-
1
-
-
0001492549
-
Shape quantization and recognition with randomized trees
-
AMIT, Y. and GEMAN, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation 9 1545-1588.
-
(1997)
Neural Computation
, vol.9
, pp. 1545-1588
-
-
AMIT, Y.1
GEMAN, D.2
-
2
-
-
12444335763
-
Functional gradient descent for financial time series with an application to the measurement of market risk
-
AUDRINO, F. and BARONE-ADESI, G. (2005). Functional gradient descent for financial time series with an application to the measurement of market risk. J. Banking and Finance 29 959-977.
-
(2005)
J. Banking and Finance
, vol.29
, pp. 959-977
-
-
AUDRINO, F.1
BARONE-ADESI, G.2
-
3
-
-
15044365755
-
A multivariate FGD technique to improve VaR computation in equity markets
-
AUDRINO, F. and BARONE-ADESI, G. (2005). A multivariate FGD technique to improve VaR computation in equity markets. Comput. Management Sci. 2 87-106.
-
(2005)
Comput. Management Sci
, vol.2
, pp. 87-106
-
-
AUDRINO, F.1
BARONE-ADESI, G.2
-
4
-
-
12444268636
-
Volatility estimation with functional gradient descent for very highdimensional financial time series
-
AUDRINO, F. and BÜHLMANN, P. (2003). Volatility estimation with functional gradient descent for very highdimensional financial time series. J. Comput. Finance 6 65-89.
-
(2003)
J. Comput. Finance
, vol.6
, pp. 65-89
-
-
AUDRINO, F.1
BÜHLMANN, P.2
-
6
-
-
33645505792
-
Convexity, classification, and risk bounds
-
MR2268032
-
BARTLETT, P. L., JORDAN, M. and MCAULIFFE, J. (2006). Convexity, classification, and risk bounds. J. Amer. Statist. Assoc. 101 138-156. MR2268032
-
(2006)
J. Amer. Statist. Assoc
, vol.101
, pp. 138-156
-
-
BARTLETT, P.L.1
JORDAN, M.2
MCAULIFFE, J.3
-
8
-
-
49749108850
-
-
BENNER, A. (2002). Application of aggregated classifiers in survival time studies. In Proceedings in Computational Statistics (COMPSTAT) (W. Härdle and B. Rönz, eds.) 171-176. Physica-Verlag, Heidelberg. MR1973489
-
BENNER, A. (2002). Application of "aggregated classifiers" in survival time studies. In Proceedings in Computational Statistics (COMPSTAT) (W. Härdle and B. Rönz, eds.) 171-176. Physica-Verlag, Heidelberg. MR1973489
-
-
-
-
9
-
-
49749137829
-
-
BINDER, H, 2006, GAMBoost: Generalized additive models by likelihood based boosting. R package version 0.9-3. Available at
-
BINDER, H. (2006). GAMBoost: Generalized additive models by likelihood based boosting. R package version 0.9-3. Available at http://CRAN.R-project.org.
-
-
-
-
10
-
-
41549168778
-
Convergence rates of general regularization methods for statistical inverse problems and applications
-
BISSANTZ, N., HOHAGE, T., MUNK, A. and RUYMGAART, F. (2007). Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM J. Numer. Anal. 45 2610-2636.
-
(2007)
SIAM J. Numer. Anal
, vol.45
, pp. 2610-2636
-
-
BISSANTZ, N.1
HOHAGE, T.2
MUNK, A.3
RUYMGAART, F.4
-
12
-
-
3042675892
-
On the rate of convergence of regularized boosting classifiers
-
MR2076000
-
BLANCHARD, G., LUGOSI, G. and VAYATIS, N. (2003). On the rate of convergence of regularized boosting classifiers. J. Machine Learning Research 4 861-894. MR2076000
-
(2003)
J. Machine Learning Research
, vol.4
, pp. 861-894
-
-
BLANCHARD, G.1
LUGOSI, G.2
VAYATIS, N.3
-
13
-
-
84874257732
-
Better subset regression using the nonnegative garrote
-
MR1365720
-
BREIMAN, L. (1995). Better subset regression using the nonnegative garrote. Technometrics 37 373-384. MR1365720
-
(1995)
Technometrics
, vol.37
, pp. 373-384
-
-
BREIMAN, L.1
-
14
-
-
0030211964
-
Bagging predictors
-
BREIMAN, L. (1996). Bagging predictors. Machine Learning 24 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
BREIMAN, L.1
-
15
-
-
0346786584
-
Arcing classifiers (with discussion)
-
MR 1635406
-
BREIMAN, L. (1998). Arcing classifiers (with discussion). Ann. Statist. 26 801-849. MR 1635406
-
(1998)
Ann. Statist
, vol.26
, pp. 801-849
-
-
BREIMAN, L.1
-
16
-
-
0000275022
-
Prediction games and arcing algorithms
-
BREIMAN, L. (1999). Prediction games and arcing algorithms. Neural Computation 11 1493-1517.
