메뉴 건너뛰기




Volumn 54, Issue 10, 2010, Pages 2203-2213

Early stopping in L2 Boosting

Author keywords

AICc; BIC; Change point detection method; GMDL; L2 Boosting; LogitBoost; Stopping rule

Indexed keywords

ADABOOST; BIOINFORMATICS APPLICATIONS; BOOSTING ALGORITHM; CHANGE POINT DETECTION; COMPUTATIONAL SAVINGS; DATA EXAMPLES; EARLY STOPPING; LOGITBOOST; MODEL SELECTION CRITERIA; SIMULATION STUDIES; STOPPING RULE; TRAINING DATA; TWO-CLASS CLASSIFICATION PROBLEMS;

EID: 77955272634     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2010.03.024     Document Type: Article
Times cited : (13)

References (22)
  • 3
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike A new look at the statistical model identification IEEE Transactions on Automatic Control 19 1974 716 723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 7
    • 33746172856 scopus 로고    scopus 로고
    • Boosting, model selection, lasso and nonnegative garrote. Research Report No 127
    • Eidgenössische Technische Hochschule, ETH, Zentrum, Switzerland
    • Bhlmann, P., Yu, B., 2005. Boosting, model selection, lasso and nonnegative garrote. Research Report No 127. Seminar fr Statistik. Eidgenssische Technische Hochschule, ETH, Zentrum, Switzerland.
    • (2005) Seminar für Statistik
    • Bühlmann, P.1    Yu, B.2
  • 8
    • 0036643072 scopus 로고    scopus 로고
    • Logistic regression, AdaBoost and Bregman distances
    • M. Collins, R.E. Schapire, and Y. Singer Logistic regression, AdaBoost and Bregman distances Machine Learning 48 2002 253 285
    • (2002) Machine Learning , vol.48 , pp. 253-285
    • Collins, M.1    Schapire, R.E.2    Singer, Y.3
  • 11
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. Friedman Greedy function approximation: a gradient boosting machine Annals of Statistics 29 2001 1189 1232
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.1
  • 13
    • 0141879236 scopus 로고    scopus 로고
    • Model Selection and the Principle of Minimum Description Length
    • M.H. Hansen, and B. Yu Model selection and the principle of minimum description length Journal of the American Statistical Association 96 2001 746 774 (Pubitemid 33695629)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.454 , pp. 746-774
    • Hansen, M.H.1    Yu, B.2
  • 16
    • 70349119250 scopus 로고
    • Regression and time series model selection in small samples
    • C.M. Hurvich, and C.L. Tsai Regression and time series model selection in small samples Biometrika 76 1989 297 307
    • (1989) Biometrika , vol.76 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.L.2
  • 18
    • 35248862907 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • R. Meir, and G. Rtsch An introduction to boosting and leveraging S. Mendelson, A. Smola, Advanced Lectures on Machine Learning LNCS 2003 Springer New York 119 184
    • (2003) Advanced Lectures on Machine Learning LNCS , pp. 119-184
    • Meir, R.1    Rtsch, G.2
  • 19
    • 77956887130 scopus 로고
    • An optimal selection of regression variables
    • R. Shibata An optimal selection of regression variables Biometrika 68 1981 45 54
    • (1981) Biometrika , vol.68 , pp. 45-54
    • Shibata, R.1
  • 21
    • 84963178774 scopus 로고
    • Further analysis of the data by Akaike's information criterion and the finite corrections
    • N. Sugiura Further analysis of the data by Akaike's information criterion and the finite corrections Communications in Statistics: Theory and Methods 7 1978 13 26
    • (1978) Communications in Statistics: Theory and Methods , vol.7 , pp. 13-26
    • Sugiura, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.