메뉴 건너뛰기




Volumn 22, Issue 4, 2007, Pages 477-505

Boosting algorithms: Regularization, prediction and model fitting

Author keywords

Generalized additive models; Generalized linear models; Gradient boosting; Software; Survival analysis; Variable selection

Indexed keywords


EID: 41549141939     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/07-STS242     Document Type: Article
Times cited : (822)

References (96)
  • 1
    • 0001492549 scopus 로고    scopus 로고
    • Shape quantization and recognition with randomized trees
    • AMIT, Y. and GEMAN, D. (1997). Shape quantization and recognition with randomized trees. Neural Computation 9 1545-1588.
    • (1997) Neural Computation , vol.9 , pp. 1545-1588
    • AMIT, Y.1    GEMAN, D.2
  • 2
    • 12444335763 scopus 로고    scopus 로고
    • Functional gradient descent for financial time series with an application to the measurement of market risk
    • AUDRINO, F. and BARONE-ADESI, G. (2005). Functional gradient descent for financial time series with an application to the measurement of market risk. J. Banking and Finance 29 959-977.
    • (2005) J. Banking and Finance , vol.29 , pp. 959-977
    • AUDRINO, F.1    BARONE-ADESI, G.2
  • 3
    • 15044365755 scopus 로고    scopus 로고
    • A multivariate FGD technique to improve VaR computation in equity markets
    • AUDRINO, F. and BARONE-ADESI, G. (2005). A multivariate FGD technique to improve VaR computation in equity markets. Comput. Management Sci. 2 87-106.
    • (2005) Comput. Management Sci , vol.2 , pp. 87-106
    • AUDRINO, F.1    BARONE-ADESI, G.2
  • 4
    • 12444268636 scopus 로고    scopus 로고
    • Volatility estimation with functional gradient descent for very highdimensional financial time series
    • AUDRINO, F. and BÜHLMANN, P. (2003). Volatility estimation with functional gradient descent for very highdimensional financial time series. J. Comput. Finance 6 65-89.
    • (2003) J. Comput. Finance , vol.6 , pp. 65-89
    • AUDRINO, F.1    BÜHLMANN, P.2
  • 6
    • 33645505792 scopus 로고    scopus 로고
    • Convexity, classification, and risk bounds
    • MR2268032
    • BARTLETT, P. L., JORDAN, M. and MCAULIFFE, J. (2006). Convexity, classification, and risk bounds. J. Amer. Statist. Assoc. 101 138-156. MR2268032
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 138-156
    • BARTLETT, P.L.1    JORDAN, M.2    MCAULIFFE, J.3
  • 8
    • 49749108850 scopus 로고    scopus 로고
    • BENNER, A. (2002). Application of aggregated classifiers in survival time studies. In Proceedings in Computational Statistics (COMPSTAT) (W. Härdle and B. Rönz, eds.) 171-176. Physica-Verlag, Heidelberg. MR1973489
    • BENNER, A. (2002). Application of "aggregated classifiers" in survival time studies. In Proceedings in Computational Statistics (COMPSTAT) (W. Härdle and B. Rönz, eds.) 171-176. Physica-Verlag, Heidelberg. MR1973489
  • 9
    • 49749137829 scopus 로고    scopus 로고
    • BINDER, H, 2006, GAMBoost: Generalized additive models by likelihood based boosting. R package version 0.9-3. Available at
    • BINDER, H. (2006). GAMBoost: Generalized additive models by likelihood based boosting. R package version 0.9-3. Available at http://CRAN.R-project.org.
  • 10
    • 41549168778 scopus 로고    scopus 로고
    • Convergence rates of general regularization methods for statistical inverse problems and applications
    • BISSANTZ, N., HOHAGE, T., MUNK, A. and RUYMGAART, F. (2007). Convergence rates of general regularization methods for statistical inverse problems and applications. SIAM J. Numer. Anal. 45 2610-2636.