-
(1999)
Neural Computation
, vol.11
, pp. 1493-1517
-
-
BREIMAN, L.1
-
17
-
-
0035478854
-
Random forests
-
BREIMAN, L. (2001). Random forests. Machine Learning 45 5-32.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
BREIMAN, L.1
-
18
-
-
33745157294
-
Boosting for high-dimensional linear models
-
MR2281878
-
BÜHLMANN, P. (2006). Boosting for high-dimensional linear models. Ann. Statist. 34 559-583. MR2281878
-
(2006)
Ann. Statist
, vol.34
, pp. 559-583
-
-
BÜHLMANN, P.1
-
19
-
-
49749131507
-
Twin boosting: Improved feature selection and prediction
-
Technical report, ETH Zürich. Available at
-
BÜHLMANN, P. (2007). Twin boosting: Improved feature selection and prediction. Technical report, ETH Zürich. Available at ftp://ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/ TwinBoosting1.pdf.
-
(2007)
-
-
BÜHLMANN, P.1
-
20
-
-
84967538586
-
-
BÜHLMANN, P. and LUTZ, R. (2006). Boosting algorithms: With an application to bootstrapping multivariate time series. In The Frontiers in Statistics (J. Fan and H. Koul, eds.) 209-230. Imperial College Press, London. MR2326003
-
BÜHLMANN, P. and LUTZ, R. (2006). Boosting algorithms: With an application to bootstrapping multivariate time series. In The Frontiers in Statistics (J. Fan and H. Koul, eds.) 209-230. Imperial College Press, London. MR2326003
-
-
-
-
21
-
-
49749150954
-
-
BÜHLMANN, P. and YU, B. (2000). Discussion on Additive logistic regression: A statistical view, by J. Friedman, T. Hastie and R. Tibshirani. Ann. Statist. 28 377-386.
-
BÜHLMANN, P. and YU, B. (2000). Discussion on "Additive logistic regression: A statistical view," by J. Friedman, T. Hastie and R. Tibshirani. Ann. Statist. 28 377-386.
-
-
-
-
22
-
-
0043245810
-
2 loss: Regression and classification
-
MR1995709
-
2 loss: Regression and classification. J. Amer. Statist. Assoc. 98 324-339. MR1995709
-
(2003)
J. Amer. Statist. Assoc
, vol.98
, pp. 324-339
-
-
BÜHLMANN, P.1
YU, B.2
-
24
-
-
49749125910
-
-
BUJA, A., STUETZLE, W. and SHEN, Y. (2005). Loss functions for binary class probability estimation: Structure and applications. Technical report, Univ. Washington. Available at http://www.stat.washington.edu/wxs/Learning-papers/paper-proper-scoring.pdf.
-
BUJA, A., STUETZLE, W. and SHEN, Y. (2005). Loss functions for binary class probability estimation: Structure and applications. Technical report, Univ. Washington. Available at http://www.stat.washington.edu/wxs/Learning-papers/paper-proper-scoring.pdf.
-
-
-
-
25
-
-
12344294601
-
BagBoosting for tumor classification with gene expression data
-
DETTLING, M. (2004). BagBoosting for tumor classification with gene expression data. Bioinformatics 20 3583-3593.
-
(2004)
Bioinformatics
, vol.20
, pp. 3583-3593
-
-
DETTLING, M.1
-
26
-
-
0038391397
-
Boosting for tumor classification with gene expression data
-
DETTLING, M. and BÜHLMANN, P. (2003). Boosting for tumor classification with gene expression data. Bioinformatics 19 1061-1069.
