메뉴 건너뛰기




Volumn 2013, Issue , 2013, Pages

A gradient boosting algorithm for survival analysis via direct optimization of concordance index

Author keywords

[No Author keywords available]

Indexed keywords

LARGE DATASET; RISK PERCEPTION;

EID: 84890101314     PISSN: 1748670X     EISSN: 17486718     Source Type: Journal    
DOI: 10.1155/2013/873595     Document Type: Article
Times cited : (103)

References (35)
  • 2
    • 0016794660 scopus 로고
    • Partial likelihood
    • 2-s2.0-0016794660
    • Cox D. R., Partial likelihood. Biometrika 1975 62 2 269 276 2-s2.0-0016794660
    • (1975) Biometrika , vol.62 , Issue.2 , pp. 269-276
    • Cox, D.R.1
  • 3
    • 0001646484 scopus 로고
    • Cox's regression model for counting processes: A large sample study
    • 10.1214/aos/1176345976
    • Andersen P. K., Gill R. D., Cox's regression model for counting processes: a large sample study. The Annals of Statistics 1982 10 4 1100 1120 10.1214/aos/1176345976
    • (1982) The Annals of Statistics , vol.10 , Issue.4 , pp. 1100-1120
    • Andersen, P.K.1    Gill, R.D.2
  • 5
    • 0028855843 scopus 로고
    • A neural network model for survival data
    • 2-s2.0-0028855843
    • Faraggi D., Simon R., A neural network model for survival data. Statistics in Medicine 1995 14 1 73 82 2-s2.0-0028855843
    • (1995) Statistics in Medicine , vol.14 , Issue.1 , pp. 73-82
    • Faraggi, D.1    Simon, R.2
  • 7
    • 0032261833 scopus 로고    scopus 로고
    • Neural Network Models for Breast Cancer Prognosis
    • Ripley R. M., Harris A. L., Tarassenko L., Neural network models for breast cancer prognosis. Neural Computing and Applications 1998 7 4 367 375 2-s2.0-0032261833 (Pubitemid 128450147)
    • (1998) Neural Computing and Applications , vol.7 , Issue.4 , pp. 367-375
    • Ripley, R.M.1    Harris, A.L.2    Tarassenko, L.3
  • 8
    • 1442350707 scopus 로고    scopus 로고
    • Non-linear survival analysis using neural networks
    • DOI 10.1002/sim.1655
    • Ripley R. M., Harris A. L., Tarassenko L., Non-linear survival analysis using neural networks. Statistics in Medicine 2004 23 5 825 842 2-s2.0-1442350707 10.1002/sim.1655 (Pubitemid 38279515)
    • (2004) Statistics in Medicine , vol.23 , Issue.5 , pp. 825-842
    • Ripley, R.M.1    Harris, A.L.2    Tarassenko, L.3
  • 9
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman J. H., Greedy function approximation: a gradient boosting machine. Annals of Statistics 2001 29 5 1189 1232 2-s2.0-0035470889 (Pubitemid 33405972)
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 10
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • DOI 10.1016/S0167-9473(01)00065-2, PII S0167947301000652
    • Friedman J. H., Stochastic gradient boosting. Computational Statistics and Data Analysis 2002 38 4 367 378 2-s2.0-0037186544 10.1016/S0167-9473(01) 00065-2 (Pubitemid 34197167)
    • (2002) Computational Statistics and Data Analysis , vol.38 , Issue.4 , pp. 367-378
    • Friedman, J.H.1
  • 13
    • 49749098490 scopus 로고    scopus 로고
    • Proceedings of the 7th IEEE International Conference on Data Mining (ICDM '07) October 2007 2-s2.0-49749098490 10.1109/ICDM.2007.93
    • Shivaswamy P. K., Chu W., Jansche M., A support vector approach to censored targets. Proceedings of the 7th IEEE International Conference on Data Mining (ICDM '07) October 2007 655 660 2-s2.0-49749098490 10.1109/ICDM.2007.93
    • A Support Vector Approach to Censored Targets , pp. 655-660
    • Shivaswamy, P.K.1    Chu, W.2    Jansche, M.3
  • 14
    • 80052431188 scopus 로고    scopus 로고
    • Support vector methods for survival analysis: A comparison between ranking and regression approaches
    • 2-s2.0-80052431188 10.1016/j.artmed.2011.06.006
    • van Belle V., Pelckmans K., van Huffel S., Suykens J. A. K., Support vector methods for survival analysis: a comparison between ranking and regression approaches. Artificial Intelligence in Medicine 2011 53 2 107 118 2-s2.0-80052431188 10.1016/j.artmed.2011.06.006
    • (2011) Artificial Intelligence in Medicine , vol.53 , Issue.2 , pp. 107-118
    • Van Belle, V.1    Pelckmans, K.2    Van Huffel, S.3    Suykens, J.A.K.4
  • 15
    • 33644890436 scopus 로고    scopus 로고
    • Sparse bayesian kernel survival analysis for modeling the growth domain of microbial pathogens
    • DOI 10.1109/TNN.2005.863452
