-
1
-
-
34250652449
-
Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series
-
DOI 10.1158/1078-0432.CCR-06-2765
-
Desmedt C, Piette F, Loi S, Wang Y, Lallemand F, et al. (2007) Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independentvalidation series. Clinical Cancer Research 13: 3207-3214. (Pubitemid 46944903)
-
(2007)
Clinical Cancer Research
, vol.13
, Issue.11
, pp. 3207-3214
-
-
Desmedt, C.1
Piette, F.2
Loi, S.3
Wang, Y.4
Lallemand, F.5
Haibe-Kains, B.6
Viale, G.7
Delorenzi, M.8
Zhang, Y.9
D'Assignies, M.S.10
Bergh, J.11
Lidereau, R.12
Ellis, P.13
Harris, A.L.14
Klijn, J.G.M.15
Foekens, J.A.16
Cardoso, F.17
Piccart, M.J.18
Buyse, M.19
Sotiriou, C.20
more..
-
2
-
-
0037137519
-
A gene-expression signature as a predictor of survival in breast cancer
-
DOI 10.1056/NEJMoa021967
-
van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AAM, et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. New England Journal of Medicine 347: 1999-2009. (Pubitemid 35461656)
-
(2002)
New England Journal of Medicine
, vol.347
, Issue.25
, pp. 1999-2009
-
-
Van De, V.M.J.1
He, Y.D.2
Van't, V.L.J.3
Dai, H.4
Hart, A.A.M.5
Voskuil, D.W.6
Schreiber, G.J.7
Peterse, J.L.8
Roberts, C.9
Marton, M.J.10
Parrish, M.11
Atsma, D.12
Witteveen, A.13
Glas, A.14
Delahaye, L.15
Van Der, V.T.16
Bartelink, H.17
Rodenhuis, S.18
Rutgers, E.T.19
Friend, S.H.20
Bernards, R.21
more..
-
3
-
-
58149267913
-
Comparison of gene expression profiles predicting progression in breast cancer patients treated with tamoxifen
-
Kok M, Linn SC, Laar RKV, Jansen MPHM, van den Berg TM, et al. (2009) Comparison of gene expression profiles predicting progression in breast cancer patients treated with tamoxifen. Breast Cancer Research and Treatment 13: 275-283.
-
(2009)
Breast Cancer Research and Treatment
, vol.13
, pp. 275-283
-
-
Kok, M.1
Linn, S.C.2
Laar, R.K.V.3
Jansen, M.P.H.M.4
Van Den Berg, T.M.5
-
4
-
-
12744266814
-
Partial Cox regression analysis for high-dimensional microarray gene expression data
-
Li H, Gui J (2004) Partial Cox regression analysis for high-dimensional microarray gene expression data. Bioinformatics 20: 208-215.
-
(2004)
Bioinformatics
, vol.20
, pp. 208-215
-
-
Li, H.1
Gui, J.2
-
5
-
-
19344363035
-
Gene expression signature of fibroblast serum response predicts human cancer progression: Similarities between tumors and wounds
-
Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, et al. (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: Similarities between tumors and wounds. PLoS Biology 2.
-
(2004)
PLoS Biology
, pp. 2
-
-
Chang, H.Y.1
Sneddon, J.B.2
Alizadeh, A.A.3
Sood, R.4
West, R.B.5
-
6
-
-
52349083651
-
Serum micrornas are promising novel biomarkers
-
Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, et al. (2008) Serum micrornas are promising novel biomarkers. PLoS ONE 3: e3148.
-
(2008)
PLoS ONE
, vol.3
-
-
Gilad, S.1
Meiri, E.2
Yogev, Y.3
Benjamin, S.4
Lebanony, D.5
-
7
-
-
79952419254
-
Methodological and practical challenges for personalized cancer therapies
-
Wistuba II, Gelovani JG, Jacoby JJ, Davis SE, Herbst RS (2011) Methodological and practical challenges for personalized cancer therapies. Nature Reviews Clinical Oncology 8: 135-141.
