-
1
-
-
0034872552
-
Sequential ordinal modeling with applications to survival data
-
Albert, J. H. and Chib, S. (2001) Sequential ordinal modeling with applications to survival data. Biometrics, 57, 829-836.
-
(2001)
Biometrics
, vol.57
, pp. 829-836
-
-
Albert, J.H.1
Chib, S.2
-
2
-
-
0024586199
-
Ordinal regression models for epidemiologic data
-
Armstrong, B. and Sloan, M. (1989) Ordinal regression models for epidemiologic data. Am. J. Epidem., 129, 191-204.
-
(1989)
Am. J. Epidem.
, vol.129
, pp. 191-204
-
-
Armstrong, B.1
Sloan, M.2
-
3
-
-
0000203627
-
Additive isotonic models
-
Bacchetti, P. (1989) Additive isotonic models. J. Am. Statist. Ass., 84, 289-294.
-
(1989)
J. Am. Statist. Ass.
, vol.84
, pp. 289-294
-
-
Bacchetti, P.1
-
5
-
-
0346786584
-
Arcing classifiers
-
Breiman, L. (1998) Arcing classifiers. Ann. Statist., 26, 801-849.
-
(1998)
Ann. Statist.
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
6
-
-
0000275022
-
Prediction games and arcing algorithms
-
Breiman, L. (1999) Prediction games and arcing algorithms. Neur. Computn, 11, 1493-1517.
-
(1999)
Neur. Computn
, vol.11
, pp. 1493-1517
-
-
Breiman, L.1
-
7
-
-
0035478854
-
Random forests
-
Breiman, L. (2001) Random forests. Mach. Learn., 45, 5-32.
-
(2001)
Mach. Learn.
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
33745157294
-
Boosting for high-dimensional linear models
-
Bühlmann, P. (2006) Boosting for high-dimensional linear models. Ann. Statist., 34, 559-583.
-
(2006)
Ann. Statist.
, vol.34
, pp. 559-583
-
-
Bühlmann, P.1
-
9
-
-
41549141939
-
Boosting algorithms: regularization prediction and model fitting
-
Bühlmann, P. and Hothorn, T. (2007) Boosting algorithms: regularization prediction and model fitting. Statist. Sci., 22, 477-505.
-
(2007)
Statist. Sci.
, vol.22
, pp. 477-505
-
-
Bühlmann, P.1
Hothorn, T.2
-
10
-
-
0043245810
-
Boosting with the L2 loss: regression and classification
-
Bühlmann, P. and Yu, B. (2003) Boosting with the L2 loss: regression and classification. J. Am. Statist. Ass., 98, 324-339.
-
(2003)
J. Am. Statist. Ass.
, vol.98
, pp. 324-339
-
-
Bühlmann, P.1
Yu, B.2
-
12
-
-
4744367518
-
Development of ICF Core Sets for patients with chronic conditions
-
Cieza, A., Ewert, T., Üstün, T. B., Chatterji, S., Kostanjsek, N. and Stucki, G. (2004a) Development of ICF Core Sets for patients with chronic conditions. J. Rehabilitn Med., suppl., 44, 9-11.
-
(2004)
J. Rehabilitn Med.
, vol.44
, Issue.SUPPL.
, pp. 9-11
-
-
Cieza, A.1
Ewert, T.2
Üstün, T.B.3
Chatterji, S.4
Kostanjsek, N.5
Stucki, G.6
-
13
-
-
66749108888
-
ICF Core Sets for chronic widespread pain
-
Cieza, A., Stucki, G., Weigl, M., Kullmann, L., Stoll, T., Kamen, L., Kostanjsek, N. and Walsh, N. (2004b) ICF Core Sets for chronic widespread pain. J. Rehabilitn Med., suppl., 44, 63-68.
-
(2004)
J. Rehabilitn Med.
, vol.44
, Issue.SUPPL.