-
(2003)
Bioinformatics
, vol.19
, pp. 1061-1069
-
-
DETTLING, M.1
BÜHLMANN, P.2
-
28
-
-
3242708140
-
Least angle regression (with discussion)
-
MR2060166
-
EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R. (2004). Least angle regression (with discussion). Ann. Statist. 32 407-499. MR2060166
-
(2004)
Ann. Statist
, vol.32
, pp. 407-499
-
-
EFRON, B.1
HASTIE, T.2
JOHNSTONE, I.3
TIBSHIRANI, R.4
-
31
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
MR1473055
-
FREUND, Y and SCHAPIRE, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55 119-139. MR1473055
-
(1997)
J. Comput. System Sci
, vol.55
, pp. 119-139
-
-
FREUND, Y.1
SCHAPIRE, R.2
-
32
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
MR1873328
-
FRIEDMAN, J. (2001). Greedy function approximation: A gradient boosting machine. Ann. Statist. 29 1189-1232. MR1873328
-
(2001)
Ann. Statist
, vol.29
, pp. 1189-1232
-
-
FRIEDMAN, J.1
-
33
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting (with discussion)
-
MR1790002
-
FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). Ann. Statist. 28 337-407. MR1790002
-
(2000)
Ann. Statist
, vol.28
, pp. 337-407
-
-
FRIEDMAN, J.1
HASTIE, T.2
TIBSHIRANI, R.3
-
34
-
-
22844452347
-
Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths
-
GARCIA, A. L., WAGNER, K., HOTHORN, T., KOEBNICK, C., ZUNFT, H. J. and TRIPPO, U. (2005). Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths. Obesity Research 13 626-634.
-
(2005)
Obesity Research
, vol.13
, pp. 626-634
-
-
GARCIA, A.L.1
WAGNER, K.2
HOTHORN, T.3
KOEBNICK, C.4
ZUNFT, H.J.5
TRIPPO, U.6
-
35
-
-
28744458859
-
-
GENTLEMAN, R. C., CAREY, V. J., BATES, D. M., BOLSTAD, B., DETTLING, M., DUDOIT, S., ELLIS, B., GAUTIER, L., GE, Y., GENTRY, J., HORNIK, K., HOTHORN, T., HUBER, M., IACUS, S., IRIZARRY, R., LEISCH, F., LI, C., MÄCHLER, M., ROSSINI, A. J., SAWITZKI, G., SMITH, C., SMYTH, G., TIERNEY, L., YANG, J. Y. and ZHANG, J. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology 5 R80.
-
GENTLEMAN, R. C., CAREY, V. J., BATES, D. M., BOLSTAD, B., DETTLING, M., DUDOIT, S., ELLIS, B., GAUTIER, L., GE, Y., GENTRY, J., HORNIK, K., HOTHORN, T., HUBER, M., IACUS, S., IRIZARRY, R., LEISCH, F., LI, C., MÄCHLER, M., ROSSINI, A. J., SAWITZKI, G., SMITH, C., SMYTH, G., TIERNEY, L., YANG, J. Y. and ZHANG, J. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology 5 R80.
-
-
-
-
36
-
-
49749132273
-
-
GREEN, P. and SILVERMAN, B. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman and Hall, New York. MR1270012
-
GREEN, P. and SILVERMAN, B. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman and Hall, New York. MR1270012
-
-
-
-
37
-
-
31344454903
-
Persistence in high-dimensional predictor selection and the virtue of overparametrization
-
MR2108039
-
GREENSHTEIN, E. and RITOV, Y. (2004). Persistence in high-dimensional predictor selection and the virtue of overparametrization. Bernoulli 10 971-988. MR2108039
-
(2004)
Bernoulli
, vol.10
, pp. 971-988
-
-
GREENSHTEIN, E.1
RITOV, Y.2
-
38
-
-
0141879236
-
Model selection and minimum description length principle
-
MR 1939352
-
HANSEN, M. and YU, B. (2001). Model selection and minimum description length principle. J. Amer. Statist. Assoc. 96 746-774. MR 1939352
-
(2001)
J. Amer. Statist. Assoc
, vol.96
, pp. 746-774
-
-
HANSEN, M.1
YU, B.2
-
39
-
-
49749132762
-
-
HASTIE, T. and EFRON, B, 2004, Lars: Least angle regression, lasso and forward stagewise. R package version 0.9-7. Available at
-
HASTIE, T. and EFRON, B. (2004). Lars: Least angle regression, lasso and forward stagewise. R package version 0.9-7. Available at http://CRAN.R-project.org.
