메뉴 건너뛰기




Volumn 76, Issue 1, 2014, Pages 3-27

Conditional transformation models

Author keywords

Boosting; Conditional distribution function; Conditional quantile function; Continuous ranked probability score; Prediction intervals; Structured additive regression

Indexed keywords


EID: 84891832147     PISSN: 13697412     EISSN: 14679868     Source Type: Journal    
DOI: 10.1111/rssb.12017     Document Type: Article
Times cited : (115)

References (56)
  • 1
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • Bühlmann, P. (2006) Boosting for high-dimensional linear models. Ann. Statist., 34, 559-583.
    • (2006) Ann. Statist. , vol.34 , pp. 559-583
    • Bühlmann, P.1
  • 3
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: regularization, prediction and model fitting (with discussion)
    • Bühlmann, P. and Hothorn, T. (2007) Boosting algorithms: regularization, prediction and model fitting (with discussion). Statist. Sci., 22, 477-505.
    • (2007) Statist. Sci. , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 4
    • 0043245810 scopus 로고    scopus 로고
    • Boosting with the L2 loss: regression and classification
    • Bühlmann, P. and Yu, B. (2003) Boosting with the L2 loss: regression and classification. J. Am. Statist. Ass., 98, 324-339.
    • (2003) J. Am. Statist. Ass. , vol.98 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 5
    • 84856021004 scopus 로고    scopus 로고
    • Conditional quantile analysis when covariates are functions, with application to growth data
    • Chen, K. and Müller, H. G. (2012) Conditional quantile analysis when covariates are functions, with application to growth data. J. R. Statist. Soc. B, 74, 67-89.
    • (2012) J. R. Statist. Soc. B , vol.74 , pp. 67-89
    • Chen, K.1    Müller, H.G.2
  • 6
    • 78651334806 scopus 로고    scopus 로고
    • Varying coefficient transformation models with censored data
    • Chen, K. and Tong, X. (2010) Varying coefficient transformation models with censored data. Biometrika, 97, 969-976.
    • (2010) Biometrika , vol.97 , pp. 969-976
    • Chen, K.1    Tong, X.2
  • 7
    • 84859808062 scopus 로고    scopus 로고
    • Semiparametric additive transformation model under current status data
    • Cheng, G. and Wang, X. (2011) Semiparametric additive transformation model under current status data. Electron. J. Statist., 5, 1735-1764.
    • (2011) Electron. J. Statist. , vol.5 , pp. 1735-1764
    • Cheng, G.1    Wang, X.2
  • 8
    • 77956889312 scopus 로고
    • Analysis of transformation models with censored data
    • Cheng, S. C., Wei, L. J. and Ying, Z. (1995) Analysis of transformation models with censored data. Biometrika, 82, 835-845.
    • (1995) Biometrika , vol.82 , pp. 835-845
    • Cheng, S.C.1    Wei, L.J.2    Ying, Z.3
  • 9
    • 33644769535 scopus 로고    scopus 로고
    • Generalized linear array models with applications to multidimensional smoothing
    • Currie, I. D., Durban, M. and Eilers, P. H. C. (2006) Generalized linear array models with applications to multidimensional smoothing. J. R. Statist. Soc. B, 68, 259-280.
    • (2006) J. R. Statist. Soc. B , vol.68 , pp. 259-280
    • Currie, I.D.1    Durban, M.2    Eilers, P.H.C.3
  • 10
    • 42149185517 scopus 로고    scopus 로고
    • Non-crossing non-parametric estimates of quantile curves
    • Dette, H. and Volgushev, S. (2008) Non-crossing non-parametric estimates of quantile curves. J. R. Statist. Soc. B, 70, 609-627.
    • (2008) J. R. Statist. Soc. B , vol.70 , pp. 609-627
    • Dette, H.1    Volgushev, S.2
  • 11
    • 0001401162 scopus 로고
    • On a correspondence between models in binary regression analysis and in survival analysis
    • Doksum, K. A. and Gasko, M. (1990) On a correspondence between models in binary regression analysis and in survival analysis. Int. Statist. Rev., 58, 243-252.
