메뉴 건너뛰기




Volumn 28, Issue 1, 2013, Pages 37-49

Can matching improve the performance of boosting for identifying important genes in observational studies?

Author keywords

Boosting; Gene selection; High dimensional observational data; Matching

Indexed keywords


EID: 84874213197     PISSN: 09434062     EISSN: 16139658     Source Type: Journal    
DOI: 10.1007/s00180-012-0306-4     Document Type: Article
Times cited : (3)

References (30)
  • 1
    • 39449093646 scopus 로고    scopus 로고
    • Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models
    • Binder H, Schumacher M (2008a) Allowing for mandatory covariates in boosting estimation of sparse high-dimensional survival models. BMC Bioinf 9: 14.
    • (2008) BMC Bioinf , vol.9 , pp. 14
    • Binder, H.1    Schumacher, M.2
  • 2
    • 54949131787 scopus 로고    scopus 로고
    • Comment on 'network-constrained regularization and variable selection for analysis of genomic data
    • Binder H, Schumacher M (2008b) Comment on 'network-constrained regularization and variable selection for analysis of genomic data'. Bioinformatics 24(21): 2566-2568.
    • (2008) Bioinformatics , vol.24 , Issue.21 , pp. 2566-2568
    • Binder, H.1    Schumacher, M.2
  • 3
    • 48849102758 scopus 로고    scopus 로고
    • Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples
    • Binder H, Schumacher M (2008c) Adapting prediction error estimates for biased complexity selection in high-dimensional bootstrap samples. Stat Appl Genet Mol Biol 7(1): 12.
    • (2008) Stat Appl Genet Mol Biol , vol.7 , Issue.1 , pp. 12
    • Binder, H.1    Schumacher, M.2
  • 5
    • 77949911450 scopus 로고    scopus 로고
    • Testing the additional predictive value of high-dimensional data
    • Boulesteix A-L, Hothorn T (2010) Testing the additional predictive value of high-dimensional data. BMC Bioinf 11: 78.
    • (2010) BMC Bioinf , vol.11 , pp. 78
    • Boulesteix, A.-L.1    Hothorn, T.2
  • 6
    • 33644759290 scopus 로고    scopus 로고
    • Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling
    • Bourquin J et al (2006) Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling. PNAS 103(9): 3339-3344.
    • (2006) Pnas , vol.103 , Issue.9 , pp. 3339-3344
    • Bourquin, J.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn 45: 5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0003010182 scopus 로고
    • Verification of forecast expressed in terms of probability
    • Brier G (1950) Verification of forecast expressed in terms of probability. Mon Weather Rev 78(1): 1-3.
    • (1950) Mon Weather Rev , vol.78 , Issue.1 , pp. 1-3
    • Brier, G.1
  • 9
    • 0037367637 scopus 로고    scopus 로고
    • Optimal matching with a variable number of controls vs. a fixed number of controls for a cohort study: trade-offs
    • Cepeda MS et al (2003) Optimal matching with a variable number of controls vs. a fixed number of controls for a cohort study: trade-offs. J Clin Epidemiol 56: 230-237.
    • (2003) J Clin Epidemiol , vol.56 , pp. 230-237
    • Cepeda, M.S.1
  • 10
    • 1642317557 scopus 로고    scopus 로고
    • Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival
    • Chiaretti S et al (2004) Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 103: 2771-2778.
    • (2004) Blood , vol.103 , pp. 2771-2778
    • Chiaretti, S.1
  • 11
    • 0000057576 scopus 로고
    • Controlling bias in observational studies: a review
    • Cochran W, Rubin D (1973) Controlling bias in observational studies: a review. Indian J Stat Ser A 35(4): 417-446.
    • (1973) Indian J Stat Ser A , vol.35 , Issue.4 , pp. 417-446
    • Cochran, W.1    Rubin, D.2
  • 13
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • Dettling M, Bühlmann P (2003) Boosting for tumor classification with gene expression data. Bioinformatics 19: 1061-1069.
    • (2003) Bioinformatics , vol.19 , pp. 1061-1069
    • Dettling, M.1    Bühlmann, P.2
  • 14
    • 0003138938 scopus 로고
    • Comparison of multivariable matching methods: structures, distances and algorithms
    • Gu X, Rosenbaum P (1993) Comparison of multivariable matching methods: structures, distances and algorithms. J Comput Graph Stat 2: 405-420.
    • (1993) J Comput Graph Stat , vol.2 , pp. 405-420
    • Gu, X.1    Rosenbaum, P.2
  • 15
    • 4944238507 scopus 로고    scopus 로고
    • Full matching in an observational study coaching for the SAT
    • Hansen B (2004) Full matching in an observational study coaching for the SAT. J Am Stat Assoc 99(467): 609-618.
