-
1
-
-
33749539634
-
Outlier detection by active learning
-
New York, NY, USA, ACM
-
N. Abe, B. Zadrozny, and J. Langford. Outlier detection by active learning. In Proc. of the 12th ACM SIGKDD int. conf. on knowl. discov. and data min., pages 504-509, New York, NY, USA, 2006. ACM.
-
(2006)
Proc. of the 12th ACM SIGKDD Int. Conf. on Knowl. Discov. and Data Min
, pp. 504-509
-
-
Abe, N.1
Zadrozny, B.2
Langford, J.3
-
3
-
-
0039253819
-
Lof: Identifying density-based local outliers
-
June
-
M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying density-based local outliers. SIGMOD Record, 29(2):93-104, June 2000.
-
(2000)
SIGMOD Record
, vol.29
, Issue.2
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.T.3
Sander, J.4
-
5
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Dem?sar. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res., 7:1-30, 2006.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
7
-
-
35048836698
-
Mining class outliers: Concepts, algorithms and applications
-
Z. He, J. Z. Huang, X. Xu, and S. Deng. Mining class outliers: Concepts, algorithms and applications. In WAIM '04: Proc. of the Fifth Int. Conf. on Advances in Web-Age Inf. Management, pages 589-599, 2004.
-
(2004)
WAIM '04: Proc. of the Fifth Int. Conf. on Advances in Web-Age Inf. Management
, pp. 589-599
-
-
He, Z.1
Huang, J.Z.2
Xu, X.3
Deng, S.4
-
8
-
-
7544223741
-
A survey of outlier detection methodologies
-
V. Hodge and J. Austin. A survey of outlier detection methodologies. artif. intell. Review, 22(2):85-126, 2004.
-
(2004)
Artif. Intell. Review
, vol.22
, Issue.2
, pp. 85-126
-
-
Hodge, V.1
Austin, J.2
-
9
-
-
33747739087
-
Robust decision trees: Removing outliers from databases
-
AAAI Press
-
G. H. John. Robust decision trees: Removing outliers from databases. In knowl. discov. and Data min., pages 174-179. AAAI Press, 1995.
-
(1995)
Knowl. Discov. and Data Min
, pp. 174-179
-
-
John, G.H.1
-
10
-
-
16244370746
-
Rule-based noise detection for software measurement data
-
IEEE Syst., Man, and Cybern. Society
-
T. M. Khoshgoftaar, N. Seliya, and K. Gao. Rule-based noise detection for software measurement data. In Proc. of the IEEE int. conf. on inf. Reuse and Integration, pages 302-307. IEEE Syst., Man, and Cybern. Society, 2004.
-
(2004)
Proc. of the IEEE Int. Conf. on Inf. Reuse and Integration
, pp. 302-307
-
-
Khoshgoftaar, T.M.1
Seliya, N.2
Gao, K.3
-
11
-
-
78149286827
-
Probabilistic noise identification and data cleaning
-
IEEE Comput. Society, November
-
J. M. Kubica and A. Moore. Probabilistic noise identification and data cleaning. In The Third IEEE int. conf. on Data min., pages 131-138. IEEE Comput. Society, November 2003.
-
(2003)
The Third IEEE Int. Conf. on Data Min
, pp. 131-138
-
-
Kubica, J.M.1
Moore, A.2
-
12
-
-
28444463625
-
A boosting method to detect noisy data
-
X.-D. Liu, C.-Y. Shi, and X.-D. Gu. A boosting method to detect noisy data. In Proc. of 2005 int. conf. on Machine Learning and Cybern., volume 4, pages 2015-2020, 2005.
-
(2005)
Proc. of 2005 Int. Conf. on Machine Learning and Cybern.
, vol.4
, pp. 2015-2020
-
-
Liu, X.-D.1
Shi, C.-Y.2
Gu, X.-D.3
-
13
-
-
33749558210
-
Yale: Rapid prototyping for complex data mining tasks
-
New York, NY, USA, ACM
-
I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. Yale: Rapid prototyping for complex data mining tasks. In KDD '06: Proc. of the 12th ACM SIGKDD int. conf. on knowl. discov. and data min., pages 935-940, New York, NY, USA, 2006. ACM.
-
(2006)
KDD '06: Proc. of the 12th ACM SIGKDD Int. Conf. on Knowl. Discov. and Data Min
, pp. 935-940
-
-
Mierswa, I.1
Wurst, M.2
Klinkenberg, R.3
Scholz, M.4
Euler, T.5
-
15
-
-
25844450147
-
Outlier detection algorithms in data mining systems
-
M. I. Petrovskiy. Outlier detection algorithms in data mining systems. Programming and Comput. Software, 29(4):228-237, 2003.
-
(2003)
Programming and Comput. Software
, vol.29
, Issue.4
, pp. 228-237
-
-
Petrovskiy, M.I.1
-
17
-
-
0039845384
-
Efficient algorithms for mining outliers from large data sets
-
S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. Int. Conf. on Management of Data (SIGMOD), 29(2):427-438, 2000.
-
(2000)
Int. Conf. on Management of Data (SIGMOD)
, vol.29
, Issue.2
, pp. 427-438
-
-
Ramaswamy, S.1
Rastogi, R.2
Shim, K.3
-
18
-
-
80054720391
-
A comparative study of outlier mining and class outlier mining
-
M. K. Saad and N. M. Hewahi. A comparative study of outlier mining and class outlier mining. CS Letters, 1(1), 2009.
-
(2009)
CS Letters
, vol.1
, Issue.1
-
-
Saad, M.K.1
Hewahi, N.M.2
-
26
-
-
33750930804
-
An algorithm for correcting mislabeled data
-
X. Zeng and T. R. Martinez. An algorithm for correcting mislabeled data. intell. Data Analysis, 5:491-502, 2001.
-
(2001)
Intell. Data Analysis
, vol.5
, pp. 491-502
-
-
Zeng, X.1
Martinez, T.R.2
|