-
-
-
-
40
-
-
84972488102
-
Generalized additive models (with discussion)
-
MR0858512
-
HASTIE, T. and TIBSHIRANI, R. (1986). Generalized additive models (with discussion). Statist. Sci. 1 297-318. MR0858512
-
(1986)
Statist. Sci
, vol.1
, pp. 297-318
-
-
HASTIE, T.1
TIBSHIRANI, R.2
-
41
-
-
49749099204
-
-
HASTIE, T. and TIBSHIRANI, R. (1990). Generalized Additive Models. Chapman and Hall, London. MR1082147
-
HASTIE, T. and TIBSHIRANI, R. (1990). Generalized Additive Models. Chapman and Hall, London. MR1082147
-
-
-
-
42
-
-
49749106960
-
-
HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning; Data Mining, Inference and Prediction. Springer, New York. MR1851606
-
HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning; Data Mining, Inference and Prediction. Springer, New York. MR1851606
-
-
-
-
43
-
-
49749111964
-
-
HOTHORN, T. and BÜHLMANN, P, 2007, Mboost: Model-based boosting. R package version 0.5-8. Available at
-
HOTHORN, T. and BÜHLMANN, P. (2007). Mboost: Model-based boosting. R package version 0.5-8. Available at http://CRAN.R-project.org/.
-
-
-
-
44
-
-
33750397113
-
Model-based boosting in high dimensions
-
HOTHORN, T. and BÜHLMANN, P. (2006). Model-based boosting in high dimensions. Bioinformatics 22 2828-2829.
-
(2006)
Bioinformatics
, vol.22
, pp. 2828-2829
-
-
HOTHORN, T.1
BÜHLMANN, P.2
-
45
-
-
33745466826
-
Survival ensembles
-
HOTHORN, T., BÜHLMANN, P., DUDOIT, S., MOLINARO, A. and VAN DER LAAN, M. (2006). Survival ensembles. Biostatistics 7 355-373.
-
(2006)
Biostatistics
, vol.7
, pp. 355-373
-
-
HOTHORN, T.1
BÜHLMANN, P.2
DUDOIT, S.3
MOLINARO, A.4
VAN DER LAAN, M.5
-
46
-
-
49749127050
-
-
HOTHORN, T, HORNIK, K. and ZEILEIS, A, 2006, Party: A laboratory for recursive part(y)itioning. R package version 0.9-11. Available at
-
HOTHORN, T., HORNIK, K. and ZEILEIS, A. (2006). Party: A laboratory for recursive part(y)itioning. R package version 0.9-11. Available at http://CRAN.R-project.org/.
-
-
-
-
47
-
-
33749677657
-
Unbiased recursive partitioning: A conditional inference framework
-
MR2291267
-
HOTHORN, T., HORNIK, K. and ZEILEIS, A. (2006). Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Statist. 15 651-674. MR2291267
-
(2006)
J. Comput. Graph. Statist
, vol.15
, pp. 651-674
-
-
HOTHORN, T.1
HORNIK, K.2
ZEILEIS, A.3
-
48
-
-
51049096710
-
Adaptive Lasso for sparse high-dimensional regression
-
To appear
-
HUANG, J., MA, S. and ZHANG, C-H. (2008). Adaptive Lasso for sparse high-dimensional regression. Statist. Sinica. To appear.
-
(2008)
Statist. Sinica
-
-
HUANG, J.1
MA, S.2
ZHANG, C.-H.3
-
49
-
-
0001354983
-
Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion
-
MR1616041
-
HURVICH, C., SIMONOFF, J. and TSAI, C.-L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. Roy. Statist. Soc. Ser. B 60 271-293. MR1616041
-
(1998)
J. Roy. Statist. Soc. Ser. B
, vol.60
, pp. 271-293
-
-
HURVICH, C.1
SIMONOFF, J.2
TSAI, C.-L.3
-
50
-
-
0002771295
-
Boosting for document routing
-
A. Agah, J. Callan and E. Rundensteiner, eds, ACM Press, New York
-
IYER, R., LEWIS, D., SCHAPIRE, R., SINGER, Y and SINGHAL, A. (2000). Boosting for document routing. In Proceedings of CIKM-00, 9th ACM Int. Conf on Information and Knowledge Management (A. Agah, J. Callan and E. Rundensteiner, eds.). ACM Press, New York.