    • (2004) J Am Stat Assoc , vol.99 , Issue.467 , pp. 609-618
    • Hansen, B.1
  • 16
    • 63549121485 scopus 로고    scopus 로고
    • Matching methods for observational microarray studies
    • Heller R et al (2009) Matching methods for observational microarray studies. Bioinformatics 25(7): 904-909.
    • (2009) Bioinformatics , vol.25 , Issue.7 , pp. 904-909
    • Heller, R.1
  • 17
    • 37549057612 scopus 로고    scopus 로고
    • GlobalANCOVA: exploration and assessment of gene group effects
    • Hummel M et al (2008) GlobalANCOVA: exploration and assessment of gene group effects. Bioinformatics 24(1): 78-85.
    • (2008) Bioinformatics , vol.24 , Issue.1 , pp. 78-85
    • Hummel, M.1
  • 18
    • 0034100672 scopus 로고    scopus 로고
    • Substantial gains in bias reduction from matching with a variable number of controls
    • Ming K, Rosenbaum P (2000) Substantial gains in bias reduction from matching with a variable number of controls. Biometrics 56(1): 118-124.
    • (2000) Biometrics , vol.56 , Issue.1 , pp. 118-124
    • Ming, K.1    Rosenbaum, P.2
  • 19
    • 0022033155 scopus 로고
    • The bias due to incomplete matching
    • Rosenbaum P, Rubin D (1985) The bias due to incomplete matching. Biometrics 41: 103-116.
    • (1985) Biometrics , vol.41 , pp. 103-116
    • Rosenbaum, P.1    Rubin, D.2
  • 20
    • 74049161927 scopus 로고
    • Optimal matching for observational studies
    • Rosenbaum P (1989) Optimal matching for observational studies. J Am Stat Assoc 84(408): 1024-1032.
    • (1989) J Am Stat Assoc , vol.84 , Issue.408 , pp. 1024-1032
    • Rosenbaum, P.1
  • 21
    • 0000394113 scopus 로고
    • Matching to remove bias in observational studies
    • Rubin D (1973) Matching to remove bias in observational studies. Biometrics 29(1): 159-183.
    • (1973) Biometrics , vol.29 , Issue.1 , pp. 159-183
    • Rubin, D.1
  • 22
    • 85144841000 scopus 로고
    • Using multivariable matched sampling and regression adjustment to control bias in observational studies
    • Rubin D (1979) Using multivariable matched sampling and regression adjustment to control bias in observational studies. J Am Stat Assoc 74: 318-324.
    • (1979) J Am Stat Assoc , vol.74 , pp. 318-324
    • Rubin, D.1
  • 23
    • 0000091953 scopus 로고
    • Bias reduction using Mahalanobis metric matching
    • Rubin D (1980) Bias reduction using Mahalanobis metric matching. Biometrics 36: 293-298.
    • (1980) Biometrics , vol.36 , pp. 293-298
    • Rubin, D.1
  • 24
    • 0037245343 scopus 로고    scopus 로고
    • Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification
    • Simon R et al (2003) Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. J Natl Cancer Inst 95(1): 14-18.
    • (2003) J Natl Cancer Inst , vol.95 , Issue.1 , pp. 14-18
    • Simon, R.1
  • 25
    • 0031522938 scopus 로고    scopus 로고
    • Matching with multiple controls to estimate treatment effects in observational studies
    • Smith H (1997) Matching with multiple controls to estimate treatment effects in observational studies. Sociol Methodol 27(1): 325-353.
    • (1997) Sociol Methodol , vol.27 , Issue.1 , pp. 325-353
    • Smith, H.1
  • 26
    • 4544341015 scopus 로고    scopus 로고
    • Linear models and empirical bayes methods for assessing differential expression in microarray experiments
    • (Article 3)
    • Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3 (Article 3).
    • (2004) Stat Appl Genet Mol Biol , vol.3
    • Smyth, G.K.1
  • 27
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • Thomas JG et al (2001) An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genom Res 11: 1227-1236.
    • (2001) Genom Res , vol.11 , pp. 1227-1236
    • Thomas, J.G.1
  • 28
    • 0035942271 scopus 로고    scopus 로고
    • Significant analysis of microarrays applied to the ioonizing radiation response
    • Tusher VG et al (2001) Significant analysis of microarrays applied to the ioonizing radiation response. Proc Natl Acad Sci USA 98: 5116-5121.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1
  • 29
    • 34547142781 scopus 로고    scopus 로고
    • Boosting ridge regression
    • Tutz G, Binder H (2007) Boosting ridge regression. Comput Stat Data Anal 51(12): 6044-6059.
    • (2007) Comput Stat Data Anal , vol.51 , Issue.12 , pp. 6044-6059
    • Tutz, G.1    Binder, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.