메뉴 건너뛰기




Volumn 9, Issue 1, 2014, Pages

Boosting the concordance index for survival data - A unified framework to derive and evaluate biomarker combinations

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 84896968781     PISSN: None     EISSN: 19326203     Source Type: Journal    
DOI: 10.1371/journal.pone.0084483     Document Type: Article
Times cited : (97)

References (51)
  • 4
    • 12744266814 scopus 로고    scopus 로고
    • Partial Cox regression analysis for high-dimensional microarray gene expression data
    • Li H, Gui J (2004) Partial Cox regression analysis for high-dimensional microarray gene expression data. Bioinformatics 20: 208-215.
    • (2004) Bioinformatics , vol.20 , pp. 208-215
    • Li, H.1    Gui, J.2
  • 5
    • 19344363035 scopus 로고    scopus 로고
    • Gene expression signature of fibroblast serum response predicts human cancer progression: Similarities between tumors and wounds
    • Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, et al. (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: Similarities between tumors and wounds. PLoS Biology 2.
    • (2004) PLoS Biology , pp. 2
    • Chang, H.Y.1    Sneddon, J.B.2    Alizadeh, A.A.3    Sood, R.4    West, R.B.5
  • 9
    • 79551625666 scopus 로고    scopus 로고
    • Ranking prognosis markers in cancer genomic studies
    • Ma S, Song X (2011) Ranking prognosis markers in cancer genomic studies. Brie-ngs in Bioinformatics 12: 33-40.
    • (2011) Brie-ngs in Bioinformatics , vol.12 , pp. 33-40
    • Ma, S.1    Song, X.2
  • 11
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani R (1997) The lasso method for variable selection in the Cox model. Statistics in Medicine 16: 385-395.
    • (1997) Statistics in Medicine , vol.16 , pp. 385-395
    • Tibshirani, R.1
  • 12
    • 77952568988 scopus 로고    scopus 로고
    • 1 penalized estimation in the Cox proportional hazards model
    • 1 penalized estimation in the Cox proportional hazards model. Biometrical Journal 52: 70-84.
    • (2010) Biometrical Journal , vol.52 , pp. 70-84
    • Goeman, J.J.1
  • 13
    • 0043130665 scopus 로고    scopus 로고
    • Kernel cox regression models for linking gene expression profiles to censored survival data
    • Li H, Luan Y (2002) Kernel cox regression models for linking gene expression profiles to censored survival data. In: Pacific Symposium on Biocomputing. volume 8, p. 65.
    • (2002) Pacific Symposium on Biocomputing , vol.8 , pp. 65
    • Li, H.1    Luan, Y.2
  • 14
    • 21444446838 scopus 로고    scopus 로고
    • Penalized Cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data
    • DOI 10.1093/bioinformatics/bti422
    • Gui J, Li H (2005) Penalized cox regression analysis in the high-dimensional and low-sample size settings, with applications to microarray gene expression data. Bioinformatics 21: 3001-3008. (Pubitemid 40916425)
    • (2005) Bioinformatics , vol.21 , Issue.13 , pp. 3001-3008
    • Gui, J.1    Li, H.2
  • 15
    • 84866436885 scopus 로고    scopus 로고
    • A comparison of estimators to evaluate the discriminatory power of time-to-event models
    • Schmid M, Potapov S (2012) A comparison of estimators to evaluate the discriminatory power of time-to-event models. Statistics in Medicine 31: 2588-2609.
    • (2012) Statistics in Medicine , vol.31 , pp. 2588-2609
    • Schmid, M.1    Potapov, S.2
  • 17
    • 0021135218 scopus 로고
    • Regression modelling strategies for improved prognostic prediction
    • Harrell FE, Lee KL, Califf, R M (1984) Regression modeling strategies for improved prognostic prediction. Statistics in Medicine 3: 143-152. (Pubitemid 14052973)
    • (1984) Statistics in Medicine , vol.3 , Issue.2 , pp. 143-152
    • Harrell Jr., F.E.1    Lee, K.L.2
  • 18
    • 79954466848 scopus 로고    scopus 로고
    • On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data
    • Uno H, Cai T, Pencina MJ, D'Agostino RB, Wei LJ (2011) On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Statistics in Medicine 30: 1105-1117.
