-
2
-
-
84887368980
-
A network of heterochronic genes including Imp1 regulates temporal changes in stem cell properties
-
Nishino J, Kim S, Zhu Y, Zhu H, Morrison SJ. A network of heterochronic genes including Imp1 regulates temporal changes in stem cell properties. Elife 2013; 2: e00924.
-
(2013)
Elife
, vol.2
, pp. e00924
-
-
Nishino, J.1
Kim, S.2
Zhu, Y.3
Zhu, H.4
Morrison, S.J.5
-
3
-
-
77957551487
-
Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress
-
Chuikov S, Levi BP, Smith ML, Morrison SJ. Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat Cell Biol 2010; 12: 999-1006.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 999-1006
-
-
Chuikov, S.1
Levi, B.P.2
Smith, M.L.3
Morrison, S.J.4
-
4
-
-
48149095026
-
Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells
-
Goyama S, Yamamoto G, Shimabe M et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 2008; 3: 207-20.
-
(2008)
Cell Stem Cell
, vol.3
, pp. 207-220
-
-
Goyama, S.1
Yamamoto, G.2
Shimabe, M.3
-
5
-
-
34547668398
-
Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells
-
Kim I, Saunders TL, Morrison SJ. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 2007; 130: 470-83.
-
(2007)
Cell
, vol.130
, pp. 470-483
-
-
Kim, I.1
Saunders, T.L.2
Morrison, S.J.3
-
6
-
-
0038349957
-
Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells
-
Park I, Qian D, Kiel M et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302-5.
-
(2003)
Nature
, vol.423
, pp. 302-305
-
-
Park, I.1
Qian, D.2
Kiel, M.3
-
7
-
-
34548413178
-
Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal
-
McMahon KA, Hiew SY-L, Hadjur S et al. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 2007; 1: 338-45.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 338-345
-
-
McMahon, K.A.1
Hiew, S.-L.2
Hadjur, S.3
-
8
-
-
34548462072
-
Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors
-
Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 2007; 1: 324-37.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 324-337
-
-
Jude, C.D.1
Climer, L.2
Xu, D.3
Artinger, E.4
Fisher, J.K.5
Ernst, P.6
-
9
-
-
0037673984
-
Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells
-
Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255-60.
-
(2003)
Nature
, vol.423
, pp. 255-260
-
-
Lessard, J.1
Sauvageau, G.2
-
10
-
-
19944400789
-
Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice
-
Ema H, Sudo K, Seita J et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev Cell 2005; 8: 907-14.
-
(2005)
Dev Cell
, vol.8
, pp. 907-914
-
-
Ema, H.1
Sudo, K.2
Seita, J.3
-
11
-
-
33646376411
-
Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
-
Yilmaz OH, Valdez R, Theisen BK et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475-82.
-
(2006)
Nature
, vol.441
, pp. 475-482
-
-
Yilmaz, O.H.1
Valdez, R.2
Theisen, B.K.3
-
12
-
-
84875000886
-
Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
-
Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 2013; 495: 231-5.
-
(2013)
Nature
, vol.495
, pp. 231-235
-
-
Ding, L.1
Morrison, S.J.2
-
13
-
-
84856147560
-
Endothelial and perivascular cells maintain haematopoietic stem cells
-
Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012; 481: 457-62.
-
(2012)
Nature
, vol.481
, pp. 457-462
-
-
Ding, L.1
Saunders, T.L.2
Enikolopov, G.3
Morrison, S.J.4
-
14
-
-
84902292966
-
Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies
-
Joseph C, Quach JM, Walkley CR, Lane SW, Lo Celso C, Purton LE. Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell 2013; 13: 520-33.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 520-533
-
-
Joseph, C.1
Quach, J.M.2
Walkley, C.R.3
Lane, S.W.4
Lo Celso, C.5
Purton, L.E.6
-
15
-
-
0004179612
-
-
New York, NY, USA: The MacMillan Company
-
Needham J. Chemical Embryology. New York, NY, USA: The MacMillan Company, 1931.
-
(1931)
Chemical Embryology
-
-
Needham, J.1
-
16
-
-
84862994618
-
mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake
-
Yilmaz ÖH, Katajisto P, Lamming DW et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 2012; 486: 490-5.
-
(2012)
Nature
, vol.486
, pp. 490-495
-
-
Yilmaz, O.1
Katajisto, P.2
Lamming, D.W.3
-
17
-
-
78650175195
-
Stem cell dynamics in response to nutrient availability
-
McLeod CJ, Wang L, Wong C, Jones DL. Stem cell dynamics in response to nutrient availability. Curr Biol 2010; 20: 2100-5.
-
(2010)
Curr Biol
, vol.20
, pp. 2100-2105
-
-
McLeod, C.J.1
Wang, L.2
Wong, C.3
Jones, D.L.4
-
18
-
-
84885739806
-
Beyond the niche: tissue-level coordination of stem cell dynamics
-
O'Brien LE, Bilder D. Beyond the niche: tissue-level coordination of stem cell dynamics. Annu Rev Cell Dev Biol 2013; 29: 107-36.
-
(2013)
Annu Rev Cell Dev Biol
, vol.29
, pp. 107-136
-
-
O'Brien, L.E.1
Bilder, D.2
-
19
-
-
84860614281
-
Short-term calorie restriction enhances skeletal muscle stem cell function
-
Cerletti M, Jang YC, Finley LWS, Haigis MC, Wagers AJ. Short-term calorie restriction enhances skeletal muscle stem cell function. Cell Stem Cell 2012; 10: 515-9.