    • (1990) Int. Statist. Rev. , vol.58 , pp. 243-252
    • Doksum, K.A.1    Gasko, M.2
  • 12
    • 32444440300 scopus 로고    scopus 로고
    • Unimodal smoothing
    • Eilers, P. H. C. (2005) Unimodal smoothing. J. Chemometr., 19, 317-328.
    • (2005) J. Chemometr. , vol.19 , pp. 317-328
    • Eilers, P.H.C.1
  • 13
    • 79960127235 scopus 로고    scopus 로고
    • Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression
    • Fenske, N., Kneib, T. and Hothorn, T. (2011) Identifying risk factors for severe childhood malnutrition by boosting additive quantile regression. J. Am. Statist. Ass., 106, 494-510.
    • (2011) J. Am. Statist. Ass. , vol.106 , pp. 494-510
    • Fenske, N.1    Kneib, T.2    Hothorn, T.3
  • 14
    • 1142272430 scopus 로고    scopus 로고
    • Using humor in the introductory statistics course
    • no. 3.
    • Friedman, H. H., Friedman, L. W. and Amoo, T. (2002) Using humor in the introductory statistics course. J. Statist. Educ., 10, no. 3.
    • (2002) J. Statist. Educ. , vol.10
    • Friedman, H.H.1    Friedman, L.W.2    Amoo, T.3
  • 16
    • 58149243042 scopus 로고    scopus 로고
    • Regression revisited
    • Gilchrist, W. (2008) Regression revisited. Int. Statist. Rev., 76, 401-418.
    • (2008) Int. Statist. Rev. , vol.76 , pp. 401-418
    • Gilchrist, W.1
  • 17
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • Gneiting, T. and Raftery, A. E. (2007) Strictly proper scoring rules, prediction, and estimation. J. Am. Statist. Ass., 102, 359-378.
    • (2007) J. Am. Statist. Ass. , vol.102 , pp. 359-378
    • Gneiting, T.1    Raftery, A.E.2
  • 18
    • 20444484849 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
    • Gneiting, T., Raftery, A. E., Westveld III, A. H. and Goldman, T. (2005) Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mnthly Weath. Rev., 133, 1098-1118.
    • (2005) Mnthly Weath. Rev. , vol.133 , pp. 1098-1118
    • Gneiting, T.1    Raftery, A.E.2    Westveld III, A.H.3    Goldman, T.4
  • 19
    • 79958744432 scopus 로고    scopus 로고
    • Comparing density forecasts using threshold- and quantile-weighted scoring rules
    • Gneiting, T. and Ranjan, R. (2011) Comparing density forecasts using threshold- and quantile-weighted scoring rules. J. Bus. Econ. Statist., 29, 411-422.
    • (2011) J. Bus. Econ. Statist. , vol.29 , pp. 411-422
    • Gneiting, T.1    Ranjan, R.2
  • 20
    • 10744219922 scopus 로고    scopus 로고
    • Order-preserving nonparametric regression, with applications to conditional distribution and quantile function estimation
    • Hall, P. and Müller, H. G. (2003) Order-preserving nonparametric regression, with applications to conditional distribution and quantile function estimation. J. Am. Statist. Ass., 98, 598-608.
    • (2003) J. Am. Statist. Ass. , vol.98 , pp. 598-608
    • Hall, P.1    Müller, H.G.2
  • 21
    • 0442325055 scopus 로고    scopus 로고
    • Methods for estimating a conditional distribution function
    • Hall, P., Wolff, R. C. L. and Yao, Q. (1999) Methods for estimating a conditional distribution function. J. Am. Statist. Ass., 94, 154-163.
    • (1999) J. Am. Statist. Ass. , vol.94 , pp. 154-163
    • Hall, P.1    Wolff, R.C.L.2    Yao, Q.3
  • 22
    • 48749088746 scopus 로고    scopus 로고
    • Nonparametric econometrics: the np package
    • Hayfield, T. and Racine, J. S. (2008) Nonparametric econometrics: the np package. J. Statist. Softwr., 27, 1-32.