    • (2007) SIAM J. Numer. Anal , vol.45 , pp. 2610-2636
    • BISSANTZ, N.1    HOHAGE, T.2    MUNK, A.3    RUYMGAART, F.4
  • 12
    • 3042675892 scopus 로고    scopus 로고
    • On the rate of convergence of regularized boosting classifiers
    • MR2076000
    • BLANCHARD, G., LUGOSI, G. and VAYATIS, N. (2003). On the rate of convergence of regularized boosting classifiers. J. Machine Learning Research 4 861-894. MR2076000
    • (2003) J. Machine Learning Research , vol.4 , pp. 861-894
    • BLANCHARD, G.1    LUGOSI, G.2    VAYATIS, N.3
  • 13
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • MR1365720
    • BREIMAN, L. (1995). Better subset regression using the nonnegative garrote. Technometrics 37 373-384. MR1365720
    • (1995) Technometrics , vol.37 , pp. 373-384
    • BREIMAN, L.1
  • 14
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • BREIMAN, L. (1996). Bagging predictors. Machine Learning 24 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • BREIMAN, L.1
  • 15
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers (with discussion)
    • MR 1635406
    • BREIMAN, L. (1998). Arcing classifiers (with discussion). Ann. Statist. 26 801-849. MR 1635406
    • (1998) Ann. Statist , vol.26 , pp. 801-849
    • BREIMAN, L.1
  • 16
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • BREIMAN, L. (1999). Prediction games and arcing algorithms. Neural Computation 11 1493-1517.
    • (1999) Neural Computation , vol.11 , pp. 1493-1517
    • BREIMAN, L.1
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • BREIMAN, L. (2001). Random forests. Machine Learning 45 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • BREIMAN, L.1
  • 18
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • MR2281878
    • BÜHLMANN, P. (2006). Boosting for high-dimensional linear models. Ann. Statist. 34 559-583. MR2281878
    • (2006) Ann. Statist , vol.34 , pp. 559-583
    • BÜHLMANN, P.1
  • 19
    • 49749131507 scopus 로고    scopus 로고
    • Twin boosting: Improved feature selection and prediction
    • Technical report, ETH Zürich. Available at
    • BÜHLMANN, P. (2007). Twin boosting: Improved feature selection and prediction. Technical report, ETH Zürich. Available at ftp://ftp.stat.math.ethz.ch/Research-Reports/Other-Manuscripts/buhlmann/ TwinBoosting1.pdf.
    • (2007)
    • BÜHLMANN, P.1
  • 20
    • 84967538586 scopus 로고    scopus 로고
    • BÜHLMANN, P. and LUTZ, R. (2006). Boosting algorithms: With an application to bootstrapping multivariate time series. In The Frontiers in Statistics (J. Fan and H. Koul, eds.) 209-230. Imperial College Press, London. MR2326003
    • BÜHLMANN, P. and LUTZ, R. (2006). Boosting algorithms: With an application to bootstrapping multivariate time series. In The Frontiers in Statistics (J. Fan and H. Koul, eds.) 209-230. Imperial College Press, London. MR2326003
  • 21
    • 49749150954 scopus 로고    scopus 로고
    • BÜHLMANN, P. and YU, B. (2000). Discussion on Additive logistic regression: A statistical view, by J. Friedman, T. Hastie and R. Tibshirani. Ann. Statist. 28 377-386.
    • BÜHLMANN, P. and YU, B. (2000). Discussion on "Additive logistic regression: A statistical view," by J. Friedman, T. Hastie and R. Tibshirani. Ann. Statist. 28 377-386.
  • 22
    • 0043245810 scopus 로고    scopus 로고
    • 2 loss: Regression and classification
    • MR1995709
    • 2 loss: Regression and classification. J. Amer. Statist. Assoc. 98 324-339. MR1995709
    • (2003) J. Amer. Statist. Assoc , vol.98 , pp. 324-339
    • BÜHLMANN, P.1    YU, B.2
  • 24
    • 49749125910 scopus 로고    scopus 로고
    • BUJA, A., STUETZLE, W. and SHEN, Y. (2005). Loss functions for binary class probability estimation: Structure and applications. Technical report, Univ. Washington. Available at http://www.stat.washington.edu/wxs/Learning-papers/paper-proper-scoring.pdf.