    • Cawley G. C., Talbot N. L. C., Janacek G. J., Peck M. W., Sparse bayesian kernel survival analysis for modeling the growth domain of microbial pathogens. IEEE Transactions on Neural Networks 2006 17 2 471 481 2-s2.0-33644890436 10.1109/TNN.2005.863452 (Pubitemid 43380068)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.2 , pp. 471-481
    • Cawley, G.C.1    Talbot, N.L.C.2    Janacek, G.J.3    Peck, M.W.4
  • 16
    • 47049127967 scopus 로고    scopus 로고
    • Sparse kernel methods for high-dimensional survival data
    • DOI 10.1093/bioinformatics/btn253
    • Evers L., Messow C.-M., Sparse kernel methods for high-dimensional survival data. Bioinformatics 2008 24 14 1632 1638 2-s2.0-47049127967 10.1093/bioinformatics/btn253 (Pubitemid 351966163)
    • (2008) Bioinformatics , vol.24 , Issue.14 , pp. 1632-1638
    • Evers, L.1    Messow, C.-M.2
  • 19
    • 84944363874 scopus 로고
    • Evaluating the yield of medical tests
    • DOI 10.1001/jama.247.18.2543
    • Harrell F. E. Jr., Califf R. M., Pryor D. B., Lee K. L., Rosati R. A., Evaluating the yield of medical tests. Journal of the American Medical Association 1982 247 18 2543 2546 2-s2.0-0020076740 10.1001/jama.247.18.2543 (Pubitemid 12155954)
    • (1982) Journal of the American Medical Association , vol.247 , Issue.18 , pp. 2543-2546
    • Harrell Jr., F.E.1    Califf, R.M.2    Pryor, D.B.3
  • 20
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2- 4
    • Harrell F. E., Lee K. L., Mark D. B., Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 1996 15 4 361 387 (Pubitemid 26072233)
    • (1996) Statistics in Medicine , vol.15 , Issue.4 , pp. 361-387
    • Harrell Jr., F.E.1    Lee, K.L.2    Mark, D.B.3
  • 21
    • 12244272666 scopus 로고    scopus 로고
    • Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining August 2004 ACM 2-s2.0-12244272666
    • Yan L., Verbel D., Saidi O., Predicting prostate cancer recurrence via maximizing the concordance index. Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining August 2004 ACM 479 485 2-s2.0-12244272666
    • Predicting Prostate Cancer Recurrence Via Maximizing the Concordance Index , pp. 479-485
    • Yan, L.1    Verbel, D.2    Saidi, O.3
  • 23
    • 77956220482 scopus 로고    scopus 로고
    • Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining July 2010 ACM 2-s2.0-77956220482 10.1145/1835804. 1835830
    • Khosla A., Cao Y., Lin C. C.-Y., Chiu H.-K., Hu J., Lee H., An integrated machine learning approach to stroke prediction. Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining July 2010 ACM 183 191 2-s2.0-77956220482 10.1145/1835804.1835830
    • An Integrated Machine Learning Approach to Stroke Prediction , pp. 183-191
    • Khosla, A.1    Cao, Y.2    Lin, C.C.-Y.3    Chiu, H.-K.4    Hu, J.5    Lee, H.6
  • 29
    • 84877765675 scopus 로고    scopus 로고
    • Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer
    • Margolin A. A., Bilal E., Huang E., Systematic analysis of challenge-driven improvements in molecular prognostic models for breast cancer. Science Translational Medicine 2013 5 181 181re1 181re1
    • (2013) Science Translational Medicine , vol.5 , Issue.181
    • Margolin, A.A.1    Bilal, E.2    Huang, E.3
  • 31
  • 32
    • 0343081009 scopus 로고    scopus 로고
    • Machine learning for survival analysis: A case study on recurrence of prostate cancer
    • DOI 10.1016/S0933-3657(00)00053-1, PII S0933365700000531
    • Zupan B., Demšar J., Kattan M. W., Beck J. R., Bratko I., Machine learning for survival analysis: a case study on recurrence of prostate cancer. Artificial Intelligence in Medicine 2000 20 1 59 75 2-s2.0-0343081009 10.1016/S0933-3657(00)00053-1 (Pubitemid 30645575)
    • (2000) Artificial Intelligence in Medicine , vol.20 , Issue.1 , pp. 59-75
    • Zupan, B.1    Demsar, J.2    Kattan, M.W.3    Beck, J.R.4    Bratko, I.5
  • 34
    • 4644367942 scopus 로고    scopus 로고
    • An efficient boosting algorithm for combining preferences
    • 2-s2.0-4644367942 10.1162/1532443041827916
    • Freund Y., Iyer R., Schapire R. E., Singer Y., An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research 2004 4 6 933 969 2-s2.0-4644367942 10.1162/1532443041827916
    • (2004) Journal of Machine Learning Research , vol.4 , Issue.6 , pp. 933-969
    • Freund, Y.1    Iyer, R.2    Schapire, R.E.3    Singer, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.