-
(2000)
Proceedings of CIKM-00, 9th ACM Int. Conf on Information and Knowledge Management
-
-
IYER, R.1
LEWIS, D.2
SCHAPIRE, R.3
SINGER, Y.4
SINGHAL, A.5
-
51
-
-
49749091617
-
Process consistency for AdaBoost (with discussion)
-
MR2050999
-
JIANG, W. (2004). Process consistency for AdaBoost (with discussion). Ann. Statist. 32 13-29, 85-134. MR2050999
-
(2004)
Ann. Statist
, vol.32
, Issue.13-29
, pp. 85-134
-
-
JIANG, W.1
-
52
-
-
0028324717
-
Cryptographic limitations on learning Boolean formulae and finite automata
-
MR1369194
-
KEARNS, M. and VALIANT, L. (1994). Cryptographic limitations on learning Boolean formulae and finite automata. J. Assoc. Comput. Machinery 41 67-95. MR1369194
-
(1994)
J. Assoc. Comput. Machinery
, vol.41
, pp. 67-95
-
-
KEARNS, M.1
VALIANT, L.2
-
53
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
MR1892654
-
KOLTCHINSKII, V. and PANCHENKO, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. Statist. 30 1-50. MR1892654
-
(2002)
Ann. Statist
, vol.30
, pp. 1-50
-
-
KOLTCHINSKII, V.1
PANCHENKO, D.2
-
54
-
-
49749088862
-
Smoothing with curvature constraints based on boosting techniques
-
A. Rizzi and M. Vichi, eds, Physica-Verlag, Heidelberg
-
LEITENSTORFER, F. and TUTZ, G. (2006). Smoothing with curvature constraints based on boosting techniques. In Proceedings in Computational Statistics (COMPSTAT) (A. Rizzi and M. Vichi, eds.). Physica-Verlag, Heidelberg.
-
(2006)
Proceedings in Computational Statistics (COMPSTAT)
-
-
LEITENSTORFER, F.1
TUTZ, G.2
-
55
-
-
34648835120
-
Generalized monotonie regression based on B-splines with an application to air pollution data
-
LEITENSTORFER, F. and TUTZ, G. (2007). Generalized monotonie regression based on B-splines with an application to air pollution data. Biostatistics 8 654-673.
-
(2007)
Biostatistics
, vol.8
, pp. 654-673
-
-
LEITENSTORFER, F.1
TUTZ, G.2
-
57
-
-
33750691840
-
Convergence and consistency of regularized boosting algorithms with stationary ß-mixing observations
-
Y. Weiss, B. Schölkopf and J. Platt, eds, MIT Press
-
LOZANO, A., KULKARNI, S. and SCHAPIRE, R. (2006). Convergence and consistency of regularized boosting algorithms with stationary ß-mixing observations. In Advances in Neural Information Processing Systems (Y. Weiss, B. Schölkopf and J. Platt, eds.) 18. MIT Press.
-
(2006)
Advances in Neural Information Processing Systems
, pp. 18
-
-
LOZANO, A.1
KULKARNI, S.2
SCHAPIRE, R.3
-
58
-
-
9444269961
-
On the Bayes-risk consistency of regularized boosting methods (with discussion)
-
MR2051000
-
LUGOSI, G. and VAYATIS, N. (2004). On the Bayes-risk consistency of regularized boosting methods (with discussion). Ann. Statist. 32 30-55, 85-134. MR2051000
-
(2004)
Ann. Statist
, vol.32
, Issue.30-55
, pp. 85-134
-
-
LUGOSI, G.1
VAYATIS, N.2
-
59
-
-
33746152094
-
Boosting for highmultivariate responses in high-dimensional linear regression
-
MR2267246
-
LUTZ, R. and BÜHLMANN, P. (2006). Boosting for highmultivariate responses in high-dimensional linear regression. Statist. Sinica 16 471-494. MR2267246
-
(2006)
Statist. Sinica
, vol.16
, pp. 471-494
-
-
LUTZ, R.1
BÜHLMANN, P.2
-
61
-
-
2542488393
-
Greedy algorithms for classification-consistency, convergence rates, and adaptivity
-
MR2072266
-
MANNOR, S., MEIR, R. and ZHANG, T. (2003). Greedy algorithms for classification-consistency, convergence rates, and adaptivity. J. Machine Learning Research 4 713-741. MR2072266
-
(2003)
J. Machine Learning Research
, vol.4
, pp. 713-741
-
-
MANNOR, S.1
MEIR, R.2
ZHANG, T.3
-
62
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
A. Smola, P. Bartlett, B. Schölkopf and D. Schuurmans, eds, MIT Press, Cambridge
-
MASON, L., BAXTER, J., BARTLETT, P. and FREAN, M. (2000). Functional gradient techniques for combining hypotheses. In Advances in Large Margin Classifiers (A. Smola, P. Bartlett, B. Schölkopf and D. Schuurmans, eds.) 221-246. MIT Press, Cambridge.
