-
2
-
-
0016794660
-
Partial likelihood
-
2-s2.0-0016794660
-
Cox D. R., Partial likelihood. Biometrika 1975 62 2 269 276 2-s2.0-0016794660
-
(1975)
Biometrika
, vol.62
, Issue.2
, pp. 269-276
-
-
Cox, D.R.1
-
3
-
-
0001646484
-
Cox's regression model for counting processes: A large sample study
-
10.1214/aos/1176345976
-
Andersen P. K., Gill R. D., Cox's regression model for counting processes: a large sample study. The Annals of Statistics 1982 10 4 1100 1120 10.1214/aos/1176345976
-
(1982)
The Annals of Statistics
, vol.10
, Issue.4
, pp. 1100-1120
-
-
Andersen, P.K.1
Gill, R.D.2
-
5
-
-
0028855843
-
A neural network model for survival data
-
2-s2.0-0028855843
-
Faraggi D., Simon R., A neural network model for survival data. Statistics in Medicine 1995 14 1 73 82 2-s2.0-0028855843
-
(1995)
Statistics in Medicine
, vol.14
, Issue.1
, pp. 73-82
-
-
Faraggi, D.1
Simon, R.2
-
6
-
-
8244219678
-
Prognostic factors for metachronous contralateral breast cancer: A comparison of the linear Cox regression model and its artificial neural network extension
-
DOI 10.1023/A:1005765403093
-
Mariani L., Coradini D., Biganzoli E., Boracchi P., Marubini E., Pilotti S., Salvadori B., Silvestrini R., Veronesi U., Zucali R., Rilke F., Prognostic factors for metachronous contralateral breast cancer: a comparison of the linear Cox regression model and its artificial neural network extension. Breast Cancer Research and Treatment 1997 44 2 167 178 2-s2.0-8244219678 10.1023/A: 1005765403093 (Pubitemid 27248465)
-
(1997)
Breast Cancer Research and Treatment
, vol.44
, Issue.2
, pp. 167-178
-
-
Mariani, L.1
Coradini, D.2
Biganzoli, E.3
Boracchi, P.4
Marubini, E.5
Pilotti, S.6
Salvadori, B.7
Silvestrini, R.8
Veronesi, U.9
Zucali, R.10
Rilke, F.11
-
8
-
-
1442350707
-
Non-linear survival analysis using neural networks
-
DOI 10.1002/sim.1655
-
Ripley R. M., Harris A. L., Tarassenko L., Non-linear survival analysis using neural networks. Statistics in Medicine 2004 23 5 825 842 2-s2.0-1442350707 10.1002/sim.1655 (Pubitemid 38279515)
-
(2004)
Statistics in Medicine
, vol.23
, Issue.5
, pp. 825-842
-
-
Ripley, R.M.1
Harris, A.L.2
Tarassenko, L.3
-
9
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman J. H., Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001 29 5 1189 1232 2-s2.0-0035470889 (Pubitemid 33405972)
-
(2001)
Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
10
-
-
0037186544
-
Stochastic gradient boosting
-
DOI 10.1016/S0167-9473(01)00065-2, PII S0167947301000652
-
Friedman J. H., Stochastic gradient boosting. Computational Statistics and Data Analysis 2002 38 4 367 378 2-s2.0-0037186544 10.1016/S0167-9473(01) 00065-2 (Pubitemid 34197167)
-
(2002)
Computational Statistics and Data Analysis
, vol.38
, Issue.4
, pp. 367-378
-
-
Friedman, J.H.1
-
13
-
-
49749098490
-
-
Proceedings of the 7th IEEE International Conference on Data Mining (ICDM '07) October 2007 2-s2.0-49749098490 10.1109/ICDM.2007.93
-
Shivaswamy P. K., Chu W., Jansche M., A support vector approach to censored targets. Proceedings of the 7th IEEE International Conference on Data Mining (ICDM '07) October 2007 655 660 2-s2.0-49749098490 10.1109/ICDM.2007.93
-
A Support Vector Approach to Censored Targets
, pp. 655-660
-
-
Shivaswamy, P.K.1
Chu, W.2
Jansche, M.3
-
14
-
-
80052431188
-
Support vector methods for survival analysis: A comparison between ranking and regression approaches
-
2-s2.0-80052431188 10.1016/j.artmed.2011.06.006
-