    • (2008) J. Statist. Softwr. , vol.27 , pp. 1-32
    • Hayfield, T.1    Racine, J.S.2
  • 23
    • 84891826074 scopus 로고    scopus 로고
    • np: nonparametric kernel smoothing methods for mixed data types. R Package Version 0.40-12. (Available from
    • Hayfield, T. and Racine, J. S. (2011) np: nonparametric kernel smoothing methods for mixed data types. R Package Version 0.40-12. (Available from http://CRAN.Rproject.org/package=np.)
    • (2011)
    • Hayfield, T.1    Racine, J.S.2
  • 24
    • 0031527874 scopus 로고    scopus 로고
    • Quantile curves without crossing
    • He, X. (1997) Quantile curves without crossing. Am. Statistn, 51, 186-192.
    • (1997) Am. Statistn , vol.51 , pp. 186-192
    • He, X.1
  • 26
    • 84891834982 scopus 로고    scopus 로고
    • gamboostLSS: boosting methods for GAMLSS models. R Package Version 1.0-3/r39. (Available from
    • Hofner, B., Mayr, A., Fenske, N. and Schmid, M. (2011b) gamboostLSS: boosting methods for GAMLSS models. R Package Version 1.0-3/r39. (Available from http://Rforge.Rproject.org/projects/gamboostlss/.)
    • (2011)
    • Hofner, B.1    Mayr, A.2    Fenske, N.3    Schmid, M.4
  • 28
    • 84891829971 scopus 로고    scopus 로고
    • mboost: model-based boosting. R Package Version 2.1-1. (Available from
    • Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M. and Hofner, B.(2011) mboost: model-based boosting. R Package Version 2.1-1. (Available from http://CRAN.Rproject.org/package=mboost.)
    • (2011)
    • Hothorn, T.1    Bühlmann, P.2    Kneib, T.3    Schmid, M.4    Hofner, B.5
  • 29
    • 84891832335 scopus 로고    scopus 로고
    • Conditional transformation models (extended version). Technical Report arXiv:1201.5786v2. Ludwig-Maximilians-Universität München, Munich. (Available from
    • Hothorn, T., Kneib, T. and Bühlmann, P. (2012) Conditional transformation models (extended version). Technical Report arXiv:1201.5786v2. Ludwig-Maximilians-Universität München, Munich. (Available from http://arxiv.org/abs/1201.5786.)
    • (2012)
    • Hothorn, T.1    Kneib, T.2    Bühlmann, P.3
  • 30
    • 84891834979 scopus 로고    scopus 로고
    • International Institute for Population Sciences and ORC Macro National Family Health Survey (NFHS-2), 1998-1999: India. International Institute for Population Sciences, Mumbai. (Available from
    • International Institute for Population Sciences and ORC Macro (2000) National Family Health Survey (NFHS-2), 1998-1999: India. International Institute for Population Sciences, Mumbai. (Available from http://www.measuredhs.com/pubs.)
    • (2000)
  • 31
    • 84925105967 scopus 로고    scopus 로고
    • New York: Cambridge University Press.
    • Koenker, R. (2005) Quantile Regression. New York: Cambridge University Press.
    • (2005) Quantile Regression
    • Koenker, R.1
  • 32
    • 84891832945 scopus 로고    scopus 로고
    • quantreg: quantile regression. R Package Version 4.76. (Available from
    • Koenker, R. (2011) quantreg: quantile regression. R Package Version 4.76. (Available from http://CRAN.Rproject.org/package=quantreg.)
    • (2011)
    • Koenker, R.1
  • 33
    • 0000273843 scopus 로고
    • Regression quantiles
    • Koenker, R. and Bassett, G. (1978) Regression quantiles. Econometrica, 46, 33-50.
    • (1978) Econometrica , vol.46 , pp. 33-50
    • Koenker, R.1    Bassett, G.2
  • 34
    • 0001652263 scopus 로고
    • Quantile smoothing splines
    • Koenker, R., Ng, P. and Portnoy, S. (1994) Quantile smoothing splines. Biometrika, 81, 673-680.
    • (1994) Biometrika , vol.81 , pp. 673-680
    • Koenker, R.1    Ng, P.2    Portnoy, S.3
  • 35
    • 79960136644 scopus 로고    scopus 로고
    • Small area estimation of the homeless in Los Angeles: an application of cost-sensitive stochastic gradient boosting
    • Kriegler, B. and Berk, R. (2010) Small area estimation of the homeless in Los Angeles: an application of cost-sensitive stochastic gradient boosting. Ann. Appl. Statist., 4, 1234-1255.