-
(2000)
Advances in Large Margin Classifiers
, pp. 221-246
-
-
MASON, L.1
BAXTER, J.2
BARTLETT, P.3
FREAN, M.4
-
63
-
-
10844272276
-
Propensity score estimation with boosted regression for evaluating causal effects in observational studies
-
MCCAFFREY, D. F., RIDGEWAY, G. and MORRAL, A. R. G. (2004). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 9 403-425.
-
(2004)
Psychological Methods
, vol.9
, pp. 403-425
-
-
MCCAFFREY, D.F.1
RIDGEWAY, G.2
MORRAL, A.R.G.3
-
64
-
-
33947284406
-
Cost-weighted boosting with jittering and over/under-sampling: JOUS-boost
-
MEASE, D., WYNER, A. and BUJA, A. (2007). Cost-weighted boosting with jittering and over/under-sampling: JOUS-boost. J. Machine Learning Research 8 409-439.
-
(2007)
J. Machine Learning Research
, vol.8
, pp. 409-439
-
-
MEASE, D.1
WYNER, A.2
BUJA, A.3
-
65
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
MR2278363
-
MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34 1436-1462. MR2278363
-
(2006)
Ann. Statist
, vol.34
, pp. 1436-1462
-
-
MEINSHAUSEN, N.1
BÜHLMANN, P.2
-
66
-
-
35248862907
-
An introduction to boosting and leveraging
-
S. Mendelson and A. Smola, eds, Springer, Berlin
-
MEIR, R. and RATSCH, G. (2003). An introduction to boosting and leveraging. In Advanced Lectures on Machine Learning (S. Mendelson and A. Smola, eds.). Springer, Berlin.
-
(2003)
Advanced Lectures on Machine Learning
-
-
MEIR, R.1
RATSCH, G.2
-
67
-
-
0034215549
-
A new approach to variable selection in least squares problems
-
MR1773265
-
OSBORNE, M., PRESNELL, B. and TURLACH, B. (2000). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389-403. MR1773265
-
(2000)
IMA J. Numer. Anal
, vol.20
, pp. 389-403
-
-
OSBORNE, M.1
PRESNELL, B.2
TURLACH, B.3
-
68
-
-
34547849507
-
An L1 regularizationpath algorithm, for generalized linear models
-
PARK, M.-Y and HASTIE, T. (2007). An L1 regularizationpath algorithm, for generalized linear models. J. Roy. Statist. Soe. Ser. B 69 659-677.
-
(2007)
J. Roy. Statist. Soe. Ser. B
, vol.69
, pp. 659-677
-
-
PARK, M.-Y.1
HASTIE, T.2
-
69
-
-
33748324384
-
-
R DEVELOPMENT CORE TEAM , Vienna, Austria. Available at
-
R DEVELOPMENT CORE TEAM (2006). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org.
-
(2006)
R: A language and environment for statistical computing
-
-
-
71
-
-
0008562342
-
The state of boosting
-
RIDGEWAY, G. (1999). The state of boosting. Comput. Sci. Statistics 31 172-181.
-
(1999)
Comput. Sci. Statistics
, vol.31
, pp. 172-181
-
-
RIDGEWAY, G.1
-
72
-
-
49749144847
-
-
RIDGEWAY, G. (2000). Discussion on Additive logistic regression: A statistical view of boosting, by J. Friedman, T. Hastie, R. Tibshirani. Ann. Statist. 28 393-400.
-
RIDGEWAY, G. (2000). Discussion on "Additive logistic regression: A statistical view of boosting," by J. Friedman, T. Hastie, R. Tibshirani. Ann. Statist. 28 393-400.