van Belle V., Pelckmans K., van Huffel S., Suykens J. A. K., Support vector methods for survival analysis: a comparison between ranking and regression approaches. Artificial Intelligence in Medicine 2011 53 2 107 118 2-s2.0-80052431188 10.1016/j.artmed.2011.06.006
-
(2011)
Artificial Intelligence in Medicine
, vol.53
, Issue.2
, pp. 107-118
-
-
Van Belle, V.1
Pelckmans, K.2
Van Huffel, S.3
Suykens, J.A.K.4
-
15
-
-
33644890436
-
Sparse bayesian kernel survival analysis for modeling the growth domain of microbial pathogens
-
DOI 10.1109/TNN.2005.863452
-
Cawley G. C., Talbot N. L. C., Janacek G. J., Peck M. W., Sparse bayesian kernel survival analysis for modeling the growth domain of microbial pathogens. IEEE Transactions on Neural Networks 2006 17 2 471 481 2-s2.0-33644890436 10.1109/TNN.2005.863452 (Pubitemid 43380068)
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.2
, pp. 471-481
-
-
Cawley, G.C.1
Talbot, N.L.C.2
Janacek, G.J.3
Peck, M.W.4
-
16
-
-
47049127967
-
Sparse kernel methods for high-dimensional survival data
-
DOI 10.1093/bioinformatics/btn253
-
Evers L., Messow C.-M., Sparse kernel methods for high-dimensional survival data. Bioinformatics 2008 24 14 1632 1638 2-s2.0-47049127967 10.1093/bioinformatics/btn253 (Pubitemid 351966163)
-
(2008)
Bioinformatics
, vol.24
, Issue.14
, pp. 1632-1638
-
-
Evers, L.1
Messow, C.-M.2
-
17
-
-
33745466826
-
Survival ensembles
-
DOI 10.1093/biostatistics/kxj011
-
Hothorn T., Bühlmann P., Dudoit S., Molinaro A., van der Laan M. J., Survival ensembles. Biostatistics 2006 7 3 355 373 2-s2.0-33745466826 10.1093/biostatistics/kxj011 (Pubitemid 43955046)
-
(2006)
Biostatistics
, vol.7
, Issue.3
, pp. 355-373
-
-
Hothorn, T.1
Buhlmann, P.2
Dudoit, S.3
Molinaro, A.4
Van Der Laan, M.J.5
-
18
-
-
57449111248
-
Random survival forests
-
Ishwaran H., Kogalur U. B., Blackstone E. H., Lauer M. S., Random survival forests. The Annals of Applied Statistics 2008 2 3 841 860
-
(2008)
The Annals of Applied Statistics
, vol.2
, Issue.3
, pp. 841-860
-
-
Ishwaran, H.1
Kogalur, U.B.2
Blackstone, E.H.3
Lauer, M.S.4
-
19
-
-
84944363874
-
Evaluating the yield of medical tests
-
DOI 10.1001/jama.247.18.2543
-
Harrell F. E. Jr., Califf R. M., Pryor D. B., Lee K. L., Rosati R. A., Evaluating the yield of medical tests. Journal of the American Medical Association 1982 247 18 2543 2546 2-s2.0-0020076740 10.1001/jama.247.18.2543 (Pubitemid 12155954)
-
(1982)
Journal of the American Medical Association
, vol.247
, Issue.18
, pp. 2543-2546
-
-
Harrell Jr., F.E.1
Califf, R.M.2
Pryor, D.B.3
-
20
-
-
0030069896
-
Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
-
DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2- 4
-
Harrell F. E., Lee K. L., Mark D. B., Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 1996 15 4 361 387 (Pubitemid 26072233)
-
(1996)
Statistics in Medicine
, vol.15
, Issue.4
, pp. 361-387
-
-
Harrell Jr., F.E.1
Lee, K.L.2
Mark, D.B.3
-
22
-
-
85162057713
-
On ranking in survival analysis: Bounds on the concordance index
-
Cambridge, Mass, USA The MIT Press
-
Raykar V. C., Steck H., Krishnapuram B., Dehing-Oberije C., Lambin P., Platt J. C., Koller D., Singer Y., Roweis S., On ranking in survival analysis: bounds on the concordance index. Advances in Neural Information Processing Systems 20 2008 Cambridge, Mass, USA The MIT Press 1209 1216
-
(2008)
Advances in Neural Information Processing Systems 20
, pp. 1209-1216
-
-
Raykar, V.C.1
Steck, H.2
Krishnapuram, B.3
Dehing-Oberije, C.4
Lambin, P.5
Platt, J.C.6
