메뉴 건너뛰기




Volumn , Issue , 2008, Pages 821-827

Enhancing the quality of noisy training data using a genetic algorithm and prototype selection

Author keywords

Genetic algorithm; Noise detection; Outlier detection; Prototype selection

Indexed keywords

BINARY CLASSIFICATIONS; CLASSIFICATION ACCURACIES; DEPENDENT VARIABLES; ENHANCED TRAININGS; NOISE DETECTION; NOVEL TECHNIQUES; OUTLIER DETECTION; PROTOTYPE SELECTION; TRAINING DATA SETS; TRAINING DATUM; BINARY CLASSIFICATION; CLASSIFICATION ACCURACY; ENHANCED TRAINING; TRAINING DATA;

EID: 62749127269     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (10)

References (13)
  • 3
    • 0036104537 scopus 로고    scopus 로고
    • Advances in Instance Selection for Instance-Based Learning Algorithms
    • Brighton, H., and Mellish, C., Advances in Instance Selection for Instance-Based Learning Algorithms, Data Mining and Knowledge Discovery, vol. 6, no. 2, pp. 153-172, 2002.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 6
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • Hodge, V., and Austin, I, A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85-126, 2004.
    • (2004) Artif. Intell. Rev , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, I.2
  • 9
    • 0001778082 scopus 로고
    • Prototype and feature selection by sampling and random mutation hill climbing algorithms
    • Morgan Kaufmann
    • Skalak, D.B., Prototype and feature selection by sampling and random mutation hill climbing algorithms. In Proc. ML-94, Morgan Kaufmann, 1994.
    • (1994) Proc. ML-94
    • Skalak, D.B.1
  • 13
    • 19544372918 scopus 로고    scopus 로고
    • Class noise vs. attribute noise: A quantitative study
    • Zhu, X., and Wu, X., Class noise vs. attribute noise: A quantitative study. Artificial Intelligence Review 22(3) 177-210, 2004.
    • (2004) Artificial Intelligence Review , vol.22 , Issue.3 , pp. 177-210
    • Zhu, X.1    Wu, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.