-
-
-
-
73
-
-
0037186537
-
Looking for lumps: Boosting and bagging for density estimation
-
MR1884870
-
RIDGEWAY, G. (2002). Looking for lumps: Boosting and bagging for density estimation. Comput. Statist. Data Anal. 38 379-392. MR1884870
-
(2002)
Comput. Statist. Data Anal
, vol.38
, pp. 379-392
-
-
RIDGEWAY, G.1
-
74
-
-
49749089272
-
-
RIDGEWAY, G, 2006, Gbm: Generalized boosted regression models. R package version 1.5-7. Available at
-
RIDGEWAY, G. (2006). Gbm: Generalized boosted regression models. R package version 1.5-7. Available at http://www.i-pensieri.com/gregr/gbm. shtml.
-
-
-
-
75
-
-
0025448521
-
The strength of weak learnability
-
S
-
SCHAPIRE, R. (1990). The strength of weak learnability. Machine Learning S 197-227.
-
(1990)
Machine Learning
, pp. 197-227
-
-
SCHAPIRE, R.1
-
76
-
-
49749083392
-
-
SCHAPIRE, R. (2002). The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification. Lecture Notes in Statist. 171 149-171. Springer, New York. MR2005788
-
SCHAPIRE, R. (2002). The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification. Lecture Notes in Statist. 171 149-171. Springer, New York. MR2005788
-
-
-
-
77
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
MR1673273
-
SCHAPIRE, R., FREUND, Y., BARTLETT, P. and LEE, W. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Statist. 26 1651-1686. MR1673273
-
(1998)
Ann. Statist
, vol.26
, pp. 1651-1686
-
-
SCHAPIRE, R.1
FREUND, Y.2
BARTLETT, P.3
LEE, W.4
-
78
-
-
0033905095
-
Boostexter: A boosting-based system for text categorization
-
SCHAPIRE, R. and SINGER, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine Learning 39 135-168.
-
(2000)
Machine Learning
, vol.39
, pp. 135-168
-
-
SCHAPIRE, R.1
SINGER, Y.2
-
79
-
-
49749141573
-
-
SOUTHWELL, R. (1946). Relaxation Methods in Theoretical Physics. Oxford, at the Clarendon Press. MR0018983
-
SOUTHWELL, R. (1946). Relaxation Methods in Theoretical Physics. Oxford, at the Clarendon Press. MR0018983
-
-
-
-
80
-
-
85043507102
-
An inductive learning approach to prognostic prediction
-
Morgan Kaufmann, San Francisco, CA
-
STREET, W. N., MANGASARIAN, O. L., and WOLBERG, W. H. (1995). An inductive learning approach to prognostic prediction. In Proceedings of the Twelfth International Conference on Machine Learning. Morgan Kaufmann, San Francisco, CA.
-
(1995)
Proceedings of the Twelfth International Conference on Machine Learning
-
-
STREET, W.N.1
MANGASARIAN, O.L.2
WOLBERG, W.H.3
-
81
-
-
22844454658
-
Weak greedy algorithms
-
MR1745113
-
TEMLYAKOV, V. (2000). Weak greedy algorithms. Adv. Comput. Math. 12 213-227. MR1745113
-
(2000)
Adv. Comput. Math
, vol.12
, pp. 213-227
-
-
TEMLYAKOV, V.1
-
82
-
-
0001287271
-
Regression shrinkage and selection via the Lasso
-
MR1379242
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soe. Ser. B 58 267-288. MR1379242
-
(1996)
J. Roy. Statist. Soe. Ser. B
, vol.58
, pp. 267-288
-
-
TIBSHIRANI, R.1
-
84
-
-
33845509035
-
Generalized additive modelling with implicit variable selection by likelihood based boosting
-
MR2297666
-
TUTZ, G. and BINDER, H. (2006). Generalized additive modelling with implicit variable selection by likelihood based boosting. Biometrics 62 961-971. MR2297666
-
(2006)
Biometrics
, vol.62
, pp. 961-971
-
-
TUTZ, G.1
BINDER, H.2
-
86
-
-
27844513324
-
Aggregating classifiers with ordinal response structure
-
MR2136546
-
TUTZ, G. and HECHENBICHLER, K. (2005). Aggregating classifiers with ordinal response structure. J. Statist. Comput. Simul. 75 391-408. MR2136546
-
(2005)
J. Statist. Comput. Simul
, vol.75
, pp. 391-408
-
-
TUTZ, G.1
HECHENBICHLER, K.2
-
87
-
-
34147202063
-
Generalized smooth monotonie regression in additive modelling
-
TUTZ, G. and LEITENSTORFER, F. (2007). Generalized smooth monotonie regression in additive modelling. J. Comput. Graph. Statist. 16 165-188.