Koller, D.7
Singer, Y.8
Roweis, S.9
-
23
-
-
77956220482
-
-
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining July 2010 ACM 2-s2.0-77956220482 10.1145/1835804. 1835830
-
Khosla A., Cao Y., Lin C. C.-Y., Chiu H.-K., Hu J., Lee H., An integrated machine learning approach to stroke prediction. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining July 2010 ACM 183 191 2-s2.0-77956220482 10.1145/1835804.1835830
-
An Integrated Machine Learning Approach to Stroke Prediction
, pp. 183-191
-
-
Khosla, A.1
Cao, Y.2
Lin, C.C.-Y.3
Chiu, H.-K.4
Hu, J.5
Lee, H.6
-
27
-
-
0003684449
-
-
New York, NY, USA Springer
-
Friedman J., Hastie T., Tibshirani R., The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2009 New York, NY, USA Springer
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
28
-
-
84861527388
-
The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
-
Curtis C., Shah S. P., Chin S. F., Turashvili G., Rueda O. M., Dunning M. J., Speed D., Lynch A. G., Samarajiwa S., Yuan Y., The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012 486 7403 346 352
-
(2012)
Nature
, vol.486
, Issue.7403
, pp. 346-352
-
-
Curtis, C.1
Shah, S.P.2
Chin, S.F.3
Turashvili, G.4
Rueda, O.M.5
Dunning, M.J.6
Speed, D.7
Lynch, A.G.8
Samarajiwa, S.9
Yuan, Y.10
-
29
-
-
84877765675
-
Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer
-
Margolin A. A., Bilal E., Huang E., Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer. Science Translational Medicine 2013 5 181 181re1 181re1
-
(2013)
Science Translational Medicine
, vol.5
, Issue.181
-
-
Margolin, A.A.1
Bilal, E.2
Huang, E.3
-
32
-
-
0343081009
-
Machine learning for survival analysis: A case study on recurrence of prostate cancer
-
DOI 10.1016/S0933-3657(00)00053-1, PII S0933365700000531
-
Zupan B., Demšar J., Kattan M. W., Beck J. R., Bratko I., Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artificial Intelligence in Medicine 2000 20 1 59 75 2-s2.0-0343081009 10.1016/S0933-3657(00)00053-1 (Pubitemid 30645575)
-
(2000)
Artificial Intelligence in Medicine
, vol.20
, Issue.1
, pp. 59-75
-
-
Zupan, B.1
Demsar, J.2
Kattan, M.W.3
Beck, J.R.4
Bratko, I.5
-
33
-
-
0242608650
-
Comparison of Cox regression with other methods for determining prediction models and nomograms
-
DOI 10.1097/01.ju.0000094764.56269.2d
-
Kattan M. W., Comparison of Cox regression with other methods for determining prediction models and nomograms. The Journal of Urology 2003 170 6 S6 S10 2-s2.0-0242608650 10.1097/01.ju.0000094764.56269.2d (Pubitemid 37413936)
-
(2003)
Journal of Urology
, vol.170
, Issue.6
-
-
Kattan, M.W.1
Kantoff, P.W.2
Kattan, M.3
Nelson, J.B.4
Carroll, P.R.5
Roach III, M.6
Higano, C.S.7
-
34
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
2-s2.0-4644367942 10.1162/1532443041827916
-
Freund Y., Iyer R., Schapire R. E., Singer Y., An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research 2004 4 6 933 969 2-s2.0-4644367942 10.1162/1532443041827916
-
(2004)
Journal of Machine Learning Research
, vol.4
, Issue.6
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
35
-
-
84858024638
-
Learning to rank using an ensemble of lambda-gradient models
-
Burges C. J. C., Svore K. M., Bennett P. N., Pastusiak A., Wu Q., Learning to rank using an ensemble of lambda-gradient models. Journal of Machine Learning Research 2011 14 25 35
-
(2011)
Journal of Machine Learning Research
, vol.14
, pp. 25-35
-
-
Burges, C.J.C.1
Svore, K.M.2
Bennett, P.N.3
Pastusiak, A.4
Wu, Q.5
|