, pp. 63-68
-
-
Cieza, A.1
Stucki, G.2
Weigl, M.3
Kullmann, L.4
Stoll, T.5
Kamen, L.6
Kostanjsek, N.7
Walsh, N.8
-
14
-
-
0029021856
-
Location-scale cumulative odds models for ordinal data: a generalized non-linear model approach
-
Cox, C. (1995) Location-scale cumulative odds models for ordinal data: a generalized non-linear model approach. Statist. Med., 14, 1191-1203.
-
(1995)
Statist. Med.
, vol.14
, pp. 1191-1203
-
-
Cox, C.1
-
15
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan, J. and Li, R. (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Ass., 96, 1348-1360.
-
(2001)
J. Am. Statist. Ass.
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
16
-
-
0002978642
-
Experiments with a new boosting algorithm
-
In - San Francisco: Morgan Kaufmann.
-
Freund, Y. and Schapire, R. E. (1996) Experiments with a new boosting algorithm. In Proc. 13th Int. Conf. Machine Learning, pp. 148-156. San Francisco: Morgan Kaufmann.
-
(1996)
Proc. 13th Int. Conf. Machine Learning
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.E.2
-
17
-
-
0034164230
-
Additive logistic regression: a statistical view of boosting
-
Friedman, J. H., Hastie, T. and Tibshirani, R. (2000) Additive logistic regression: a statistical view of boosting. Ann. Statist., 28, 337-407.
-
(2000)
Ann. Statist.
, vol.28
, pp. 337-407
-
-
Friedman, J.H.1
Hastie, T.2
Tibshirani, R.3
-
18
-
-
77349114693
-
Penalized regression with ordinal predictors
-
Gertheiss, J. and Tutz, G. (2009) Penalized regression with ordinal predictors. Int. Statist. Rev., 77, 345-365.
-
(2009)
Int. Statist. Rev.
, vol.77
, pp. 345-365
-
-
Gertheiss, J.1
Tutz, G.2
-
19
-
-
84859813876
-
Sparse modeling of categorial explanatory variables
-
to be published
-
Gertheiss, J. and Tutz, G. (2010) Sparse modeling of categorial explanatory variables. Ann. Appl. Statist., to be published,.
-
(2010)
Ann. Appl. Statist.
-
-
Gertheiss, J.1
Tutz, G.2
-
21
-
-
79954609620
-
A framework for unbiased model selection based on boosting
-
to be published.
-
Hofner, B., Hothorn, T., Kneib, T. and Schmid, M. (2009) A framework for unbiased model selection based on boosting. J. Computnl Graph. Statist., to be published.
-
(2009)
J. Computnl Graph. Statist.
-
-
Hofner, B.1
Hothorn, T.2
Kneib, T.3
Schmid, M.4
-
23
-
-
79954597628
-
mboost: model-based boosting
-
Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M. and Hofner, B. (2010) mboost: model-based boosting. R Package Version 2.0-6.
-
(2010)
R Package Version 2.0-6
-
-
Hothorn, T.1
Bühlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
24
-
-
33749677657
-
Unbiased recursive partitioning: a conditional inference framework
-
Hothorn, T., Hornik, K. and Zeileis, A. (2006) Unbiased recursive partitioning: a conditional inference framework. J. Computnl Graph. Statist., 15, 651-674.
-
(2006)
J. Computnl Graph. Statist.
, vol.15
, pp. 651-674
-
-
Hothorn, T.1
Hornik, K.2
Zeileis, A.3
-
25
-
-
0001354983
-
Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion
-
Hurvich, C. M., Simonoff, J. S. and Tsai, C.-L. (1998) Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. R. Statist. Soc. B, 60, 271-293.
-
(1998)
J. R. Statist. Soc. B
, vol.60
, pp. 271-293
-
-
Hurvich, C.M.1
Simonoff, J.S.2
Tsai, C.-L.3
-
26
-
-
11244352554
-
kernlab-an S4 package for kernel methods in R
-
no. 9
-
Karatzoglou, A., Smola, A., Hornik, K. and Zeileis, A. (2004) kernlab-an S4 package for kernel methods in R. J. Statist. Softwr., 11, no. 9, 1-20.