-
(2007)
J. Comput. Graph. Statist
, vol.16
, pp. 165-188
-
-
TUTZ, G.1
LEITENSTORFER, F.2
-
88
-
-
34249879561
-
Flexible semiparametric mixed models
-
TUTZ, G. and REITHINGER, F. (2007). Flexible semiparametric mixed models. Statistics in Medicine 26 2872-2900.
-
(2007)
Statistics in Medicine
, vol.26
, pp. 2872-2900
-
-
TUTZ, G.1
REITHINGER, F.2
-
89
-
-
49749097845
-
-
VAN DER LAAN, M. and ROBINS, J. (2003). Unified Methods for Censored Longitudinal Data and Causality. Springer, New York. MR1958123
-
VAN DER LAAN, M. and ROBINS, J. (2003). Unified Methods for Censored Longitudinal Data and Causality. Springer, New York. MR1958123
-
-
-
-
90
-
-
0035949684
-
Predicting the clinical status of human breast cancer by using gene expression profiles
-
WEST, M., BLANCHETTE, C., DRESSMAN, H., HUANG, E., ISHIDA, S., SPANG, R., ZUZAN, H., OLSON, J., MARKS, J. and NEVINS, J. (2001). Predicting the clinical status of human breast cancer by using gene expression profiles. Proc. Natl. Acad. Sci. USA 98 11462-11467.
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 11462-11467
-
-
WEST, M.1
BLANCHETTE, C.2
DRESSMAN, H.3
HUANG, E.4
ISHIDA, S.5
SPANG, R.6
ZUZAN, H.7
OLSON, J.8
MARKS, J.9
NEVINS, J.10
-
91
-
-
34547435898
-
On early stopping in gradient descent learning
-
MR2327601
-
YAO, Y., ROSASCO, L. and CAPONNETTO, A. (2007). On early stopping in gradient descent learning. Constr. Approx. 26 289-315. MR2327601
-
(2007)
Constr. Approx
, vol.26
, pp. 289-315
-
-
YAO, Y.1
ROSASCO, L.2
CAPONNETTO, A.3
-
92
-
-
26444493144
-
Boosting with early stopping: Convergence and consistency
-
MR2166555
-
ZHANG, T. and YU, B. (2005). Boosting with early stopping: Convergence and consistency. Ann. Statist. 33 1538-1579. MR2166555
-
(2005)
Ann. Statist
, vol.33
, pp. 1538-1579
-
-
ZHANG, T.1
YU, B.2
-
93
-
-
37749006178
-
Stagewise Lasso
-
ZHAO, P. and YU, B. (2007). Stagewise Lasso. J. Mach. Learn. Res. 8 2701-2726.
-
(2007)
J. Mach. Learn. Res
, vol.8
, pp. 2701-2726
-
-
ZHAO, P.1
YU, B.2
-
94
-
-
33845263263
-
On model selection consistency of Lasso
-
MR2274449
-
ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Machine Learning Research 7 2541-2563. MR2274449
-
(2006)
J. Machine Learning Research
, vol.7
, pp. 2541-2563
-
-
ZHAO, P.1
YU, B.2
-
95
-
-
49749129552
-
Multiclass AdaBoost
-
Technical report, Stanford Univ. Available athttp
-
ZHU, J., ROSSET, S., ZOU, H. and HASTIE, T. (2005). Multiclass AdaBoost. Technical report, Stanford Univ. Available athttp://www-stat.stanford.ed.u/~hastie/Papers/samm.e.pdf.
-
(2005)
-
-
ZHU, J.1
ROSSET, S.2
ZOU, H.3
HASTIE, T.4
-
96
-
-
33846114377
-
The adaptive Lasso and its oracle properties
-
MR2279469
-
ZOU, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 1011418-1429. MR2279469
-
(2006)
J. Amer. Statist. Assoc
, vol.101
, pp. 1418-1429
-
-
ZOU, H.1
|