    • BUJA, A., STUETZLE, W. and SHEN, Y. (2005). Loss functions for binary class probability estimation: Structure and applications. Technical report, Univ. Washington. Available at http://www.stat.washington.edu/wxs/Learning-papers/paper-proper-scoring.pdf.
  • 25
    • 12344294601 scopus 로고    scopus 로고
    • BagBoosting for tumor classification with gene expression data
    • DETTLING, M. (2004). BagBoosting for tumor classification with gene expression data. Bioinformatics 20 3583-3593.
    • (2004) Bioinformatics , vol.20 , pp. 3583-3593
    • DETTLING, M.1
  • 26
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • DETTLING, M. and BÜHLMANN, P. (2003). Boosting for tumor classification with gene expression data. Bioinformatics 19 1061-1069.
    • (2003) Bioinformatics , vol.19 , pp. 1061-1069
    • DETTLING, M.1    BÜHLMANN, P.2
  • 28
    • 3242708140 scopus 로고    scopus 로고
    • Least angle regression (with discussion)
    • MR2060166
    • EFRON, B., HASTIE, T., JOHNSTONE, I. and TIBSHIRANI, R. (2004). Least angle regression (with discussion). Ann. Statist. 32 407-499. MR2060166
    • (2004) Ann. Statist , vol.32 , pp. 407-499
    • EFRON, B.1    HASTIE, T.2    JOHNSTONE, I.3    TIBSHIRANI, R.4
  • 31
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • MR1473055
    • FREUND, Y and SCHAPIRE, R. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. System Sci. 55 119-139. MR1473055
    • (1997) J. Comput. System Sci , vol.55 , pp. 119-139
    • FREUND, Y.1    SCHAPIRE, R.2
  • 32
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • MR1873328
    • FRIEDMAN, J. (2001). Greedy function approximation: A gradient boosting machine. Ann. Statist. 29 1189-1232. MR1873328
    • (2001) Ann. Statist , vol.29 , pp. 1189-1232
    • FRIEDMAN, J.1
  • 33
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion)
    • MR1790002
    • FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). Ann. Statist. 28 337-407. MR1790002
    • (2000) Ann. Statist , vol.28 , pp. 337-407
    • FRIEDMAN, J.1    HASTIE, T.2    TIBSHIRANI, R.3
  • 34
    • 22844452347 scopus 로고    scopus 로고
    • Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths
    • GARCIA, A. L., WAGNER, K., HOTHORN, T., KOEBNICK, C., ZUNFT, H. J. and TRIPPO, U. (2005). Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths. Obesity Research 13 626-634.
    • (2005) Obesity Research , vol.13 , pp. 626-634
    • GARCIA, A.L.1    WAGNER, K.2    HOTHORN, T.3    KOEBNICK, C.4    ZUNFT, H.J.5    TRIPPO, U.6
  • 35
    • 28744458859 scopus 로고    scopus 로고
    • GENTLEMAN, R. C., CAREY, V. J., BATES, D. M., BOLSTAD, B., DETTLING, M., DUDOIT, S., ELLIS, B., GAUTIER, L., GE, Y., GENTRY, J., HORNIK, K., HOTHORN, T., HUBER, M., IACUS, S., IRIZARRY, R., LEISCH, F., LI, C., MÄCHLER, M., ROSSINI, A. J., SAWITZKI, G., SMITH, C., SMYTH, G., TIERNEY, L., YANG, J. Y. and ZHANG, J. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology 5 R80.
    • GENTLEMAN, R. C., CAREY, V. J., BATES, D. M., BOLSTAD, B., DETTLING, M., DUDOIT, S., ELLIS, B., GAUTIER, L., GE, Y., GENTRY, J., HORNIK, K., HOTHORN, T., HUBER, M., IACUS, S., IRIZARRY, R., LEISCH, F., LI, C., MÄCHLER, M., ROSSINI, A. J., SAWITZKI, G., SMITH, C., SMYTH, G., TIERNEY, L., YANG, J. Y. and ZHANG, J. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology 5 R80.
