메뉴 건너뛰기




Volumn , Issue , 2012, Pages 1309-1342

Predictive QSAR modeling: Methods and applications in drug discovery and chemical risk assessment

Author keywords

[No Author keywords available]

Indexed keywords

INDUSTRIAL CHEMICALS; MOLECULAR GRAPHICS; RISK ASSESSMENT;

EID: 84909614516     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-94-007-0711-5_37     Document Type: Chapter
Times cited : (21)

References (152)
  • 5
    • 18944403924 scopus 로고    scopus 로고
    • Chemistry-toxicity relationships for the effects of Di-and trihydroxybenzenes to Tetrahymena pyriformis
    • Aptula, A. O., Roberts, D. W., Cronin, M. T. D., & Schultz, T. W. (2005). Chemistry-toxicity relationships for the effects of Di-and trihydroxybenzenes to Tetrahymena pyriformis. Chemical Research in Toxicology, 18, 844.
    • (2005) Chemical Research in Toxicology , vol.18 , pp. 844
    • Aptula, A.O.1    Roberts, D.W.2    Cronin, M.T.D.3    Schultz, T.W.4
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123.
    • (1996) Machine Learning , vol.24 , pp. 123
    • Breiman, L.1
  • 12
  • 13
    • 0032087816 scopus 로고    scopus 로고
    • Computational methods in molecular diversity and combinatorial chemistry
    • Bures, M. G., &Martin, Y. C. (1998). Computational methods in molecular diversity and combinatorial chemistry. Current Opinion in Chemical Biology, 2, 376.
    • (1998) Current Opinion in Chemical Biology , vol.2 , pp. 376
    • Bures, M.G.1    Martin, Y.C.2
  • 14
    • 27144489164 scopus 로고    scopus 로고
    • Tutorial on support vector machines for pattern recognition
    • Burges, J. C. (1998). Tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 121
    • Burges, J.C.1
  • 15
    • 85027339269 scopus 로고    scopus 로고
    • C5.0
    • C5.0. (2008).
    • (2008)
  • 18
    • 28244452051 scopus 로고    scopus 로고
    • Thresholds as a unifying theme in regulatory toxicology
    • Cheeseman, M. A. (2005). Thresholds as a unifying theme in regulatory toxicology. Food Additives & Contaminants, 22, 900.
    • (2005) Food Additives & Contaminants , vol.22 , pp. 900
    • Cheeseman, M.A.1
  • 19
    • 85027330263 scopus 로고    scopus 로고
    • ChemAxon. (2008). http://www.chemaxon.com.
    • (2008)
  • 20
    • 85027328528 scopus 로고    scopus 로고
    • ChEMBL Database. (2010). http://www.ebi.ac.uk/chembldb/.
    • (2010)
  • 22
    • 41849123468 scopus 로고    scopus 로고
    • An updated steroid benchmark set and its application in the discovery of novel nanomolar ligands of sex hormonebinding globulin
    • Cherkasov, A. (2008). An updated steroid benchmark set and its application in the discovery of novel nanomolar ligands of sex hormonebinding globulin. Journal of Medicinal Chemistry, 51, 2047.
    • (2008) Journal of Medicinal Chemistry , vol.51 , pp. 2047
    • Cherkasov, A.1
  • 23
    • 0032012086 scopus 로고    scopus 로고
    • Rational combinatorial library design. 2. Rational design of targeted combinatorial peptide libraries using chemical similarity probe and the inverse QSAR approaches
    • Cho, S. J., Zheng, W., & Tropsha, A. (1998). Rational combinatorial library design. 2. Rational design of targeted combinatorial peptide libraries using chemical similarity probe and the inverse QSAR approaches. The Journal of Chemical Information and Computer Science, 38, 259.
    • (1998) The Journal of Chemical Information and Computer Science , vol.38 , pp. 259
    • Cho, S.J.1    Zheng, W.2    Tropsha, A.3
  • 24
    • 0036667388 scopus 로고    scopus 로고
    • Farnesyltransferase inhibitors: Promises and realities
    • Cox, A. D., & Der, C. J. (2002). Farnesyltransferase inhibitors: Promises and realities. Current Opinion in Pharmacology, 2, 388.
    • (2002) Current Opinion in Pharmacology , vol.2 , pp. 388
    • Cox, A.D.1    Der, C.J.2
  • 25
    • 0034213636 scopus 로고    scopus 로고
    • Predicting blood-brain barrier permeation from three-dimensional molecular structure
    • Crivori, P., Cruciani, G., Carrupt, P. A., & Testa, B. (2000). Predicting blood-brain barrier permeation from three-dimensional molecular structure. The Journal of Medicinal Chemistry, 43, 2204.
    • (2000) The Journal of Medicinal Chemistry , vol.43 , pp. 2204
    • Crivori, P.1    Cruciani, G.2    Carrupt, P.A.3    Testa, B.4
  • 26
    • 0033800498 scopus 로고    scopus 로고
    • Vol-Surf: A new tool for the pharmacokinetic optimization of lead compounds1
    • Cruciani, G., Pastor, M., & Guba, W. (2000). Vol-Surf: A new tool for the pharmacokinetic optimization of lead compounds1. The European Journal of Pharmaceutical Sciences, 11(Suppl 2), S29-S39.
    • (2000) The European Journal of Pharmaceutical Sciences , vol.11 , pp. S29-S39
    • Cruciani, G.1    Pastor, M.2    Guba, W.3
  • 29
    • 85027333551 scopus 로고    scopus 로고
    • Discovery Studio. (2010).
    • (2010)
  • 31
    • 85027350647 scopus 로고    scopus 로고
    • Dragon. (2007). http://www.talete.mi.it/help/dragon _help/index.html?IntroducingDRAGON.