    • (2011) Statistics in Medicine , vol.30 , pp. 1105-1117
    • Uno, H.1    Cai, T.2    Pencina, M.J.3    D'Agostino, R.B.4    Wei, L.J.5
  • 19
    • 33745605205 scopus 로고    scopus 로고
    • CASPAR: A hierarchical bayesian approach to predict survival times in cancer from gene expression data
    • DOI 10.1093/bioinformatics/btl103
    • Kaderali L, Zander T, Faigle U, Wolf J, Schultze JL, et al. (2006) CASPAR: A hierarchical bayesian approach to predict survival times in cancer from gene expression data. Bioinformatics 22: 1495-1502. (Pubitemid 43985321)
    • (2006) Bioinformatics , vol.22 , Issue.12 , pp. 1495-1502
    • Kaderali, L.1    Zander, T.2    Faigle, U.3    Wolf, J.4    Schultze, J.L.5    Schrader, R.6
  • 20
    • 39149116738 scopus 로고    scopus 로고
    • Evaluating the ROC performance of markers for future events
    • Pepe MS, Zheng Y, Jin Y (2008) Evaluating the ROC performance of markers for future events. Lifetime Data Analysis 14: 86-113.
    • (2008) Lifetime Data Analysis , vol.14 , pp. 86-113
    • Pepe, M.S.1    Zheng, Y.2    Jin, Y.3
  • 21
    • 84874556405 scopus 로고    scopus 로고
    • A novel statistical prognostic score model that includes serum CXCL5 levels and clinical classification predicts risk of disease progression and survival of nasopharyngeal carcinoma patients
    • Zhang H, Xia W, Lu X, Sun R, Wang L, et al. (2013) A novel statistical prognostic score model that includes serum CXCL5 levels and clinical classification predicts risk of disease progression and survival of nasopharyngeal carcinoma patients. PLOS ONE 8: e57830.
    • (2013) PLOS ONE , vol.8
    • Zhang, H.1    Xia, W.2    Lu, X.3    Sun, R.4    Wang, L.5
  • 22
    • 79952502399 scopus 로고    scopus 로고
    • Combining gene signatures improves prediction of breast cancer survival
    • Zhao X, Rdland EA, Srlie T, Naume B, Langerd A, et al. (2011) Combining gene signatures improves prediction of breast cancer survival. PLoS ONE 6: e17845.
    • (2011) PLoS ONE , vol.6
    • Zhao, X.1    Rdland, E.A.2    Srlie, T.3    Naume, B.4    Langerd, A.5
  • 23
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • Friedman JH (1997) On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Mining and Knowledge Discovery 1: 55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 24
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • with discussion
    • B?uhlmann P, Hothorn T (2007) Boosting algorithms: Regularization, prediction and model fitting (with discussion). Statistical Science 22: 477-522.
    • (2007) Statistical Science , vol.22 , pp. 477-522
    • Buhlmann, P.1    Hothorn, T.2
  • 25
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID
    • Harrell F, Lee KL, Mark DB (1996) Tutorial in biostatistics multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 15: 361-387. (Pubitemid 26072233)
    • (1996) Statistics in Medicine , vol.15 , Issue.4 , pp. 361-387
    • Harrell Jr., F.E.1    Lee, K.L.2    Mark, D.B.3
  • 26
    • 15044357936 scopus 로고    scopus 로고
    • Survival model predictive accuracy and ROC curves
    • DOI 10.1111/j.0006-341X.2005.030814.x
    • Heagerty PJ, Zheng Y (2005) Survival model predictive accuracy and ROC curves. Biometrics 61: 92-105. (Pubitemid 40380968)
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 92-105
    • Heagerty, P.J.1    Zheng, Y.2
  • 27
    • 84896929557 scopus 로고    scopus 로고
    • PubMed
    • PubMed (2013). US national library of medicine national institutes of health. URL http://www.ncbi.nlm.nih.gov/pubmed/.