  • 36
    • 49749132273 scopus 로고    scopus 로고
    • GREEN, P. and SILVERMAN, B. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman and Hall, New York. MR1270012
    • GREEN, P. and SILVERMAN, B. (1994). Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach. Chapman and Hall, New York. MR1270012
  • 37
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional predictor selection and the virtue of overparametrization
    • MR2108039
    • GREENSHTEIN, E. and RITOV, Y. (2004). Persistence in high-dimensional predictor selection and the virtue of overparametrization. Bernoulli 10 971-988. MR2108039
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • GREENSHTEIN, E.1    RITOV, Y.2
  • 38
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and minimum description length principle
    • MR 1939352
    • HANSEN, M. and YU, B. (2001). Model selection and minimum description length principle. J. Amer. Statist. Assoc. 96 746-774. MR 1939352
    • (2001) J. Amer. Statist. Assoc , vol.96 , pp. 746-774
    • HANSEN, M.1    YU, B.2
  • 39
    • 49749132762 scopus 로고    scopus 로고
    • HASTIE, T. and EFRON, B, 2004, Lars: Least angle regression, lasso and forward stagewise. R package version 0.9-7. Available at
    • HASTIE, T. and EFRON, B. (2004). Lars: Least angle regression, lasso and forward stagewise. R package version 0.9-7. Available at http://CRAN.R-project.org.
  • 40
    • 84972488102 scopus 로고
    • Generalized additive models (with discussion)
    • MR0858512
    • HASTIE, T. and TIBSHIRANI, R. (1986). Generalized additive models (with discussion). Statist. Sci. 1 297-318. MR0858512
    • (1986) Statist. Sci , vol.1 , pp. 297-318
    • HASTIE, T.1    TIBSHIRANI, R.2
  • 41
    • 49749099204 scopus 로고    scopus 로고
    • HASTIE, T. and TIBSHIRANI, R. (1990). Generalized Additive Models. Chapman and Hall, London. MR1082147
    • HASTIE, T. and TIBSHIRANI, R. (1990). Generalized Additive Models. Chapman and Hall, London. MR1082147
  • 42
    • 49749106960 scopus 로고    scopus 로고
    • HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning; Data Mining, Inference and Prediction. Springer, New York. MR1851606
    • HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2001). The Elements of Statistical Learning; Data Mining, Inference and Prediction. Springer, New York. MR1851606
  • 43
    • 49749111964 scopus 로고    scopus 로고
    • HOTHORN, T. and BÜHLMANN, P, 2007, Mboost: Model-based boosting. R package version 0.5-8. Available at
    • HOTHORN, T. and BÜHLMANN, P. (2007). Mboost: Model-based boosting. R package version 0.5-8. Available at http://CRAN.R-project.org/.
  • 44
    • 33750397113 scopus 로고    scopus 로고
    • Model-based boosting in high dimensions
    • HOTHORN, T. and BÜHLMANN, P. (2006). Model-based boosting in high dimensions. Bioinformatics 22 2828-2829.
    • (2006) Bioinformatics , vol.22 , pp. 2828-2829
    • HOTHORN, T.1    BÜHLMANN, P.2
  • 46
    • 49749127050 scopus 로고    scopus 로고
    • HOTHORN, T, HORNIK, K. and ZEILEIS, A, 2006, Party: A laboratory for recursive part(y)itioning. R package version 0.9-11. Available at
    • HOTHORN, T., HORNIK, K. and ZEILEIS, A. (2006). Party: A laboratory for recursive part(y)itioning. R package version 0.9-11. Available at http://CRAN.R-project.org/.
  • 47
    • 33749677657 scopus 로고    scopus 로고
    • Unbiased recursive partitioning: A conditional inference framework
    • MR2291267
    • HOTHORN, T., HORNIK, K. and ZEILEIS, A. (2006). Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Statist. 15 651-674. MR2291267
    • (2006) J. Comput. Graph. Statist , vol.15 , pp. 651-674
    • HOTHORN, T.1    HORNIK, K.2    ZEILEIS, A.3
  • 48
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive Lasso for sparse high-dimensional regression
    • To appear
    • HUANG, J., MA, S. and ZHANG, C-H. (2008). Adaptive Lasso for sparse high-dimensional regression. Statist. Sinica. To appear.