    • (2007)
  • 32
    • 85027376070 scopus 로고    scopus 로고
    • DSSTox. (2008). http://www.epa.gov/nheerl/dsstox/About.html.
    • (2008)
  • 36
    • 85027332415 scopus 로고    scopus 로고
    • Estimating the applicability domain of kernel-based QSPR models using classical descriptor vectors
    • Fechner, N., Hinselmann, G., Schmiedl, C., & Zell, A. (2008). Estimating the applicability domain of kernel-based QSPR models using classical descriptor vectors. pdf. Chemistry Central Journal, 2(Suppl.1), P2.
    • (2008) Chemistry Central Journal , vol.2 , pp. 2
    • Fechner, N.1    Hinselmann, G.2    Schmiedl, C.3    Zell, A.4
  • 37
    • 34248328303 scopus 로고    scopus 로고
    • Integration of in vitro neurotoxicity data with biokinetic modelling for the estimation of in vivo neurotoxicity
    • Forsby, A., & Blaauboer, B. (2007). Integration of in vitro neurotoxicity data with biokinetic modelling for the estimation of in vivo neurotoxicity. Human & Experimental Toxicology, 26, 333.
    • (2007) Human & Experimental Toxicology , vol.26 , pp. 333
    • Forsby, A.1    Blaauboer, B.2
  • 38
    • 78049349961 scopus 로고    scopus 로고
    • Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research
    • Fourches, D., Muratov, E., & Tropsha, A. (2010). Trust, but verify: On the importance of chemical structure curation in cheminformatics and QSAR modeling research. The Journal of Chemical Information and Modeling, 50, 1189-1204.
    • (2010) The Journal of Chemical Information and Modeling , vol.50 , pp. 1189-1204
    • Fourches, D.1    Muratov, E.2    Tropsha, A.3
  • 40
    • 0036589313 scopus 로고    scopus 로고
    • Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection
    • Golbraikh, A., & Tropsha, A. (2002). Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. The Journal of Computer-Aided Molecular Design, 16, 357.
    • (2002) The Journal of Computer-Aided Molecular Design , vol.16 , pp. 357
    • Golbraikh, A.1    Tropsha, A.2
  • 45
    • 34250628103 scopus 로고    scopus 로고
    • Principles of QSAR models validation: Internal and external
    • Gramatica, P. (2007). Principles of QSAR models validation: Internal and external. Qsar & Combinatorial Science, 26, 694.
    • (2007) Qsar & Combinatorial Science , vol.26 , pp. 694
    • Gramatica, P.1
  • 46
    • 42149090634 scopus 로고    scopus 로고
    • Structure-activity landscape index: Identifying and quantifying activity cliffs
    • Guha, R., & Van Drie, J. H. (2008a). Structure-activity landscape index: Identifying and quantifying activity cliffs. The Journal of Chemical Information and Modeling, 48, 646.
    • (2008) The Journal of Chemical Information and Modeling , vol.48 , pp. 646
    • Guha, R.1    Van Drie, J.H.2
  • 47
    • 52049114159 scopus 로고    scopus 로고
    • Assessing how well a modeling protocol captures a structureactivity landscape
    • Guha, R., & Van Drie, J. H. (2008b). Assessing how well a modeling protocol captures a structureactivity landscape. The Journal of Chemical Information and Modeling, 48, 1716.
    • (2008) The Journal of Chemical Information and Modeling , vol.48 , pp. 1716
    • Guha, R.1    Van Drie, J.H.2
  • 48
    • 13044300880 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship modeling of dopamine D(1) antagonists using comparative molecular field analysis, genetic algorithms-partial least-squares, and K nearest neighbor methods
    • Hoffman, B., Cho, S. J., Zheng, W., Wyrick, S., Nichols, D. E., Mailman, R. B., et al. (1999). Quantitative structure-activity relationship modeling of dopamine D(1) antagonists using comparative molecular field analysis, genetic algorithms-partial least-squares, and K nearest neighbor methods. The Journal of Medicinal Chemistry, 42, 3217.
    • (1999) The Journal of Medicinal Chemistry , vol.42 , pp. 3217
    • Hoffman, B.1    Cho, S.J.2    Zheng, W.3    Wyrick, S.4    Nichols, D.E.5    Mailman, R.B.6
  • 50
    • 34250796895 scopus 로고    scopus 로고
    • Stochastic versus stepwise strategies for quantitative structure-activity relationship generation-how much effort may the mining for successful QSAR models take?
    • Horvath, D., Bonachera, F., Solov’ev, V., Gaudin, C., & Varnek, A. (2007). Stochastic versus stepwise strategies for quantitative structure-activity relationship generation-how much effort may the mining for successful QSAR models take? The Journal of Chemical Information and Modeling, 47, 927.
    • (2007) The Journal of Chemical Information and Modeling , vol.47 , pp. 927
    • Horvath, D.1    Bonachera, F.2    Solov’ev, V.3    Gaudin, C.4    Varnek, A.5
  • 51
    • 50249185933 scopus 로고    scopus 로고
    • Differentiation of AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and application of the QSAR classifier to virtual screening
    • Hsieh, J. H., Wang, X. S., Teotico, D., Golbraikh, A., & Tropsha, A. (2008). Differentiation of AmpC beta-lactamase binders vs. decoys using classification kNN QSAR modeling and application of the QSAR classifier to virtual screening. The Journal of Computer-Aided Molecular Design, 22, 593.
    • (2008) The Journal of Computer-Aided Molecular Design , vol.22 , pp. 593
    • Hsieh, J.H.1    Wang, X.S.2    Teotico, D.3    Golbraikh, A.4    Tropsha, A.5
  • 54
    • 13844312649 scopus 로고    scopus 로고
    • ZINC-a free database of commercially available compounds for virtual screening
    • Irwin, J. J., & Shoichet, B. K. (2005). ZINC-a free database of commercially available compounds for virtual screening. The Journal of Chemical Information and Modeling, 45, 177.