-
(2011)
Nature Reviews Clinical Oncology
, vol.8
, pp. 135-141
-
-
Wistuba, I.I.1
Gelovani, J.G.2
Jacoby, J.J.3
Davis, S.E.4
Herbst, R.S.5
-
9
-
-
79551625666
-
Ranking prognosis markers in cancer genomic studies
-
Ma S, Song X (2011) Ranking prognosis markers in cancer genomic studies. Brie-ngs in Bioinformatics 12: 33-40.
-
(2011)
Brie-ngs in Bioinformatics
, vol.12
, pp. 33-40
-
-
Ma, S.1
Song, X.2
-
10
-
-
13844310310
-
Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
-
DOI 10.1016/S0140-6736(05)17947-1
-
Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, et al. (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671-679. (Pubitemid 40260888)
-
(2005)
Lancet
, vol.365
, Issue.9460
, pp. 671-679
-
-
Wang, Y.1
Klijn, J.G.M.2
Zhang, Y.3
Sieuwerts, A.M.4
Look, M.P.5
Yang, F.6
Talantov, D.7
Timmermans, M.8
Meijer-Van, G.M.E.9
Yu, J.10
Jatkoe, T.11
Berns, E.M.J.J.12
Atkins, D.13
Foekens, J.A.14
-
11
-
-
0031015557
-
The lasso method for variable selection in the Cox model
-
Tibshirani R (1997) The lasso method for variable selection in the Cox model. Statistics in Medicine 16: 385-395.
-
(1997)
Statistics in Medicine
, vol.16
, pp. 385-395
-
-
Tibshirani, R.1
-
12
-
-
77952568988
-
1 penalized estimation in the Cox proportional hazards model
-
1 penalized estimation in the Cox proportional hazards model. Biometrical Journal 52: 70-84.
-
(2010)
Biometrical Journal
, vol.52
, pp. 70-84
-
-
Goeman, J.J.1
-
13
-
-
0043130665
-
Kernel cox regression models for linking gene expression profiles to censored survival data
-
Li H, Luan Y (2002) Kernel cox regression models for linking gene expression profiles to censored survival data. In: Pacific Symposium on Biocomputing. volume 8, p. 65.
-
(2002)
Pacific Symposium on Biocomputing
, vol.8
, pp. 65
-
-
Li, H.1
Luan, Y.2
-
14
-
-
21444446838
-
Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
-
DOI 10.1093/bioinformatics/bti422
-
Gui J, Li H (2005) Penalized cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21: 3001-3008. (Pubitemid 40916425)
-
(2005)
Bioinformatics
, vol.21
, Issue.13
, pp. 3001-3008
-
-
Gui, J.1
Li, H.2
-
15
-
-
84866436885
-
A comparison of estimators to evaluate the discriminatory power of time-to-event models
-
Schmid M, Potapov S (2012) A comparison of estimators to evaluate the discriminatory power of time-to-event models. Statistics in Medicine 31: 2588-2609.
-
(2012)
Statistics in Medicine
, vol.31
, pp. 2588-2609
-
-
Schmid, M.1
Potapov, S.2
-
16
-
-
84944363874
-
Evaluating the yield of medical tests
-
DOI 10.1001/jama.247.18.2543
-
Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA (1982) Evaluating the yield of medical tests. Journal of the American Medical Association 247: 2543-2546. (Pubitemid 12155954)
-
(1982)
Journal of the American Medical Association
, vol.247
, Issue.18
, pp. 2543-2546
-
-
Harrell Jr., F.E.1
Califf, R.M.2
Pryor, D.B.3
-
17
-
-
0021135218
-
Regression modelling strategies for improved prognostic prediction
-
Harrell FE, Lee KL, Califf, R M (1984) Regression modeling strategies for improved prognostic prediction. Statistics in Medicine 3: 143-152. (Pubitemid 14052973)
-
(1984)
Statistics in Medicine
, vol.3
, Issue.2
, pp. 143-152
-
-
Harrell Jr., F.E.1
Lee, K.L.2
-
18
-
-
79954466848
-
On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data
-
Uno H, Cai T, Pencina MJ, D'Agostino RB, Wei LJ (2011) On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Statistics in Medicine 30: 1105-1117.