    • (2010) Ann. Appl. Statist. , vol.4 , pp. 1234-1255
    • Kriegler, B.1    Berk, R.2
  • 36
    • 48849089212 scopus 로고    scopus 로고
    • Nonparametric estimation of conditional CDF and quantile functions with mixed categorical and continuous data
    • Li, Q. and Racine, J. S. (2008) Nonparametric estimation of conditional CDF and quantile functions with mixed categorical and continuous data. J. Bus. Econ. Statist., 26, 423-434.
    • (2008) J. Bus. Econ. Statist. , vol.26 , pp. 423-434
    • Li, Q.1    Racine, J.S.2
  • 37
    • 52449121990 scopus 로고    scopus 로고
    • Boosting method for nonlinear transformation models with censored survival data
    • Lu, W. and Li, L. (2008) Boosting method for nonlinear transformation models with censored survival data. Biostatistics, 9, 658-667.
    • (2008) Biostatistics , vol.9 , pp. 658-667
    • Lu, W.1    Li, L.2
  • 38
    • 78649427504 scopus 로고    scopus 로고
    • On estimation of partially linear transformation models
    • Lu, W. and Zhang, H. H. (2010) On estimation of partially linear transformation models. J. Am. Statist. Ass., 105, 683-691.
    • (2010) J. Am. Statist. Ass. , vol.105 , pp. 683-691
    • Lu, W.1    Zhang, H.H.2
  • 39
    • 84859815011 scopus 로고    scopus 로고
    • Generalized additive models for location, scale and shape for high dimensional data-a flexible approach based on boosting
    • Mayr, A., Fenske, N., Hofner, B., Kneib, T. and Schmid, M. (2012a) Generalized additive models for location, scale and shape for high dimensional data-a flexible approach based on boosting. Appl. Statist., 61, 403-427.
    • (2012) Appl. Statist. , vol.61 , pp. 403-427
    • Mayr, A.1    Fenske, N.2    Hofner, B.3    Kneib, T.4    Schmid, M.5
  • 40
    • 84856094557 scopus 로고    scopus 로고
    • Prediction intervals for future BMI values of individual children-a non-parametric approach by quantile boosting. BMC Med. Res. Methodol., 12, article 6.
    • Mayr, A., Hothorn, T. and Fenske, N. (2012b) Prediction intervals for future BMI values of individual children-a non-parametric approach by quantile boosting. BMC Med. Res. Methodol., 12, article 6.
    • (2012)
    • Mayr, A.1    Hothorn, T.2    Fenske, N.3
  • 41
    • 84891835447 scopus 로고    scopus 로고
    • R Development Core Team R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
    • R Development Core Team (2011) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
    • (2011)
  • 42
    • 0037186537 scopus 로고    scopus 로고
    • Looking for lumps: boosting and bagging for density estimation
    • Ridgeway, G. (2002) Looking for lumps: boosting and bagging for density estimation. Computnl Statist. Data Anal., 38, 379-392.
    • (2002) Computnl Statist. Data Anal. , vol.38 , pp. 379-392
    • Ridgeway, G.1
  • 43
    • 18544382833 scopus 로고    scopus 로고
    • Generalized additive models for location, scale and shape (with discussion)
    • Rigby, R. A. and Stasinopoulos, D. M. (2005) Generalized additive models for location, scale and shape (with discussion). Appl. Statist., 54, 507-554.
    • (2005) Appl. Statist. , vol.54 , pp. 507-554
    • Rigby, R.A.1    Stasinopoulos, D.M.2
  • 44
    • 0034024003 scopus 로고    scopus 로고
    • Predictive accuracy and explained variation in Cox regression
    • Schemper, M. and Henderson, R. (2000) Predictive accuracy and explained variation in Cox regression. Biometrics, 56, 249-255.
    • (2000) Biometrics , vol.56 , pp. 249-255
    • Schemper, M.1    Henderson, R.2
  • 46
    • 47349125398 scopus 로고    scopus 로고
    • Flexible boosting of accelerated failure time models. BMC Bioinform., 9, article 269.