    • (2005) The Journal of Chemical Information and Modeling , vol.45 , pp. 177
    • Irwin, J.J.1    Shoichet, B.K.2
  • 55
    • 33847311846 scopus 로고    scopus 로고
    • Genetic toxicity assessment: Employing the best science for human safety evaluation. Part I: Early screening for potential human mutagens
    • Jacobson-Kram, D., & Contrera, J. F. (2007). Genetic toxicity assessment: Employing the best science for human safety evaluation. Part I: Early screening for potential human mutagens. Toxicological Sciences, 96, 16.
    • (2007) Toxicological Sciences , vol.96 , pp. 16
    • Jacobson-Kram, D.1    Contrera, J.F.2
  • 57
    • 27744590591 scopus 로고    scopus 로고
    • QSAR applicabilty domain estimation by projection of the training set descriptor space: A review
    • Jaworska, J., Nikolova-Jeliazkova, N., & Aldenberg, T. (2005). QSAR applicabilty domain estimation by projection of the training set descriptor space: A review. Alternatives to Laboratory Animals, 33, 445.
    • (2005) Alternatives to Laboratory Animals , vol.33 , pp. 445
    • Jaworska, J.1    Nikolova-Jeliazkova, N.2    Aldenberg, T.3
  • 58
    • 39449135396 scopus 로고    scopus 로고
    • The trouble with QSAR (or how I learned to stop worrying and embrace fallacy)
    • Johnson, S. R. (2008). The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). The Journal of Chemical Information and Modeling, 48, 25.
    • (2008) The Journal of Chemical Information and Modeling , vol.48 , pp. 25
    • Johnson, S.R.1
  • 59
    • 0542451678 scopus 로고    scopus 로고
    • Comparative molecular similarity indices: CoMSI
    • H. Kubinyi, G. Folkers, & Y. Martin (Eds.), Great Britain: Kluver
    • Klebe, G. (1998). Comparative molecular similarity indices: CoMSI. In H. Kubinyi, G. Folkers, & Y. Martin (Eds.), 3D QSAR in drug design (pp. 87-104). Great Britain: Kluver.
    • (1998) 3D QSAR in drug design , pp. 87-104
    • Klebe, G.1
  • 61
    • 4344645978 scopus 로고    scopus 로고
    • Can the pharmaceutical industry reduce attrition rates?
    • Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews Drug Discovery, 3, 711.
    • (2004) Nature Reviews Drug Discovery , vol.3 , pp. 711
    • Kola, I.1    Landis, J.2
  • 63
    • 0032474873 scopus 로고    scopus 로고
    • Three-dimensional quantitative similarityactivity relationships (3D QSiAR) from SEAL similarity matrices
    • Kubinyi, H., Hamprecht, F. A., & Mietzner, T. (1998). Three-dimensional quantitative similarityactivity relationships (3D QSiAR) from SEAL similarity matrices. The Journal of Medicinal Chemistry, 41, 2553.
    • (1998) The Journal of Medicinal Chemistry , vol.41 , pp. 2553
    • Kubinyi, H.1    Hamprecht, F.A.2    Mietzner, T.3
  • 65
    • 85027346033 scopus 로고    scopus 로고
    • LigandScout. (2010).
    • (2010)
  • 66
    • 33846108633 scopus 로고    scopus 로고
    • BindingDB: A web-accessible database of experimentally determined proteinligand binding affinities
    • Liu, T., Lin, Y., Wen, X., Jorissen, R. N., & Gilson, M. K. (2007). BindingDB: A web-accessible database of experimentally determined proteinligand binding affinities. Nucleic Acids Research, 35, D198-D201.
    • (2007) Nucleic Acids Research , vol.35 , pp. D198-D201
    • Liu, T.1    Lin, Y.2    Wen, X.3    Jorissen, R.N.4    Gilson, M.K.5
  • 67
    • 33746931581 scopus 로고    scopus 로고
    • On outliers and activity cliffs-why QSAR often disappoints
    • Maggiora, G. M. (2006). On outliers and activity cliffs-why QSAR often disappoints. The Journal of Medicinal Chemistry, 46, 1535.
    • (2006) The Journal of Medicinal Chemistry , vol.46 , pp. 1535
    • Maggiora, G.M.1
  • 68
    • 85027303308 scopus 로고    scopus 로고
    • Maybridge. (2005). http://www daylight com/pro ducts/databases/maybridgehtml.
    • (2005)
  • 69
    • 33845407454 scopus 로고    scopus 로고
    • Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity?
    • Mayer, P., & Reichenberg, F. (2006). Can highly hydrophobic organic substances cause aquatic baseline toxicity and can they contribute to mixture toxicity? Environmental Toxicology & Chemistry, 25, 2639.
    • (2006) Environmental Toxicology & Chemistry , vol.25 , pp. 2639
    • Mayer, P.1    Reichenberg, F.2
  • 70
    • 0000892020 scopus 로고    scopus 로고
    • Clustering of large databases of compounds: Using the MDL “Keys” as structural descriptors
    • McGregor, M. J, & Pallai, P. V. (1997). Clustering of large databases of compounds: Using the MDL “Keys” as structural descriptors. The Journal of Chemical Information and Computer Science, 37, 443.
    • (1997) The Journal of Chemical Information and Computer Science , vol.37 , pp. 443
    • McGregor, M.J.1    Pallai, P.V.2
  • 71
    • 85027317032 scopus 로고    scopus 로고
    • MDDR.SYMYX technologies. (2009). http://www.mdl.com/products / knowledge / drug_data_re port/index.jsp.