-
(2004)
J. Statist. Softwr.
, vol.11
, pp. 1-20
-
-
Karatzoglou, A.1
Smola, A.2
Hornik, K.3
Zeileis, A.4
-
27
-
-
0035285349
-
Analyzing incomplete political science data: an alternative algorithm for multiple imputation
-
King, G., Honaker, J., Joseph, A. and Scheve, K. (2001) Analyzing incomplete political science data: an alternative algorithm for multiple imputation. Am. Polit. Sci. Rev., 95, 49-69.
-
(2001)
Am. Polit. Sci. Rev.
, vol.95
, pp. 49-69
-
-
King, G.1
Honaker, J.2
Joseph, A.3
Scheve, K.4
-
28
-
-
34648835120
-
Generalized monotonic regression based on B-splines with an application to air pollution data
-
Leitenstorfer, F. and Tutz, G. (2007) Generalized monotonic regression based on B-splines with an application to air pollution data. Biostatistics, 8, 654-673.
-
(2007)
Biostatistics
, vol.8
, pp. 654-673
-
-
Leitenstorfer, F.1
Tutz, G.2
-
29
-
-
22544479106
-
The analysis of ordinal categorical data: an overview and a survey of recent developments
-
Liu, Q. and Agresti, A. (2005) The analysis of ordinal categorical data: an overview and a survey of recent developments. Test, 14, 1-73.
-
(2005)
Test
, vol.14
, pp. 1-73
-
-
Liu, Q.1
Agresti, A.2
-
30
-
-
37249033229
-
Group additive regression models for genomic data analysis
-
Luan, Y. and Li, H. (2008) Group additive regression models for genomic data analysis. Biostatistics, 9, 100-113.
-
(2008)
Biostatistics
, vol.9
, pp. 100-113
-
-
Luan, Y.1
Li, H.2
-
31
-
-
0001306637
-
Regression models for ordinal data (with discussion)
-
McCullagh, P. (1980) Regression models for ordinal data (with discussion). J. R. Statist. Soc. B, 42, 109-142.
-
(1980)
J. R. Statist. Soc. B
, vol.42
, pp. 109-142
-
-
McCullagh, P.1
-
32
-
-
0027569430
-
The MOS 36-item short-form health survey (SF-36): II, psychometric and clinical tests of validity in measuring physical and mental health constructs
-
McHorney, C. A., Ware, J. E. and Raczek, A. E. (1993) The MOS 36-item short-form health survey (SF-36): II, psychometric and clinical tests of validity in measuring physical and mental health constructs. Med. Care, 31, 247-263.
-
(1993)
Med. Care
, vol.31
, pp. 247-263
-
-
McHorney, C.A.1
Ware, J.E.2
Raczek, A.E.3
-
33
-
-
37849035696
-
The group lasso for logistic regression
-
Meier, L., van de Geer, S. and Bühlmann, P. (2008) The group lasso for logistic regression. J. R. Statist. Soc. B, 70, 53-71.
-
(2008)
J. R. Statist. Soc. B
, vol.70
, pp. 53-71
-
-
Meier, L.1
van de Geer, S.2
Bühlmann, P.3
-
34
-
-
0001395585
-
Partial proportional odds models for ordinal response variables
-
Peterson, B. and Harrell, F. E. (1990) Partial proportional odds models for ordinal response variables. Appl. Statist., 39, 205-217.
-
(1990)
Appl. Statist.
, vol.39
, pp. 205-217
-
-
Peterson, B.1
Harrell, F.E.2
-
35
-
-
70149113077
-
-
R Development Core Team Vienna: R Foundation for Statistical Computing.
-
R Development Core Team (2009) R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
-
(2009)
R: a Language and Environment for Statistical Computing
-
-
-
36
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R. E. (1990) The strength of weak learnability. Mach. Learn., 5, 197-227.
-
(1990)
Mach. Learn.