-
(2011)
Statistics in Medicine
, vol.30
, pp. 1105-1117
-
-
Uno, H.1
Cai, T.2
Pencina, M.J.3
D'Agostino, R.B.4
Wei, L.J.5
-
19
-
-
33745605205
-
CASPAR: A hierarchical bayesian approach to predict survival times in cancer from gene expression data
-
DOI 10.1093/bioinformatics/btl103
-
Kaderali L, Zander T, Faigle U, Wolf J, Schultze JL, et al. (2006) CASPAR: A hierarchical bayesian approach to predict survival times in cancer from gene expression data. Bioinformatics 22: 1495-1502. (Pubitemid 43985321)
-
(2006)
Bioinformatics
, vol.22
, Issue.12
, pp. 1495-1502
-
-
Kaderali, L.1
Zander, T.2
Faigle, U.3
Wolf, J.4
Schultze, J.L.5
Schrader, R.6
-
20
-
-
39149116738
-
Evaluating the ROC performance of markers for future events
-
Pepe MS, Zheng Y, Jin Y (2008) Evaluating the ROC performance of markers for future events. Lifetime Data Analysis 14: 86-113.
-
(2008)
Lifetime Data Analysis
, vol.14
, pp. 86-113
-
-
Pepe, M.S.1
Zheng, Y.2
Jin, Y.3
-
21
-
-
84874556405
-
A novel statistical prognostic score model that includes serum CXCL5 levels and clinical classification predicts risk of disease progression and survival of nasopharyngeal carcinoma patients
-
Zhang H, Xia W, Lu X, Sun R, Wang L, et al. (2013) A novel statistical prognostic score model that includes serum CXCL5 levels and clinical classification predicts risk of disease progression and survival of nasopharyngeal carcinoma patients. PLOS ONE 8: e57830.
-
(2013)
PLOS ONE
, vol.8
-
-
Zhang, H.1
Xia, W.2
Lu, X.3
Sun, R.4
Wang, L.5
-
22
-
-
79952502399
-
Combining gene signatures improves prediction of breast cancer survival
-
Zhao X, Rdland EA, Srlie T, Naume B, Langerd A, et al. (2011) Combining gene signatures improves prediction of breast cancer survival. PLoS ONE 6: e17845.
-
(2011)
PLoS ONE
, vol.6
-
-
Zhao, X.1
Rdland, E.A.2
Srlie, T.3
Naume, B.4
Langerd, A.5
-
23
-
-
21744462998
-
On bias, variance, 0/1-loss, and the curse-of-dimensionality
-
Friedman JH (1997) On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery 1: 55-77.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.H.1
-
24
-
-
41549141939
-
Boosting algorithms: Regularization, prediction and model fitting
-
with discussion
-
B?uhlmann P, Hothorn T (2007) Boosting algorithms: Regularization, prediction and model fitting (with discussion). Statistical Science 22: 477-522.
-
(2007)
Statistical Science
, vol.22
, pp. 477-522
-
-
Buhlmann, P.1
Hothorn, T.2
-
25
-
-
0030069896
-
Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
-
DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID
-
Harrell F, Lee KL, Mark DB (1996) Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 15: 361-387. (Pubitemid 26072233)
-
(1996)
Statistics in Medicine
, vol.15
, Issue.4
, pp. 361-387
-
-
Harrell Jr., F.E.1
Lee, K.L.2
Mark, D.B.3
-
26
-
-
15044357936
-
Survival model predictive accuracy and ROC curves
-
DOI 10.1111/j.0006-341X.2005.030814.x
-
Heagerty PJ, Zheng Y (2005) Survival model predictive accuracy and ROC curves. Biometrics 61: 92-105. (Pubitemid 40380968)
-
(2005)
Biometrics
, vol.61
, Issue.1
, pp. 92-105
-
-
Heagerty, P.J.1
Zheng, Y.2
-
27
-
-
84896929557
-
-
PubMed
-
PubMed (2013). US national library of medicine national institutes of health. URL http://www.ncbi.nlm.nih.gov/pubmed/.