    • (2009)
  • 72
    • 26044447233 scopus 로고    scopus 로고
    • Quantitative structure-activity relationship analysis of pyridinone HIV-1 reverse transcriptase inhibitors using the k nearest neighbor method and QSARbased databasemining
    • Medina-Franco, J. L., Golbraikh, A., Oloff, S., Castillo, R., & Tropsha, A. (2005). Quantitative structure-activity relationship analysis of pyridinone HIV-1 reverse transcriptase inhibitors using the k nearest neighbor method and QSARbased databasemining. The Journal of Computer-Aided Molecular Design, 19, 229.
    • (2005) The Journal of Computer-Aided Molecular Design , vol.19 , pp. 229
    • Medina-Franco, J.L.1    Golbraikh, A.2    Oloff, S.3    Castillo, R.4    Tropsha, A.5
  • 73
    • 85027376286 scopus 로고    scopus 로고
    • Molconn-Z. (2007). http://www.edusoft- lc.com/.
    • (2007)
  • 74
    • 85027333891 scopus 로고    scopus 로고
    • Molecular Operating Environment (MOE). (2008). http://www.chemcomp.com/.
    • (2008)
  • 76
    • 85027337189 scopus 로고    scopus 로고
    • nci. (2007). http://dtp.nci.nih.gov/docs/3d_databa se/structural_information/smiles_strings.html.
    • (2007)
  • 77
    • 33749070845 scopus 로고    scopus 로고
    • Comparison of the applicability domain of a quantitative structure-activity relationship for estrogenicity with a large chemical inventory
    • Netzeva, T. I., Gallegos, S. A., & Worth, A. P. (2006). Comparison of the applicability domain of a quantitative structure-activity relationship for estrogenicity with a large chemical inventory. Environmental Toxicology & Chemistry, 25, 1223.
    • (2006) Environmental Toxicology & Chemistry , vol.25 , pp. 1223
    • Netzeva, T.I.1    Gallegos, S.A.2    Worth, A.P.3
  • 78
    • 28444494403 scopus 로고    scopus 로고
    • QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data
    • Netzeva, T. I., & Schultz, T. W. (2005). QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data. Chemosphere, 61, 1632.
    • (2005) Chemosphere , vol.61 , pp. 1632
    • Netzeva, T.I.1    Schultz, T.W.2
  • 80
    • 85027322346 scopus 로고    scopus 로고
    • Neural Networks. (2010). http://www.learnartificialneuralnetworks.com/.
    • (2010)
  • 81
    • 27744520085 scopus 로고    scopus 로고
    • An approach to determining applicability domains for QSAR group contribution models: An analysis of SRC KOWWIN
    • Nikolova-Jeliazkova, N., & Jaworska, J. (2005). An approach to determining applicability domains for QSAR group contribution models: An analysis of SRC KOWWIN. Alternatives to Laboratory Animals, 33, 461.
    • (2005) Alternatives to Laboratory Animals , vol.33 , pp. 461
    • Nikolova-Jeliazkova, N.1    Jaworska, J.2
  • 83
    • 28544437675 scopus 로고    scopus 로고
    • Application of validated QSAR models of D1 dopaminergic antagonists for database mining
    • Oloff, S., Mailman, R. B., & Tropsha, A. (2005). Application of validated QSAR models of D1 dopaminergic antagonists for database mining. The Journal of Medicinal Chemistry, 48, 7322.
    • (2005) The Journal of Medicinal Chemistry , vol.48 , pp. 7322
    • Oloff, S.1    Mailman, R.B.2    Tropsha, A.3
  • 85
    • 33846538483 scopus 로고    scopus 로고
    • Target, chemical and bioactivity databases - integration is key
    • Oprea, T., & Tropsha, A. (2006). Target, chemical and bioactivity databases - integration is key. Drug Discovery Today, 3, 357-365.
    • (2006) Drug Discovery Today , vol.3 , pp. 357-365
    • Oprea, T.1    Tropsha, A.2
  • 87
    • 70349106431 scopus 로고    scopus 로고
    • The status of in vitro toxicity studies in the risk assessment of nanomaterials
    • Park, M. V., Lankveld, D. P., van, L. H., & de Jong, W. H. (2009). The status of in vitro toxicity studies in the risk assessment of nanomaterials. Nanomedicine (Lond), 4, 669.
    • (2009) Nanomedicine (Lond) , vol.4 , pp. 669
    • Park, M.V.1    Lankveld, D.P.2    Van, L.H.3    De Jong, W.H.4
  • 88
    • 0034710718 scopus 로고    scopus 로고
    • GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors
    • Pastor, M., Cruciani, G., McLay, I., Pickett, S., & Clementi, S. (2000). GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors. The Journal of Medicinal Chemistry, 43, 3233.
    • (2000) The Journal of Medicinal Chemistry , vol.43 , pp. 3233
    • Pastor, M.1    Cruciani, G.2    McLay, I.3    Pickett, S.4    Clementi, S.5
  • 89
    • 85027375091 scopus 로고    scopus 로고
    • PDSP. (2010). PDSP. http://pdsp.med.unc.edu.
    • (2010) PDSP
  • 90
    • 33744959236 scopus 로고    scopus 로고
    • A novel protein geranylgeranyltransferase-I inhibitor with high potency, selectivity, and cellular activity
    • Peterson, Y. K., Kelly, P., Weinbaum, C. A., & Casey, P. J. (2006). A novel protein geranylgeranyltransferase-I inhibitor with high potency, selectivity, and cellular activity. The Journal of Biological Chemistry, 281, 12445.