    • Schmid, M. and Hothorn, T. (2008) Flexible boosting of accelerated failure time models. BMC Bioinform., 9, article 269.
    • (2008)
    • Schmid, M.1    Hothorn, T.2
  • 48
    • 84874020053 scopus 로고    scopus 로고
    • Simultaneous estimation of quantile curves using quantile sheets
    • to be published, doi 10.1007/s10182-012-0198-1.
    • Schnabel, S. K. and Eilers, P. H. C. (2012) Simultaneous estimation of quantile curves using quantile sheets. AStA Adv. Statist. Anal., to be published, doi 10.1007/s10182-012-0198-1.
    • (2012) AStA Adv. Statist. Anal
    • Schnabel, S.K.1    Eilers, P.H.C.2
  • 49
    • 84859755410 scopus 로고    scopus 로고
    • Boosted coefficient models
    • Sexton, J. and Laake, P. (2012) Boosted coefficient models. Statist. Comput., 22, 867-876.
    • (2012) Statist. Comput. , vol.22 , pp. 867-876
    • Sexton, J.1    Laake, P.2
  • 50
    • 0000585433 scopus 로고    scopus 로고
    • Proportional odds regression and sieve maximum likelihood estimation
    • Shen, X. (1998) Proportional odds regression and sieve maximum likelihood estimation. Biometrika, 85, 165-177.
    • (1998) Biometrika , vol.85 , pp. 165-177
    • Shen, X.1
  • 51
    • 84891825232 scopus 로고    scopus 로고
    • gamlss: generalized additive models for location scale and shape. R Package Version 4.1-1. (Available from
    • Stasinopoulos, M., Rigby, B. and Akantziliotou, C. (2011) gamlss: generalized additive models for location scale and shape. R Package Version 4.1-1. (Available from http://CRAN.Rproject.org/package=gamlss.)
    • (2011)
    • Stasinopoulos, M.1    Rigby, B.2    Akantziliotou, C.3
  • 52
    • 84890201888 scopus 로고    scopus 로고
    • Likelihood-based boosting in binary and ordinal random effects models
    • to be published, doi 10.1080/10618600.2012.694769.
    • Tutz, G. and Groll, A. (2012) Likelihood-based boosting in binary and ordinal random effects models. J. Computnl Graph. Statist., to be published, doi 10.1080/10618600.2012.694769.
    • (2012) J. Computnl Graph. Statist.
    • Tutz, G.1    Groll, A.2
  • 53
    • 81955161261 scopus 로고    scopus 로고
    • Nonparametric estimation of the link function including variable selection
    • Tutz, G. and Petry, S. (2012) Nonparametric estimation of the link function including variable selection. Statist. Comput., 22, 545-561.
    • (2012) Statist. Comput. , vol.22 , pp. 545-561
    • Tutz, G.1    Petry, S.2
  • 54
    • 77649129854 scopus 로고    scopus 로고
    • Nonparametric estimation for time-varying transformation models with longitudinal data
    • Wu, C., Tian, X. and Yu, J. (2010) Nonparametric estimation for time-varying transformation models with longitudinal data. J. Nonparam. Statist., 22, 133-147.
    • (2010) J. Nonparam. Statist. , vol.22 , pp. 133-147
    • Wu, C.1    Tian, X.2    Yu, J.3
  • 55
    • 20444476802 scopus 로고    scopus 로고
    • Maximum likelihood estimation for the proportional odds model with random effects
    • Zeng, D., Lin, D. Y. and Yin, G. (2005) Maximum likelihood estimation for the proportional odds model with random effects. J. Am. Statist. Ass., 100, 470-483.
    • (2005) J. Am. Statist. Ass. , vol.100 , pp. 470-483
    • Zeng, D.1    Lin, D.Y.2    Yin, G.3
  • 56
    • 80054899703 scopus 로고    scopus 로고
    • QBoost: predicting quantiles with boosting for regression and binary classiffication
    • Zheng, S. (2012) QBoost: predicting quantiles with boosting for regression and binary classiffication. Exprt Syst. Applic., 39, 1687-1697.
    • (2012) Exprt Syst. Applic. , vol.39 , pp. 1687-1697
    • Zheng, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.