    • (2008) Statist. Sinica
    • HUANG, J.1    MA, S.2    ZHANG, C.-H.3
  • 49
    • 0001354983 scopus 로고    scopus 로고
    • Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion
    • MR1616041
    • HURVICH, C., SIMONOFF, J. and TSAI, C.-L. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J. Roy. Statist. Soc. Ser. B 60 271-293. MR1616041
    • (1998) J. Roy. Statist. Soc. Ser. B , vol.60 , pp. 271-293
    • HURVICH, C.1    SIMONOFF, J.2    TSAI, C.-L.3
  • 51
    • 49749091617 scopus 로고    scopus 로고
    • Process consistency for AdaBoost (with discussion)
    • MR2050999
    • JIANG, W. (2004). Process consistency for AdaBoost (with discussion). Ann. Statist. 32 13-29, 85-134. MR2050999
    • (2004) Ann. Statist , vol.32 , Issue.13-29 , pp. 85-134
    • JIANG, W.1
  • 52
    • 0028324717 scopus 로고
    • Cryptographic limitations on learning Boolean formulae and finite automata
    • MR1369194
    • KEARNS, M. and VALIANT, L. (1994). Cryptographic limitations on learning Boolean formulae and finite automata. J. Assoc. Comput. Machinery 41 67-95. MR1369194
    • (1994) J. Assoc. Comput. Machinery , vol.41 , pp. 67-95
    • KEARNS, M.1    VALIANT, L.2
  • 53
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • MR1892654
    • KOLTCHINSKII, V. and PANCHENKO, D. (2002). Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. Statist. 30 1-50. MR1892654
    • (2002) Ann. Statist , vol.30 , pp. 1-50
    • KOLTCHINSKII, V.1    PANCHENKO, D.2
  • 54
    • 49749088862 scopus 로고    scopus 로고
    • Smoothing with curvature constraints based on boosting techniques
    • A. Rizzi and M. Vichi, eds, Physica-Verlag, Heidelberg
    • LEITENSTORFER, F. and TUTZ, G. (2006). Smoothing with curvature constraints based on boosting techniques. In Proceedings in Computational Statistics (COMPSTAT) (A. Rizzi and M. Vichi, eds.). Physica-Verlag, Heidelberg.
    • (2006) Proceedings in Computational Statistics (COMPSTAT)
    • LEITENSTORFER, F.1    TUTZ, G.2
  • 55
    • 34648835120 scopus 로고    scopus 로고
    • Generalized monotonie regression based on B-splines with an application to air pollution data
    • LEITENSTORFER, F. and TUTZ, G. (2007). Generalized monotonie regression based on B-splines with an application to air pollution data. Biostatistics 8 654-673.
    • (2007) Biostatistics , vol.8 , pp. 654-673
    • LEITENSTORFER, F.1    TUTZ, G.2
  • 57
    • 33750691840 scopus 로고    scopus 로고
    • Convergence and consistency of regularized boosting algorithms with stationary ß-mixing observations
    • Y. Weiss, B. Schölkopf and J. Platt, eds, MIT Press
    • LOZANO, A., KULKARNI, S. and SCHAPIRE, R. (2006). Convergence and consistency of regularized boosting algorithms with stationary ß-mixing observations. In Advances in Neural Information Processing Systems (Y. Weiss, B. Schölkopf and J. Platt, eds.) 18. MIT Press.
