메뉴 건너뛰기




Volumn 95, Issue 2, 2014, Pages 225-256

An instance level analysis of data complexity

Author keywords

Data complexity; Dataset hardness; Instance hardness

Indexed keywords

HARDNESS; LEARNING SYSTEMS;

EID: 84898809250     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5422-z     Document Type: Article
Times cited : (351)

References (46)
  • 4
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • 10.1145/1007730.1007735
    • Batista, G. E. A. P. A.; Prati, R. C.; Monard, M. C. (2004). A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations Newsletter, 6(1), 20-29.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 7
    • 0039253819 scopus 로고    scopus 로고
    • Lof: Identifying density-based local outliers
    • 10.1145/335191.335388
    • Breunig, M. M.; Kriegel, H. P.; Ng, R. T.; Sander, J. (2000). Lof: identifying density-based local outliers. SIGMOD Record, 29(2), 93-104.
    • (2000) SIGMOD Record , vol.29 , Issue.2 , pp. 93-104
    • Breunig, M.M.1    Kriegel, H.P.2    Ng, R.T.3    Sander, J.4
  • 8
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • Springer Berlin
    • Bridle, J. S. (1989). Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In Neuro-computing: algorithms, architectures and applications (pp. 227-236). Berlin: Springer.
    • (1989) Neuro-computing: Algorithms, Architectures and Applications , pp. 227-236
    • Bridle, J.S.1
  • 9
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • 10.1023/A:1014043630878 1027.68673 1917935
    • Brighton, H.; Mellish, C. (2002). Advances in instance selection for instance-based learning algorithms. Data Mining and Knowledge Discovery, 6(2), 153-172.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.2 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 11
    • 0001858087 scopus 로고
    • Multivariate decision trees
    • 0831.68091
    • Brodley, C. E.; Utgoff, P. E. (1995). Multivariate decision trees. Machine Learning, 19(1), 45-77.
    • (1995) Machine Learning , vol.19 , Issue.1 , pp. 45-77
    • Brodley, C.E.1    Utgoff, P.E.2
  • 13
    • 0002419948 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple Bayesian classifier
    • L. Saitta (eds) Morgan Kaufmann San Mateo
    • Domingos, P.; Pazzani, M. J. (1996). Beyond independence: conditions for the optimality of the simple Bayesian classifier. In L. Saitta (Ed.), ICML (pp. 105-112). San Mateo: Morgan Kaufmann.
    • (1996) ICML , pp. 105-112
    • Domingos, P.1    Pazzani, M.J.2
  • 19
    • 33747739087 scopus 로고
    • Robust decision trees: Removing outliers from databases
    • John, G. H. (1995). Robust decision trees: removing outliers from databases. In Knowledge discovery and data mining (pp. 174-179).
    • (1995) Knowledge Discovery and Data Mining , pp. 174-179
    • John, G.H.1
  • 22
    • 84864227933 scopus 로고    scopus 로고
    • Interpreting and unifying outlier scores
    • Kriegel, H. P.; Kröger, P.; Schubert, E.; Zimek, A. (2011). Interpreting and unifying outlier scores. In SDM (pp. 13-24).
    • (2011) SDM , pp. 13-24
    • Kriegel, H.P.1    Kröger, P.2    Schubert, E.3    Zimek, A.4
  • 23
    • 84863036476 scopus 로고    scopus 로고
    • A metric for unsupervised metalearning
    • Lee, J.; Giraud-Carrier, C. (2011). A metric for unsupervised metalearning. Intelligent Data Analysis, 15(6), 827-841.
    • (2011) Intelligent Data Analysis , vol.15 , Issue.6 , pp. 827-841
    • Lee, J.1    Giraud-Carrier, C.2
  • 25
    • 10044291661 scopus 로고    scopus 로고
    • On classifier domains of competence
    • 1
    • Mansilla, E. B.; Ho, T. K. (2004). On classifier domains of competence. In ICPR (Vol. 1, pp. 136-139).
    • (2004) ICPR , pp. 136-139
    • Mansilla, E.B.1    Ho, T.K.2
  • 26
    • 0000531852 scopus 로고
    • Generalization as search
    • 10.1016/0004-3702(82)90040-6
    • Mitchell, T. M. (1982). Generalization as search. Artifical Intelligence, 18(2), 203-226.
    • (1982) Artifical Intelligence , vol.18 , Issue.2 , pp. 203-226
    • Mitchell, T.M.1
  • 29
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • Platt, J. (2000). Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Advances in large margin classifiers.
    • (2000) Advances in Large Margin Classifiers
    • Platt, J.1
  • 40
    • 0016969272 scopus 로고
    • An experiment with the edited nearest-neighbor rule
    • 10.1109/TSMC.1976.4309523 0332.68081 428853
    • Tomek, I. (1976). An experiment with the edited nearest-neighbor rule. IEEE Transactions on Systems, Man and Cybernetics, 6, 448-452.
    • (1976) IEEE Transactions on Systems, Man and Cybernetics , vol.6 , pp. 448-452
    • Tomek, I.1
  • 41
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong, S.; Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2, 45-66.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 43
    • 0034247206 scopus 로고    scopus 로고
    • Multiboosting: A technique for combining boosting and wagging
    • 10.1023/A:1007659514849
    • Webb, G. I. (2000). Multiboosting: a technique for combining boosting and wagging. Machine Learning, 40(2), 159-196.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 44
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • 10.1162/neco.1996.8.7.1341
    • Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7), 1341-1390.
    • (1996) Neural Computation , vol.8 , Issue.7 , pp. 1341-1390
    • Wolpert, D.H.1
  • 45
    • 0035789316 scopus 로고    scopus 로고
    • Learning and making decisions when costs and probabilities are both unknown
    • Zadrozny, B.; Elkan, C. (2001). Learning and making decisions when costs and probabilities are both unknown. In KDD (pp. 204-213).
    • (2001) KDD , pp. 204-213
    • Zadrozny, B.1    Elkan, C.2
  • 46
    • 0242456763 scopus 로고    scopus 로고
    • Transforming classifier scores into accurate multiclass probability estimates
    • ACM New York
    • Zadrozny, B.; Elkan, C. (2002). Transforming classifier scores into accurate multiclass probability estimates. In KDD (pp. 694-699). New York: ACM.
    • (2002) KDD , pp. 694-699
    • Zadrozny, B.1    Elkan, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.