-
(2013)
-
-
-
28
-
-
0024801278
-
Projecting individualized probabilities of developing breast cancer for white females who are being examined annually
-
Gail MH, Brinton LA, Byar DP, Corle DK, Green SB, et al. (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. Journal of the National Cancer Institute 81: 1879-1886. (Pubitemid 20026073)
-
(1989)
Journal of the National Cancer Institute
, vol.81
, Issue.24
, pp. 1879-1886
-
-
Gail, M.H.1
Brinton, L.A.2
Byar, D.P.3
Corle, D.K.4
Green, S.B.5
Schairer, C.6
Mulvihill, J.J.7
-
29
-
-
27544436222
-
Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population
-
DOI 10.1007/s10549-005-5152-4
-
Tice J, Cummings S, Ziv E, Kerlikowske K (2005) Mammographic breast density and the gail model for breast cancer risk prediction in a screening population. Breast Cancer Research and Treatment 94: 115-122. (Pubitemid 41547108)
-
(2005)
Breast Cancer Research and Treatment
, vol.94
, Issue.2
, pp. 115-122
-
-
Tice, J.A.1
Cummings, S.R.2
Ziv, E.3
Kerlikowske, K.4
-
30
-
-
30944433977
-
A time-dependent discrimination index for survival data
-
DOI 10.1002/sim.2427
-
Antolini L, Boracchi P, Biganzoli E (2005) A time-dependent discrimination index for survival data. Statistics in Medicine 24: 3927-3944. (Pubitemid 43115739)
-
(2005)
Statistics in Medicine
, vol.24
, Issue.24
, pp. 3927-3944
-
-
Antolini, L.1
Boracchi, P.2
Biganzoli, E.3
-
33
-
-
0034164230
-
ADDITIVE LOGISTIC REGRESSION: A STATISTICAL VIEW OF BOOSTING
-
Friedman JH, Hastie T, Tibshirani R (2000) Additive logistic regression: A statistical view of boosting (with discussion). The Annals of Statistics 28: 337-407. (Pubitemid 33227445)
-
(2000)
Annals of Statistics
, vol.28
, Issue.2 SPI
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
34
-
-
28944437658
-
Regularized ROC method for disease classification and biomarker selection with microarray data
-
DOI 10.1093/bioinformatics/bti724
-
Ma S, Huang J (2005) Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics 21: 4356-4362. (Pubitemid 41782925)
-
(2005)
Bioinformatics
, vol.21
, Issue.24
, pp. 4356-4362
-
-
Ma, S.1
Huang, J.2
-
35
-
-
33745157294
-
Boosting for high-dimensional linear models
-
Buehlmann P (2006) Boosting for high-dimensional linear models. The Annals of Statistics : 559-583.
-
(2006)
The Annals of Statistics
, pp. 559-583
-
-
Buehlmann, P.1
-
38
-
-
84858743801
-
The importance of knowing when to stop. A sequential stopping rule for component-wise gradient boosting
-
Mayr A, Hofner B, Schmid M (2012) The importance of knowing when to stop. A sequential stopping rule for component-wise gradient boosting. Methods of Information in Medicine 51: 178-186.
-
(2012)
Methods of Information in Medicine
, vol.51
, pp. 178-186
-
-
Mayr, A.1
Hofner, B.2
Schmid, M.3
-
39
-
-
84863304598
-
-
R Core Team R Foundation for Statistical Computing, Vienna, Austria
-
R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. ISBN 3-900051-07-0.
-
(2013)
R: A Language and Environment for Statistical Computing
-
-
-
40
-
-
33750623605
-
An empirical study of univariate and genetic algorithm-based feature selection in binary classification with microarray data
-
Lecocke M, Hess K (2006) An empirical study of univariate and genetic algorithm-based feature selection in binary classification with microarray data. Cancer Informatics 2: 313-327. (Pubitemid 44691090)
-
(2006)
Cancer Informatics
, vol.2
, pp. 313-327
-
-
Lecocke, M.1
Hess, K.2
-
42
-
-
84859815011
-
Generalized additive models for location, scale and shape for high-dimensional data - A exible approach based on boosting
-
Mayr A, Fenske N, Hofner B, Kneib T, Schmid M (2012) Generalized additive models for location, scale and shape for high-dimensional data - a exible approach based on boosting. Journal of the Royal Statistical Society: Series C (Applied Statistics) 61: 403-427.