    • (2006) Advances in Neural Information Processing Systems , pp. 18
    • LOZANO, A.1    KULKARNI, S.2    SCHAPIRE, R.3
  • 58
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods (with discussion)
    • MR2051000
    • LUGOSI, G. and VAYATIS, N. (2004). On the Bayes-risk consistency of regularized boosting methods (with discussion). Ann. Statist. 32 30-55, 85-134. MR2051000
    • (2004) Ann. Statist , vol.32 , Issue.30-55 , pp. 85-134
    • LUGOSI, G.1    VAYATIS, N.2
  • 59
    • 33746152094 scopus 로고    scopus 로고
    • Boosting for highmultivariate responses in high-dimensional linear regression
    • MR2267246
    • LUTZ, R. and BÜHLMANN, P. (2006). Boosting for highmultivariate responses in high-dimensional linear regression. Statist. Sinica 16 471-494. MR2267246
    • (2006) Statist. Sinica , vol.16 , pp. 471-494
    • LUTZ, R.1    BÜHLMANN, P.2
  • 60
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • MALLAT, S. and ZHANG, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing 41 3397-3415.
    • (1993) IEEE Transactions on Signal Processing , vol.41 , pp. 3397-3415
    • MALLAT, S.1    ZHANG, Z.2
  • 61
    • 2542488393 scopus 로고    scopus 로고
    • Greedy algorithms for classification-consistency, convergence rates, and adaptivity
    • MR2072266
    • MANNOR, S., MEIR, R. and ZHANG, T. (2003). Greedy algorithms for classification-consistency, convergence rates, and adaptivity. J. Machine Learning Research 4 713-741. MR2072266
    • (2003) J. Machine Learning Research , vol.4 , pp. 713-741
    • MANNOR, S.1    MEIR, R.2    ZHANG, T.3
  • 62
    • 0002550596 scopus 로고    scopus 로고
    • Functional gradient techniques for combining hypotheses
    • A. Smola, P. Bartlett, B. Schölkopf and D. Schuurmans, eds, MIT Press, Cambridge
    • MASON, L., BAXTER, J., BARTLETT, P. and FREAN, M. (2000). Functional gradient techniques for combining hypotheses. In Advances in Large Margin Classifiers (A. Smola, P. Bartlett, B. Schölkopf and D. Schuurmans, eds.) 221-246. MIT Press, Cambridge.
    • (2000) Advances in Large Margin Classifiers , pp. 221-246
    • MASON, L.1    BAXTER, J.2    BARTLETT, P.3    FREAN, M.4
  • 63
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • MCCAFFREY, D. F., RIDGEWAY, G. and MORRAL, A. R. G. (2004). Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 9 403-425.
    • (2004) Psychological Methods , vol.9 , pp. 403-425
    • MCCAFFREY, D.F.1    RIDGEWAY, G.2    MORRAL, A.R.G.3
  • 64
    • 33947284406 scopus 로고    scopus 로고
    • Cost-weighted boosting with jittering and over/under-sampling: JOUS-boost
    • MEASE, D., WYNER, A. and BUJA, A. (2007). Cost-weighted boosting with jittering and over/under-sampling: JOUS-boost. J. Machine Learning Research 8 409-439.
    • (2007) J. Machine Learning Research , vol.8 , pp. 409-439
    • MEASE, D.1    WYNER, A.2    BUJA, A.3
  • 65
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • MR2278363
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34 1436-1462. MR2278363
    • (2006) Ann. Statist , vol.34 , pp. 1436-1462
    • MEINSHAUSEN, N.1    BÜHLMANN, P.2
  • 66
    • 35248862907 scopus 로고    scopus 로고
    • An introduction to boosting and leveraging
    • S. Mendelson and A. Smola, eds, Springer, Berlin
    • MEIR, R. and RATSCH, G. (2003). An introduction to boosting and leveraging. In Advanced Lectures on Machine Learning (S. Mendelson and A. Smola, eds.). Springer, Berlin.
    • (2003) Advanced Lectures on Machine Learning
    • MEIR, R.1    RATSCH, G.2
  • 67
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • MR1773265
    • OSBORNE, M., PRESNELL, B. and TURLACH, B. (2000). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389-403. MR1773265
    • (2000) IMA J. Numer. Anal , vol.20 , pp. 389-403
    • OSBORNE, M.1    PRESNELL, B.2    TURLACH, B.3
  • 68
    • 34547849507 scopus 로고    scopus 로고
    • An L1 regularizationpath algorithm, for generalized linear models
    • PARK, M.-Y and HASTIE, T. (2007). An L1 regularizationpath algorithm, for generalized linear models. J. Roy. Statist. Soe. Ser. B 69 659-677.