    • (2006) The Journal of Biological Chemistry , vol.281 , pp. 12445
    • Peterson, Y.K.1    Kelly, P.2    Weinbaum, C.A.3    Casey, P.J.4
  • 91
    • 67650717853 scopus 로고    scopus 로고
    • Discovery of geranylgeranyltransferase-I inhibitors with novel scaffolds by the means of quantitative structure-activity relationship modeling, virtual screening, and experimental validation
    • Peterson, Y. K., Wang, X. S., Casey, P. J., &Tropsha, A. (2009). Discovery of geranylgeranyltransferase-I inhibitors with novel scaffolds by the means of quantitative structure-activity relationship modeling, virtual screening, and experimental validation. The Journal of Medicinal Chemistry, 52, 4210.
    • (2009) The Journal of Medicinal Chemistry , vol.52 , pp. 4210
    • Peterson, Y.K.1    Wang, X.S.2    Casey, P.J.3    Tropsha, A.4
  • 92
    • 36949003263 scopus 로고    scopus 로고
    • Quantitative extrapolation of in vitro whole embryo culture embryotoxicity data to developmental toxicity in vivo using the benchmark dose approach
    • Piersma, A. H., Janer, G., Wolterink, G., Bessems, J. G., Hakkert, B. C., & Slob, W. (2008). Quantitative extrapolation of in vitro whole embryo culture embryotoxicity data to developmental toxicity in vivo using the benchmark dose approach. Toxicological Sciences, 101, 91.
    • (2008) Toxicological Sciences , vol.101 , pp. 91
    • Piersma, A.H.1    Janer, G.2    Wolterink, G.3    Bessems, J.G.4    Hakkert, B.C.5    Slob, W.6
  • 93
    • 85027345450 scopus 로고    scopus 로고
    • PubChem
    • PubChem. (2010). http://pubchem.ncbi.nlm.nih. gov/.
    • (2010)
  • 95
    • 85027342459 scopus 로고    scopus 로고
    • Random Forests. (2001).
    • (2001)
  • 96
    • 2942537923 scopus 로고    scopus 로고
    • Cellular models for ADMET predictions and evaluation of drug-drug interactions
    • Riley, R. J., & Kenna, J. G. (2004). Cellular models for ADMET predictions and evaluation of drug-drug interactions. Current Opinion in Drug Discovery & Development, 7, 86.
    • (2004) Current Opinion in Drug Discovery & Development , vol.7 , pp. 86
    • Riley, R.J.1    Kenna, J.G.2
  • 100
    • 54049106433 scopus 로고    scopus 로고
    • Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests
    • Schirmer, K., Tanneberger, K., Kramer, N. I., Volker, D., Scholz, S., Hafner, C., et al. (2008). Developing a list of reference chemicals for testing alternatives to whole fish toxicity tests. Aquatic Toxicology, 90, 128.
    • (2008) Aquatic Toxicology , vol.90 , pp. 128
    • Schirmer, K.1    Tanneberger, K.2    Kramer, N.I.3    Volker, D.4    Scholz, S.5    Hafner, C.6
  • 101
    • 85027303260 scopus 로고    scopus 로고
    • Schrodinger Software. (2010).
    • (2010)
  • 102
    • 0033402225 scopus 로고    scopus 로고
    • Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis
    • Schultz, T. W. (1999). Structure-toxicity relationships for benzenes evaluated with Tetrahymena pyriformis. Chemical Research in Toxicology, 12, 1262.
    • (1999) Chemical Research in Toxicology , vol.12 , pp. 1262
    • Schultz, T.W.1
  • 103
    • 27944440798 scopus 로고    scopus 로고
    • Development and evaluation of QSARs for ecotoxic endpoints: The benzene response-surface model for Tetrahymena toxicity
    • M. T. D. Cronin & D. J. Livingstone (Eds.), Boca Raton: CRC Press
    • Schultz, T. W., & Netzeva, T. I. (2004). Development and evaluation of QSARs for ecotoxic endpoints: The benzene response-surface model for Tetrahymena toxicity. In M. T. D. Cronin & D. J. Livingstone (Eds.), Modeling environmental fate and toxicity (pp. 265-284). Boca Raton: CRC Press.
    • (2004) Modeling environmental fate and toxicity , pp. 265-284
    • Schultz, T.W.1    Netzeva, T.I.2
  • 104
    • 0036913202 scopus 로고    scopus 로고
    • Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis
    • Schultz, T. W., Cronin, M. T., Netzeva, T. I., & Aptula, A. O. (2002). Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis. Chemical Research in Toxicology, 15, 1602.
    • (2002) Chemical Research in Toxicology , vol.15 , pp. 1602
    • Schultz, T.W.1    Cronin, M.T.2    Netzeva, T.I.3    Aptula, A.O.4
  • 105
    • 34250687911 scopus 로고    scopus 로고
    • Assessing applicability domains of toxicological QSARs: Definition, confidence in predicted values, and the role of mechanisms of action
    • Schultz, T. W., Hewitt, M., Netzeva, T. I., & Cronin, M. T. D. (2007). Assessing applicability domains of toxicological QSARs: Definition, confidence in predicted values, and the role of mechanisms of action. QSAR & Combinatorial Science, 26, 238.
    • (2007) QSAR & Combinatorial Science , vol.26 , pp. 238
    • Schultz, T.W.1    Hewitt, M.2    Netzeva, T.I.3    Cronin, M.T.D.4
  • 106
    • 0037313552 scopus 로고    scopus 로고
    • Selection of data sets for QSARs: Analyses of Tetrahymena toxicity from aromatic compounds
    • Schultz, T. W., Netzeva, T. I., & Cronin, M. T. (2003). Selection of data sets for QSARs: Analyses of Tetrahymena toxicity from aromatic compounds. SAR and QSAR in Environmental Research, 14, 59.