    • (2013)
  • 29
    • 27544436222 scopus 로고    scopus 로고
    • Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population
    • DOI 10.1007/s10549-005-5152-4
    • Tice J, Cummings S, Ziv E, Kerlikowske K (2005) Mammographic breast density and the gail model for breast cancer risk prediction in a screening population. Breast Cancer Research and Treatment 94: 115-122. (Pubitemid 41547108)
    • (2005) Breast Cancer Research and Treatment , vol.94 , Issue.2 , pp. 115-122
    • Tice, J.A.1    Cummings, S.R.2    Ziv, E.3    Kerlikowske, K.4
  • 30
    • 30944433977 scopus 로고    scopus 로고
    • A time-dependent discrimination index for survival data
    • DOI 10.1002/sim.2427
    • Antolini L, Boracchi P, Biganzoli E (2005) A time-dependent discrimination index for survival data. Statistics in Medicine 24: 3927-3944. (Pubitemid 43115739)
    • (2005) Statistics in Medicine , vol.24 , Issue.24 , pp. 3927-3944
    • Antolini, L.1    Boracchi, P.2    Biganzoli, E.3
  • 33
    • 0034164230 scopus 로고    scopus 로고
    • ADDITIVE LOGISTIC REGRESSION: A STATISTICAL VIEW OF BOOSTING
    • Friedman JH, Hastie T, Tibshirani R (2000) Additive logistic regression: A statistical view of boosting (with discussion). The Annals of Statistics 28: 337-407. (Pubitemid 33227445)
    • (2000) Annals of Statistics , vol.28 , Issue.2 SPI , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 34
    • 28944437658 scopus 로고    scopus 로고
    • Regularized ROC method for disease classification and biomarker selection with microarray data
    • DOI 10.1093/bioinformatics/bti724
    • Ma S, Huang J (2005) Regularized ROC method for disease classification and biomarker selection with microarray data. Bioinformatics 21: 4356-4362. (Pubitemid 41782925)
    • (2005) Bioinformatics , vol.21 , Issue.24 , pp. 4356-4362
    • Ma, S.1    Huang, J.2
  • 35
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • Buehlmann P (2006) Boosting for high-dimensional linear models. The Annals of Statistics : 559-583.
    • (2006) The Annals of Statistics , pp. 559-583
    • Buehlmann, P.1
  • 38
    • 84858743801 scopus 로고    scopus 로고
    • The importance of knowing when to stop. A sequential stopping rule for component-wise gradient boosting
    • Mayr A, Hofner B, Schmid M (2012) The importance of knowing when to stop. A sequential stopping rule for component-wise gradient boosting. Methods of Information in Medicine 51: 178-186.
    • (2012) Methods of Information in Medicine , vol.51 , pp. 178-186
    • Mayr, A.1    Hofner, B.2    Schmid, M.3
  • 39
    • 84863304598 scopus 로고    scopus 로고
    • R Core Team R Foundation for Statistical Computing, Vienna, Austria
    • R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. ISBN 3-900051-07-0.
    • (2013) R: A Language and Environment for Statistical Computing
  • 40
    • 33750623605 scopus 로고    scopus 로고
    • An empirical study of univariate and genetic algorithm-based feature selection in binary classification with microarray data
    • Lecocke M, Hess K (2006) An empirical study of univariate and genetic algorithm-based feature selection in binary classification with microarray data. Cancer Informatics 2: 313-327. (Pubitemid 44691090)
    • (2006) Cancer Informatics , vol.2 , pp. 313-327
    • Lecocke, M.1    Hess, K.2
  • 46
    • 47349125398 scopus 로고    scopus 로고
    • Flexible boosting of accelerated failure time models
    • Schmid M, Hothorn T (2008) Flexible boosting of accelerated failure time models. BMC Bioinformatics 9: 269.
    • (2008) BMC Bioinformatics , vol.9 , pp. 269
    • Schmid, M.1    Hothorn, T.2
  • 49
    • 3242770671 scopus 로고    scopus 로고
    • Overall C as a measure of discrimination in survival analysis: Model speci-c population value and confidence interval estimation
    • Pencina MJ, D'Agostino RB (2004) Overall C as a measure of discrimination in survival analysis: Model speci-c population value and confidence interval estimation. Statistics in Medicine 23: 2109-2123.
    • (2004) Statistics in Medicine , vol.23 , pp. 2109-2123
    • Pencina, M.J.1    D'Agostino, R.B.2
  • 50
    • 79953154460 scopus 로고    scopus 로고
    • Marker selection via maximizing the partial area under the ROC curve of linear risk scores
    • Wang Z, Chang Y (2011) Marker selection via maximizing the partial area under the ROC curve of linear risk scores. Biostatistics 12: 369-385.
    • (2011) Biostatistics , vol.12 , pp. 369-385
    • Wang, Z.1    Chang, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.