    • (2007) J. Roy. Statist. Soe. Ser. B , vol.69 , pp. 659-677
    • PARK, M.-Y.1    HASTIE, T.2
  • 69
    • 33748324384 scopus 로고    scopus 로고
    • R DEVELOPMENT CORE TEAM , Vienna, Austria. Available at
    • R DEVELOPMENT CORE TEAM (2006). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org.
    • (2006) R: A language and environment for statistical computing
  • 71
  • 72
    • 49749144847 scopus 로고    scopus 로고
    • RIDGEWAY, G. (2000). Discussion on Additive logistic regression: A statistical view of boosting, by J. Friedman, T. Hastie, R. Tibshirani. Ann. Statist. 28 393-400.
    • RIDGEWAY, G. (2000). Discussion on "Additive logistic regression: A statistical view of boosting," by J. Friedman, T. Hastie, R. Tibshirani. Ann. Statist. 28 393-400.
  • 73
    • 0037186537 scopus 로고    scopus 로고
    • Looking for lumps: Boosting and bagging for density estimation
    • MR1884870
    • RIDGEWAY, G. (2002). Looking for lumps: Boosting and bagging for density estimation. Comput. Statist. Data Anal. 38 379-392. MR1884870
    • (2002) Comput. Statist. Data Anal , vol.38 , pp. 379-392
    • RIDGEWAY, G.1
  • 74
    • 49749089272 scopus 로고    scopus 로고
    • RIDGEWAY, G, 2006, Gbm: Generalized boosted regression models. R package version 1.5-7. Available at
    • RIDGEWAY, G. (2006). Gbm: Generalized boosted regression models. R package version 1.5-7. Available at http://www.i-pensieri.com/gregr/gbm. shtml.
  • 75
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • S
    • SCHAPIRE, R. (1990). The strength of weak learnability. Machine Learning S 197-227.
    • (1990) Machine Learning , pp. 197-227
    • SCHAPIRE, R.1
  • 76
    • 49749083392 scopus 로고    scopus 로고
    • SCHAPIRE, R. (2002). The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification. Lecture Notes in Statist. 171 149-171. Springer, New York. MR2005788
    • SCHAPIRE, R. (2002). The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification. Lecture Notes in Statist. 171 149-171. Springer, New York. MR2005788
  • 77
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • MR1673273
    • SCHAPIRE, R., FREUND, Y., BARTLETT, P. and LEE, W. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. Ann. Statist. 26 1651-1686. MR1673273
    • (1998) Ann. Statist , vol.26 , pp. 1651-1686
    • SCHAPIRE, R.1    FREUND, Y.2    BARTLETT, P.3    LEE, W.4
  • 78
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: A boosting-based system for text categorization
    • SCHAPIRE, R. and SINGER, Y. (2000). Boostexter: A boosting-based system for text categorization. Machine Learning 39 135-168.
    • (2000) Machine Learning , vol.39 , pp. 135-168
    • SCHAPIRE, R.1    SINGER, Y.2
  • 79
    • 49749141573 scopus 로고    scopus 로고
    • SOUTHWELL, R. (1946). Relaxation Methods in Theoretical Physics. Oxford, at the Clarendon Press. MR0018983
    • SOUTHWELL, R. (1946). Relaxation Methods in Theoretical Physics. Oxford, at the Clarendon Press. MR0018983
  • 81
    • 22844454658 scopus 로고    scopus 로고
    • Weak greedy algorithms
    • MR1745113
    • TEMLYAKOV, V. (2000). Weak greedy algorithms. Adv. Comput. Math. 12 213-227. MR1745113
    • (2000) Adv. Comput. Math , vol.12 , pp. 213-227
    • TEMLYAKOV, V.1
  • 82
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soe. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soe. Ser. B , vol.58 , pp. 267-288
    • TIBSHIRANI, R.1
  • 84
    • 33845509035 scopus 로고    scopus 로고
    • Generalized additive modelling with implicit variable selection by likelihood based boosting
    • MR2297666
    • TUTZ, G. and BINDER, H. (2006). Generalized additive modelling with implicit variable selection by likelihood based boosting. Biometrics 62 961-971. MR2297666
    • (2006) Biometrics , vol.62 , pp. 961-971
    • TUTZ, G.1    BINDER, H.2
  • 86
    • 27844513324 scopus 로고    scopus 로고
    • Aggregating classifiers with ordinal response structure
    • MR2136546
    • TUTZ, G. and HECHENBICHLER, K. (2005). Aggregating classifiers with ordinal response structure. J. Statist. Comput. Simul. 75 391-408. MR2136546
    • (2005) J. Statist. Comput. Simul , vol.75 , pp. 391-408
    • TUTZ, G.1    HECHENBICHLER, K.2
  • 87
    • 34147202063 scopus 로고    scopus 로고
    • Generalized smooth monotonie regression in additive modelling
    • TUTZ, G. and LEITENSTORFER, F. (2007). Generalized smooth monotonie regression in additive modelling. J. Comput. Graph. Statist. 16 165-188.