    • (2003) SAR and QSAR in Environmental Research , vol.14 , pp. 59
    • Schultz, T.W.1    Netzeva, T.I.2    Cronin, M.T.3
  • 107
    • 13844294282 scopus 로고    scopus 로고
    • Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha, beta-unsaturated chemicals
    • Schultz, T. W., Netzeva, T. I., Roberts, D. W., & Cronin, M. T. (2005a). Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha, beta-unsaturated chemicals. Chemical Research in Toxicology, 18, 330.
    • (2005) Chemical Research in Toxicology , vol.18 , pp. 330
    • Schultz, T.W.1    Netzeva, T.I.2    Roberts, D.W.3    Cronin, M.T.4
  • 108
    • 27944492356 scopus 로고    scopus 로고
    • Toxicity to Tetrahymena and abiotic thiol reactivity of aromatic isothiocyanates
    • Schultz, T. W., Yarbrough, J. W., & Woldemeskel, M. (2005b). Toxicity to Tetrahymena and abiotic thiol reactivity of aromatic isothiocyanates. Cell Biology and Toxicology, 21, 181.
    • (2005) Cell Biology and Toxicology , vol.21 , pp. 181
    • Schultz, T.W.1    Yarbrough, J.W.2    Woldemeskel, M.3
  • 109
    • 0035202274 scopus 로고    scopus 로고
    • Population growth impairment of sulfur-containing compounds to Tetrahymena pyriformis
    • Schultz, T. W., Sinks, G. D., & Miller, L. A. (2001). Population growth impairment of sulfur-containing compounds to Tetrahymena pyriformis. Environmental Toxicology, 16, 543.
    • (2001) Environmental Toxicology , vol.16 , pp. 543
    • Schultz, T.W.1    Sinks, G.D.2    Miller, L.A.3
  • 110
    • 0033652761 scopus 로고    scopus 로고
    • Farnesyltransferase and geranylgeranyltransferase I inhibitors in cancer therapy: Important mechanistic and bench to bedside issues
    • Sebti, S. M., & Hamilton, A. D. (2000). Farnesyltransferase and geranylgeranyltransferase I inhibitors in cancer therapy: Important mechanistic and bench to bedside issues. Expert Opinion on Investigational Drugs, 9, 2767.
    • (2000) Expert Opinion on Investigational Drugs , vol.9 , pp. 2767
    • Sebti, S.M.1    Hamilton, A.D.2
  • 111
    • 85027341245 scopus 로고    scopus 로고
    • The use of dose-response qHTS data as biological descriptors improves the prediction accuracy of QSAR models of acute rat toxicity
    • press
    • Sedykh, A., Zhu, H., Tang, H., Zhang, L., Rusyn, I., Richard, A., et al. The use of dose-response qHTS data as biological descriptors improves the prediction accuracy of QSAR models of acute rat toxicity. Environmental Health Perspect, In press.
    • Environmental Health Perspect
    • Sedykh, A.1    Zhu, H.2    Tang, H.3    Zhang, L.4    Rusyn, I.5    Richard, A.6
  • 112
    • 11144354205 scopus 로고    scopus 로고
    • Application of predictive QSAR models to database mining: Identification and experimental validation of novel anticonvulsant compounds
    • Shen, M., Beguin, C., Golbraikh, A., Stables, J. P., Kohn, H., & Tropsha, A. (2004). Application of predictive QSAR models to database mining: Identification and experimental validation of novel anticonvulsant compounds. Journal of Medicinal Chemistry, 47, 2356.
    • (2004) Journal of Medicinal Chemistry , vol.47 , pp. 2356
    • Shen, M.1    Beguin, C.2    Golbraikh, A.3    Stables, J.P.4    Kohn, H.5    Tropsha, A.6
  • 113
    • 0037142302 scopus 로고    scopus 로고
    • Quantitative structureactivity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbor and simulated annealing PLS methods
    • Shen, M., LeTiran, A., Xiao, Y., Golbraikh, A., Kohn, H., &Tropsha, A. (2002). Quantitative structureactivity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbor and simulated annealing PLS methods. The Journal of Medicinal Chemistry, 45, 2811.
    • (2002) The Journal of Medicinal Chemistry , vol.45 , pp. 2811
    • Shen, M.1    LeTiran, A.2    Xiao, Y.3    Golbraikh, A.4    Kohn, H.5    Tropsha, A.6
  • 114
    • 70350507116 scopus 로고    scopus 로고
    • Structural interpretation of activity cliffs revealed by systematic analysis of structure-activity relationships in analog series
    • Sisay, M. T., Peltason, L., Bajorath, J. (2009). Structural interpretation of activity cliffs revealed by systematic analysis of structure-activity relationships in analog series. The Journal of Chemical Information and Modeling, 49, 2179.
    • (2009) The Journal of Chemical Information and Modeling , vol.49 , pp. 2179
    • Sisay, M.T.1    Peltason, L.2    Bajorath, J.3
  • 115
    • 44749094190 scopus 로고    scopus 로고
    • Estimation of human blood LC50 values for use in modeling of in vitro-in vivo data of the ACuteTox project
    • Sjostrom, M., Kolman, A., Clemedson, C., & Clothier, R. (2008). Estimation of human blood LC50 values for use in modeling of in vitro-in vivo data of the ACuteTox project. Toxicology In Vitro, 22, 1405.
    • (2008) Toxicology In Vitro , vol.22 , pp. 1405
    • Sjostrom, M.1    Kolman, A.2    Clemedson, C.3    Clothier, R.4
  • 117
    • 67650752112 scopus 로고    scopus 로고
    • An update on the genotoxicity and carcinogenicity of marketed pharmaceuticals with reference to in silico predictivity
    • Snyder, R. D. (2009). An update on the genotoxicity and carcinogenicity of marketed pharmaceuticals with reference to in silico predictivity. Environmental and Molecular Mutagenesis, 50, 435.
