메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages 1001-1024

Sparse Boosting

Author keywords

Lasso; Minimum description length (MDL); Model selection; Nonnegative garrote; Regression

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; ERROR ANALYSIS; LINEAR SYSTEMS; MATHEMATICAL MODELS; PROBLEM SOLVING; REGRESSION ANALYSIS;

EID: 33745125391     PISSN: 15337928     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (90)

References (25)
  • 1
    • 51249190305 scopus 로고
    • Statistical predictor identification
    • H. Akaike. Statistical predictor identification. Ann. Inst. Statist. Math., 22:203, 1970.
    • (1970) Ann. Inst. Statist. Math. , vol.22 , pp. 203
    • Akaike, H.1
  • 2
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • L. Breiman. Better subset regression using the nonnegative garrote. Technometrics, 37:373-384, 1995.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24:123-140, 1996.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman. Arcing classifiers (with discussion). Ann. Statist., 26:801-849, 1998.
    • (1998) Ann. Statist. , vol.26 , pp. 801-849
    • Breiman, L.1
  • 5
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games & arcing algorithms
    • L. Breiman. Prediction games & arcing algorithms. Neural Computation, 11:1493-1517, 1999.
    • (1999) Neural Computation , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 6
    • 33745157294 scopus 로고    scopus 로고
    • Boosting for high-dimensional linear models
    • To appear
    • P. Bühlmann. Boosting for high-dimensional linear models. To appear in Ann. Statist., 34, 2006.
    • (2006) Ann. Statist. , vol.34
    • Bühlmann, P.1
  • 10
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • J. H. Friedman. Greedy function approximation: a gradient boosting machine. Ann.Statist., 29: 1189-1232, 2001.
    • (2001) Ann.Statist. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 11
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J. H. Friedman. Multivariate adaptive regression splines (with discussion). Ann.Statist., 19:1-141, 1991.
    • (1991) Ann.Statist. , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 12
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting (with discussion). Ann. Statist., 28:337-407, 2000.
    • (2000) Ann. Statist. , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 0141879236 scopus 로고    scopus 로고
    • Model selection and minimum description length principle
    • M. Hansen and B. Yu. Model selection and minimum description length principle. J. Amer. Statist. Assoc., 96:746-774, 2001.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 746-774
    • Hansen, M.1    Yu, B.2
  • 17
    • 9444269961 scopus 로고    scopus 로고
    • On the bayes-risk consistency of regularized boosting methods
    • disc. pp. 85-134
    • G. Lugosi and N. Vayatis. On the bayes-risk consistency of regularized boosting methods (with discussion). Ann. Statist., 32:30-55 (disc. pp. 85-134), 2004.
    • (2004) Ann. Statist. , vol.32 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 18
    • 0027842081 scopus 로고
    • Matching pursuits with time-frequency dictionaries
    • S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Proc., 41:3397-3415, 1993.
    • (1993) IEEE Trans. Signal Proc. , vol.41 , pp. 3397-3415
    • Mallat, S.1    Zhang, Z.2
  • 21
    • 0036643047 scopus 로고    scopus 로고
    • Sparse regression ensembles in infinite and finite hypothesis spaces
    • G. Rätsch, A. Demiriz, and K. Bennett. Sparse regression ensembles in infinite and finite hypothesis spaces. Machine Learning, 48:193-221, 2002.
    • (2002) Machine Learning , vol.48 , pp. 193-221
    • Rätsch, G.1    Demiriz, A.2    Bennett, K.3
  • 22
    • 0002176208 scopus 로고
    • Model selection and prediction: Normal regression
    • T. Speed and B. Yu. Model selection and prediction: normal regression. Ann. Inst. Statist. Math., 45:35-54, 1993.
    • (1993) Ann. Inst. Statist. Math. , vol.45 , pp. 35-54
    • Speed, T.1    Yu, B.2
  • 23
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc., Ser. B, 58: 267-288, 1996.
    • (1996) J. Roy. Statist. Soc., Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.