, vol.5
, pp. 197-227
-
-
Schapire, R.E.1
-
37
-
-
34548232392
-
Input selection and shrinkage in multiresponse linear regression. Computnl Statist
-
Similä, T. and Tikka, J. (2007) Input selection and shrinkage in multiresponse linear regression. Computnl Statist. Data Anal., 52, 406-422.
-
(2007)
Data Anal.
, vol.52
, pp. 406-422
-
-
Similä, T.1
Tikka, J.2
-
38
-
-
16644370969
-
Applying the ICF in medicine
-
Stucki, G. and Grimby, G. (2004) Applying the ICF in medicine. J. Rehabilitn Med., suppl., 44, 5-6.
-
(2004)
J. Rehabilitn Med.
, vol.44
, Issue.SUPPL.
, pp. 5-6
-
-
Stucki, G.1
Grimby, G.2
-
39
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267-288.
-
(1996)
J. R. Statist. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
40
-
-
12844266177
-
Sparsity and smoothness via the fused lasso
-
Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Kneight, K. (2005) Sparsity and smoothness via the fused lasso. J. R. Statist. Soc. B, 67, 91-108.
-
(2005)
J. R. Statist. Soc. B
, vol.67
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Kneight, K.5
-
41
-
-
84907506916
-
quadprog: functions to solve quadratic programming problems
-
Turlach, B. A. (2009) quadprog: functions to solve quadratic programming problems. R Package Version 1.4-12.
-
(2009)
R Package Version 1.4-12
-
-
Turlach, B.A.1
-
42
-
-
33845509035
-
Generalized additive modeling with implicit variable selection by likelihood-based boosting
-
Tutz, G. and Binder, H. (2006) Generalized additive modeling with implicit variable selection by likelihood-based boosting. Biometrics, 62, 961-971.
-
(2006)
Biometrics
, vol.62
, pp. 961-971
-
-
Tutz, G.1
Binder, H.2
-
43
-
-
77749280569
-
Feature extraction in signal regression: a boosting technique for functional data regression
-
Tutz, G. and Gertheiss, J. (2010) Feature extraction in signal regression: a boosting technique for functional data regression. J. Computnl Graph. Statist., 19, 154-174.
-
(2010)
J. Computnl Graph. Statist.
, vol.19
, pp. 154-174
-
-
Tutz, G.1
Gertheiss, J.2
-
45
-
-
0023154433
-
Coding ordinal independent variables in multiple regression analysis
-
Walter, S. D., Feinstein, A. R. and Wells, C. K. (1987) Coding ordinal independent variables in multiple regression analysis. Am. J. Epidem., 125, 319-323.
-
(1987)
Am. J. Epidem.
, vol.125
, pp. 319-323
-
-
Walter, S.D.1
Feinstein, A.R.2
Wells, C.K.3
-
47
-
-
0026877917
-
The MOS 36-item short-form health survey (SF-36): I, conceptual framework and item selection
-
Ware, J. E. and Sherbourne, C. (1992) The MOS 36-item short-form health survey (SF-36): I, conceptual framework and item selection. Med. Care, 30, 473-483.
-
(1992)
Med. Care
, vol.30
, pp. 473-483
-
-
Ware, J.E.1
Sherbourne, C.2
-
49
-
-
49749148013
-
Variable selection in penalized model-based clustering via regularization on grouped parameters
-
Xie, B., Pan, W. and Shen, X. (2008) Variable selection in penalized model-based clustering via regularization on grouped parameters. Biometrics, 64, 921-930.
-
(2008)
Biometrics
, vol.64
, pp. 921-930
-
-
Xie, B.1
Pan, W.2
Shen, X.3
-
50
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan, M. and Lin, Y. (2006) Model selection and estimation in regression with grouped variables. J. R. Statist. Soc. B, 68, 49-67.
-
(2006)
J. R. Statist. Soc. B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
51
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Statist. Soc. B, 67, 301-320.
-
(2005)
J. R. Statist. Soc. B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
|