    • (2009) Environmental and Molecular Mutagenesis , vol.50 , pp. 435
    • Snyder, R.D.1
  • 124
    • 85027355332 scopus 로고    scopus 로고
    • Sybyl-X 1.0
    • Tripos. (2010). Sybyl-X 1.0.
    • (2010)
  • 125
    • 36949023199 scopus 로고    scopus 로고
    • Application of predictive QSAR models to database mining
    • T. Oprea (Eds.), Wiley-VCH
    • Tropsha, A. (2005). Application of predictive QSAR models to database mining. In T. Oprea (Eds.), Cheminformatics in drug discovery (pp. 437-455). Wiley-VCH.
    • (2005) Cheminformatics in drug discovery , pp. 437-455
    • Tropsha, A.1
  • 126
    • 36949022890 scopus 로고    scopus 로고
    • Predictive QSAR modeling workflow, model applicability domains, and virtual screening
    • Tropsha, A., & Golbraikh, A. (2007). Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Current Pharmaceutical Design, 13, 3494.
    • (2007) Current Pharmaceutical Design , vol.13 , pp. 3494
    • Tropsha, A.1    Golbraikh, A.2
  • 127
    • 85046423034 scopus 로고    scopus 로고
    • Predictive quantitative structure-activity relationships modeling: Development and validation of QSAR models
    • J.-L. Faulon & A. Bender (Eds.), The Netherlands: Leiden University, Chapman and Hall/CRC
    • Tropsha, A., & Golbraikh, A. (2010). Predictive quantitative structure-activity relationships modeling: Development and validation of QSAR models. In J.-L. Faulon & A. Bender (Eds.), Handbook of chemoinformatics algorithms. The Netherlands: Leiden University, Chapman and Hall/CRC.
    • (2010) Handbook of chemoinformatics algorithms
    • Tropsha, A.1    Golbraikh, A.2
  • 128
    • 85015746123 scopus 로고    scopus 로고
    • Predictive quantitative structure-activity relationships modeling. Data Preparation and the General Modeling Workflow
    • J.-L. Faulon & A. Bender (Eds.), The Netherland: Leiden University, Chapman and Hall/CRC
    • Tropsha, A., & Golbraikh, A. (2010). Predictive quantitative structure-activity relationships modeling. Data Preparation and the General Modeling Workflow. In J.-L. Faulon & A. Bender (Eds.), Handbook of chemoinformatics algorithms (pp. 175-214). The Netherland: Leiden University, Chapman and Hall/CRC.
    • (2010) Handbook of chemoinformatics algorithms , pp. 175-214
    • Tropsha, A.1    Golbraikh, A.2
  • 129
    • 0035003411 scopus 로고    scopus 로고
    • Identification of the descriptor pharmacophores using variable selection QSAR: Applications to database mining
    • Tropsha, A., & Zheng, W. (2001). Identification of the descriptor pharmacophores using variable selection QSAR: Applications to database mining. Current Pharmaceutical Design, 7, 599.
    • (2001) Current Pharmaceutical Design , vol.7 , pp. 599
    • Tropsha, A.1    Zheng, W.2
  • 130
    • 57649101402 scopus 로고    scopus 로고
    • Tools for evidence-based toxicology: Computational-based strategies as a viable modality for decision support in chemical safety evaluation and risk assessment
    • Valerio, L., Jr. (2008). Tools for evidence-based toxicology: Computational-based strategies as a viable modality for decision support in chemical safety evaluation and risk assessment. Human & Experimental Toxicology, 27, 757.
    • (2008) Human & Experimental Toxicology , vol.27 , pp. 757
    • Valerio, L.1
  • 131
    • 70449528780 scopus 로고    scopus 로고
    • In silico toxicology for the pharmaceutical sciences
    • Valerio, L. G., Jr. (2009). In silico toxicology for the pharmaceutical sciences. Toxicology and Applied Pharmacology, 241, 356.
    • (2009) Toxicology and Applied Pharmacology , vol.241 , pp. 356
    • Valerio, L.G.1
  • 133
    • 6444224986 scopus 로고    scopus 로고
    • Three new consensus QSAR models for the prediction of Ames genotoxicity
    • Votano, J. R., Parham, M., Hall, L. H., Kier, L. B., Oloff, S., Tropsha, A., et al. (2004). Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis, 19, 365.
    • (2004) Mutagenesis , vol.19 , pp. 365
    • Votano, J.R.1    Parham, M.2    Hall, L.H.3    Kier, L.B.4    Oloff, S.5    Tropsha, A.6
  • 134
    • 1842639121 scopus 로고    scopus 로고
    • A comparative QSAR study using CoMFA, HQSAR, and FRED/SKEYS paradigms for estrogen receptor binding affinities of structurally diverse compounds
    • Waller, C. L. (2004). A comparative QSAR study using CoMFA, HQSAR, and FRED/SKEYS paradigms for estrogen receptor binding affinities of structurally diverse compounds. The Journal of Chemical Information and Computer Science, 44, 758.
    • (2004) The Journal of Chemical Information and Computer Science , vol.44 , pp. 758
    • Waller, C.L.1
  • 135
    • 18344394166 scopus 로고    scopus 로고
    • Postprenylation-processing enzymes as new targets in oncogenesis
    • Winter-Vann, A. M, & Casey, P. J. (2005). Postprenylation-processing enzymes as new targets in oncogenesis. Nature Reviews Cancer, 5, 405.
    • (2005) Nature Reviews Cancer , vol.5 , pp. 405
    • Winter-Vann, A.M.1    Casey, P.J.2
  • 137
    • 33646844277 scopus 로고    scopus 로고
    • The art of data mining the minefields of toxicity databases to link chemistry to biology
    • Yang, C., Richard, A. M., & Cross, K. P. (2006). The art of data mining the minefields of toxicity databases to link chemistry to biology. Current Computer-Aided Drug Design, 2, 135.