    • (2007) J. Comput. Graph. Statist , vol.16 , pp. 165-188
    • TUTZ, G.1    LEITENSTORFER, F.2
  • 88
    • 34249879561 scopus 로고    scopus 로고
    • Flexible semiparametric mixed models
    • TUTZ, G. and REITHINGER, F. (2007). Flexible semiparametric mixed models. Statistics in Medicine 26 2872-2900.
    • (2007) Statistics in Medicine , vol.26 , pp. 2872-2900
    • TUTZ, G.1    REITHINGER, F.2
  • 89
    • 49749097845 scopus 로고    scopus 로고
    • VAN DER LAAN, M. and ROBINS, J. (2003). Unified Methods for Censored Longitudinal Data and Causality. Springer, New York. MR1958123
    • VAN DER LAAN, M. and ROBINS, J. (2003). Unified Methods for Censored Longitudinal Data and Causality. Springer, New York. MR1958123
  • 91
    • 34547435898 scopus 로고    scopus 로고
    • On early stopping in gradient descent learning
    • MR2327601
    • YAO, Y., ROSASCO, L. and CAPONNETTO, A. (2007). On early stopping in gradient descent learning. Constr. Approx. 26 289-315. MR2327601
    • (2007) Constr. Approx , vol.26 , pp. 289-315
    • YAO, Y.1    ROSASCO, L.2    CAPONNETTO, A.3
  • 92
    • 26444493144 scopus 로고    scopus 로고
    • Boosting with early stopping: Convergence and consistency
    • MR2166555
    • ZHANG, T. and YU, B. (2005). Boosting with early stopping: Convergence and consistency. Ann. Statist. 33 1538-1579. MR2166555
    • (2005) Ann. Statist , vol.33 , pp. 1538-1579
    • ZHANG, T.1    YU, B.2
  • 93
    • 37749006178 scopus 로고    scopus 로고
    • Stagewise Lasso
    • ZHAO, P. and YU, B. (2007). Stagewise Lasso. J. Mach. Learn. Res. 8 2701-2726.
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 2701-2726
    • ZHAO, P.1    YU, B.2
  • 94
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • MR2274449
    • ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Machine Learning Research 7 2541-2563. MR2274449
    • (2006) J. Machine Learning Research , vol.7 , pp. 2541-2563
    • ZHAO, P.1    YU, B.2
  • 95
    • 49749129552 scopus 로고    scopus 로고
    • Multiclass AdaBoost
    • Technical report, Stanford Univ. Available athttp
    • ZHU, J., ROSSET, S., ZOU, H. and HASTIE, T. (2005). Multiclass AdaBoost. Technical report, Stanford Univ. Available athttp://www-stat.stanford.ed.u/~hastie/Papers/samm.e.pdf.
    • (2005)
    • ZHU, J.1    ROSSET, S.2    ZOU, H.3    HASTIE, T.4
  • 96
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • MR2279469
    • ZOU, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 1011418-1429. MR2279469
    • (2006) J. Amer. Statist. Assoc , vol.101 , pp. 1418-1429
    • ZOU, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.