-
(2012)
Journal of the Royal Statistical Society: Series C (Applied Statistics)
, vol.61
, pp. 403-427
-
-
Mayr, A.1
Fenske, N.2
Hofner, B.3
Kneib, T.4
Schmid, M.5
-
45
-
-
33745466826
-
Survival ensembles
-
Hothorn T, B?uhlmann P, Dudoit S, Molinaro A, Van Der Laan M (2006) Survival ensembles. Biostatistics 7: 355-373.
-
(2006)
Biostatistics
, vol.7
, pp. 355-373
-
-
Hothorn, T.1
Buhlmann, P.2
Dudoit, S.3
Molinaro, A.4
Van Der Laan, M.5
-
46
-
-
47349125398
-
Flexible boosting of accelerated failure time models
-
Schmid M, Hothorn T (2008) Flexible boosting of accelerated failure time models. BMC Bioinformatics 9: 269.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 269
-
-
Schmid, M.1
Hothorn, T.2
-
47
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
DOI 10.1038/415530a
-
van't Veer LJ, Dai HY, van de Vijver MJ, He YDD, Hart AAM, et al. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415: 530-536. (Pubitemid 34130608)
-
(2002)
Nature
, vol.415
, Issue.6871
, pp. 530-536
-
-
Van't, V.L.J.1
Dai, H.2
Van De, V.M.J.3
He, Y.D.4
Hart, A.A.M.5
Mao, M.6
Peterse, H.L.7
Van Der, K.K.8
Marton, M.J.9
Witteveen, A.T.10
Schreiber, G.J.11
Kerkhoven, R.M.12
Roberts, C.13
Linsley, P.S.14
Bernards, R.15
Friend, S.H.16
-
48
-
-
33748631068
-
Cross-validated Cox regression on microarray gene expression data
-
DOI 10.1002/sim.2353
-
van Houwelingen HC, Bruinsma T, Hart AA, van't Veer LJ, Wessels LF (2006) Cross-validated cox regression on microarray gene expression data. Statistics in Medicine 25: 3201-3216. (Pubitemid 44377341)
-
(2006)
Statistics in Medicine
, vol.25
, Issue.18
, pp. 3201-3216
-
-
Van Houwelingen, H.C.1
Bruinsma, T.2
Hart, A.A.M.3
Van't, V.L.J.4
Wessels, L.F.A.5
-
49
-
-
3242770671
-
Overall C as a measure of discrimination in survival analysis: Model speci-c population value and confidence interval estimation
-
Pencina MJ, D'Agostino RB (2004) Overall C as a measure of discrimination in survival analysis: Model speci-c population value and confidence interval estimation. Statistics in Medicine 23: 2109-2123.
-
(2004)
Statistics in Medicine
, vol.23
, pp. 2109-2123
-
-
Pencina, M.J.1
D'Agostino, R.B.2
-
50
-
-
79953154460
-
Marker selection via maximizing the partial area under the ROC curve of linear risk scores
-
Wang Z, Chang Y (2011) Marker selection via maximizing the partial area under the ROC curve of linear risk scores. Biostatistics 12: 369-385.
-
(2011)
Biostatistics
, vol.12
, pp. 369-385
-
-
Wang, Z.1
Chang, Y.2
-
51
-
-
84873517125
-
A PAUC-based estimation technique for disease classification and biomarker selection
-
Schmid M, Hothorn T, Krause F, Rabe C (2012) A PAUC-based estimation technique for disease classification and biomarker selection. Statistical Applications in Genetics and Molecular Biology 11, Article 3.
-
(2012)
Statistical Applications in Genetics and Molecular Biology
, vol.11
, pp. 3
-
-
Schmid, M.1
Hothorn, T.2
Krause, F.3
Rabe, C.4
|