    • (2006) Current Computer-Aided Drug Design , vol.2 , pp. 135
    • Yang, C.1    Richard, A.M.2    Cross, K.P.3
  • 138
    • 77949898043 scopus 로고    scopus 로고
    • Computational toxicology approaches at the US food and drug administration
    • Yang, C., Valerio, L. G., Jr., & Arvidson, K. B. (2009). Computational toxicology approaches at the US food and drug administration. Alternatives to Laboratory Animals, 37, 523.
    • (2009) Alternatives to Laboratory Animals , vol.37 , pp. 523
    • Yang, C.1    Valerio, L.G.2    Arvidson, K.B.3
  • 139
    • 33748947459 scopus 로고    scopus 로고
    • Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset
    • Yen, S.-J., Lee, Y.-S. (2006). Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset. Lecture Notes in Control and Information Sciences, 344, 731.
    • (2006) Lecture Notes in Control and Information Sciences , vol.344 , pp. 731
    • Yen, S.-J.1    Lee, Y.-S.2
  • 140
    • 0029898894 scopus 로고    scopus 로고
    • Protein prenylation: Molecular mechanisms and functional consequences
    • Zhang, F. L., & Casey, P. J. (1996). Protein prenylation: Molecular mechanisms and functional consequences. Annual Review of Biochemistry, 65, 241.
    • (1996) Annual Review of Biochemistry , vol.65 , pp. 241
    • Zhang, F.L.1    Casey, P.J.2
  • 141
    • 33947228423 scopus 로고    scopus 로고
    • Antitumor agents 252. Application of validated QSAR models to database mining: Discovery of novel tylophorine derivatives as potential anticancer agents
    • Zhang, S., Wei, L., Bastow, K., Zheng, W., Brossi, A., Lee, K. H., et al. (2007). Antitumor agents 252. Application of validated QSAR models to database mining: Discovery of novel tylophorine derivatives as potential anticancer agents. Journal of Computer-Aided Molecular Design, 21, 97.
    • (2007) Journal of Computer-Aided Molecular Design , vol.21 , pp. 97
    • Zhang, S.1    Wei, L.2    Bastow, K.3    Zheng, W.4    Brossi, A.5    Lee, K.H.6
  • 142
    • 46749152924 scopus 로고    scopus 로고
    • QSAR modeling of the blood-brain barrier permeability for diverse organic compounds
    • Zhang, L., Zhu, H., Oprea, T. I., Golbraikh, A., & Tropsha, A. (2008). QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharmaceutical Research, 25, 1902.
    • (2008) Pharmaceutical Research , vol.25 , pp. 1902
    • Zhang, L.1    Zhu, H.2    Oprea, T.I.3    Golbraikh, A.4    Tropsha, A.5
  • 143
    • 0000378338 scopus 로고    scopus 로고
    • Novel variable selection quantitative structure-property relationship approach based on the k-nearestneighbor principle
    • Zheng, W., & Tropsha, A. (2000). Novel variable selection quantitative structure-property relationship approach based on the k-nearestneighbor principle. The Journal of Chemical Information and Computer Science, 40, 185.
    • (2000) The Journal of Chemical Information and Computer Science , vol.40 , pp. 185
    • Zheng, W.1    Tropsha, A.2
  • 144
    • 31344442851 scopus 로고    scopus 로고
    • Training costsensitive neural networks with methods addressing the class imbalance problem
    • Zhou, Z. H., & Liu, X.-Y. (2006). Training costsensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering, 18, 63.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , pp. 63
    • Zhou, Z.H.1    Liu, X.-Y.2
  • 145
    • 45749129400 scopus 로고    scopus 로고
    • Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity
    • Zhu, H., Rusyn, I., Richard, A. M., & Tropsha, A. (2008). Use of cell viability assay data improves the prediction accuracy of conventional quantitative structure-activity relationship models of animal carcinogenicity. Environmental Health Perspect, 116, 506.
    • (2008) Environmental Health Perspect , vol.116 , pp. 506
    • Zhu, H.1    Rusyn, I.2    Richard, A.M.3    Tropsha, A.4
  • 149
    • 69249097465 scopus 로고    scopus 로고
    • A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents
    • Zhu, H., Ye, L., Richard, A., Golbraikh, A., Wright, F. A., Rusyn, I., et al. (2009). A novel two-step hierarchical quantitative structure-activity relationship modeling work flow for predicting acute toxicity of chemicals in rodents. Environmental Health Perspect, 117, 1257.
    • (2009) Environmental Health Perspect , vol.117 , pp. 1257
    • Zhu, H.1    Ye, L.2    Richard, A.3    Golbraikh, A.4    Wright, F.A.5    Rusyn, I.6
  • 151
    • 58149095139 scopus 로고    scopus 로고
    • Promises and pitfalls of quantitative structureactivity relationship approaches for predicting metabolism and toxicity
    • Zvinavashe, E., Murk, A. J., & Rietjens, I. M. (2008). Promises and pitfalls of quantitative structureactivity relationship approaches for predicting metabolism and toxicity. Chemical Research in Toxicology.
    • (2008) Chemical Research in Toxicology
    • Zvinavashe, E.1    Murk, A.J.2    Rietjens, I.M.3
  • 152
    • 57649232215 scopus 로고    scopus 로고
    • On the number of EINECS compounds that can be covered by (Q)SAR models for acute toxicity
    • Zvinavashe, E., Murk, A. J., & Rietjens, I. M. (2009). On the number of EINECS compounds that can be covered by (Q)SAR models for acute toxicity. Toxicology Letters, 184, 67.
    • (2009) Toxicology Letters , vol.184 , pp. 67
    • Zvinavashe, E.1    Murk, A.J.2    Rietjens, I.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.