
Methods Inf Med
, vol.51
, Issue.2
, pp. 178-186
-
-
Mayr, A.1
Hofner, B.2
Schmid, M.3
-
49
-
-
0141879236
-
Model Selection and the Principle of Minimum Description Length
-
Hansen MH, Yu B. Model Selection and the Principle of Minimum Description Length. Journal of the American Statistical Association 2001; 96 (454): 746-774
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.454
, pp. 746-774
-
-
Hansen, M.H.1
Yu, B.2
-
50
-
-
49749102427
-
Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting
-
Hastie T. Comment: Boosting Algorithms: Regularization, Prediction and Model Fitting. Statistical Science 2007; 22 (4): 513-515
-
(2007)
Statistical Science
, vol.22
, Issue.4
, pp. 513-515
-
-
Hastie, T.1
-
51
-
-
84914136014
-
-
R: A Language and Environment for Statistical Computing. Vienna, Austria, ISBN 3-900051-07-0. Available from
-
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria; 2014. ISBN 3-900051-07-0. Available from: http://www.R-project.org
-
(2014)
-
-
-
57
-
-
79960127235
-
Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression
-
Fenske N, Kneib T, Hothorn T. Identifying Risk Factors for Severe Childhood Malnutrition by Boosting Additive Quantile Regression. Journal of the American Statistical Association 2011; 106 (494): 494-510.
-
(2011)
Journal of the American Statistical Association
, vol.106
, Issue.494
, pp. 494-510
-
-
Fenske, N.1
Kneib, T.2
Hothorn, T.3
|