-
(2012)
Cell Stem Cell
, vol.10
, pp. 515-519
-
-
Cerletti, M.1
Jang, Y.C.2
Finley, L.W.S.3
Haigis, M.C.4
Wagers, A.J.5
-
20
-
-
78649811793
-
Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
-
Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010; 468: 653-8.
-
(2010)
Nature
, vol.468
, pp. 653-658
-
-
Nakada, D.1
Saunders, T.L.2
Morrison, S.J.3
-
21
-
-
33846419112
-
FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
-
Tothova Z, Kollipara R, Huntly BJ et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128: 325-39.
-
(2007)
Cell
, vol.128
, pp. 325-339
-
-
Tothova, Z.1
Kollipara, R.2
Huntly, B.J.3
-
22
-
-
84872037830
-
Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
-
Yu WM, Liu X, Shen J et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013; 12: 62-74.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 62-74
-
-
Yu, W.M.1
Liu, X.2
Shen, J.3
-
23
-
-
77952545479
-
Metabolic oxidation regulates embryonic stem cell differentiation
-
Yanes O, Clark J, Wong DM et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 2010; 6: 411-7.
-
(2010)
Nat Chem Biol
, vol.6
, pp. 411-417
-
-
Yanes, O.1
Clark, J.2
Wong, D.M.3
-
24
-
-
84872160110
-
Influence of threonine metabolism on S-adenosylmethionine and histone methylation
-
Shyh-Chang N, Locasale JW, Lyssiotis CA et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 2013; 339: 222-6.
-
(2013)
Science
, vol.339
, pp. 222-226
-
-
Shyh-Chang, N.1
Locasale, J.W.2
Lyssiotis, C.A.3
-
25
-
-
67749140110
-
Dependence of mouse embryonic stem cells on threonine catabolism
-
Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight SL. Dependence of mouse embryonic stem cells on threonine catabolism. Science 2009; 325: 435-9.
-
(2009)
Science
, vol.325
, pp. 435-439
-
-
Wang, J.1
Alexander, P.2
Wu, L.3
Hammer, R.4
Cleaver, O.5
McKnight, S.L.6
-
26
-
-
80054046029
-
Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
-
Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27: 441-64.
-
(2011)
Annu Rev Cell Dev Biol
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
Vander Heiden, M.G.2
-
28
-
-
33846501510
-
Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells
-
Chung S, Dzeja PP, Faustino RS, Perez-Terzic C, Behfar A, Terzic A. Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat Clin Pract Cardiovasc Med 2007; 4(Suppl 1): S60-7.
-
(2007)
Nat Clin Pract Cardiovasc Med
, vol.4
, pp. S60-S67
-
-
Chung, S.1
Dzeja, P.P.2
Faustino, R.S.3
Perez-Terzic, C.4
Behfar, A.5
Terzic, A.6
-
29
-
-
84860531487
-
HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition
-
Zhou W, Choi M, Margineantu D et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 2012; 31: 2103-16.
-
(2012)
EMBO J
, vol.31
, pp. 2103-2116
-
-
Zhou, W.1
Choi, M.2
Margineantu, D.3
-
30
-
-
79551521189
-
A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells
-
Birket MJ, Orr AL, Gerencser AA et al. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J Cell Sci 2011; 124: 348-58.
-
(2011)
J Cell Sci
, vol.124
, pp. 348-358
-
-
Birket, M.J.1
Orr, A.L.2
Gerencser, A.A.3
-
31
-
-
79960945131
-
Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
-
Folmes CDL, Nelson TJ, Martinez-Fernandez A et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 2011; 14: 264-71.
-
(2011)
Cell Metab
, vol.14
, pp. 264-271
-
-
Folmes, C.D.L.1
Nelson, T.J.2
Martinez-Fernandez, A.3
-
32
-
-
83455235489
-
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
-
Zhang J, Khvorostov I, Hong JS et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 2011; 30: 4860-73.
-
(2011)
EMBO J
, vol.30
, pp. 4860-4873
-
-
Zhang, J.1
Khvorostov, I.2
Hong, J.S.3
-
33
-
-
78649647814
-
Reprogramming of human primary somatic cells by OCT4 and chemical compounds
-
Zhu S, Li W, Zhou H et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 2010; 7: 651-5.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 651-655
-
-
Zhu, S.1
Li, W.2
Zhou, H.3
-
34
-
-
27744563079
-
The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells
-
St John JC, Ramalho-Santos J, Gray HL et al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 2005; 7: 141-53.
-
(2005)
Cloning Stem Cells
, vol.7
, pp. 141-153
-
-
St John, J.C.1
Ramalho-Santos, J.2
Gray, H.L.3
-
35
-
-
77951002352
-
The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells
-
Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 2010; 28: 721-33.
-
(2010)
Stem Cells
, vol.28
, pp. 721-733
-
-
Prigione, A.1
Fauler, B.2
Lurz, R.3
Lehrach, H.4
Adjaye, J.5
-
36
-
-
80053139819
-
Targeted killing of a mammalian cell based upon its specialized metabolic state
-
Alexander PB, Wang J, McKnight SL. Targeted killing of a mammalian cell based upon its specialized metabolic state. Proc Natl Acad Sci U S A 2011; 108: 15828-33.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 15828-15833
-
-
Alexander, P.B.1
Wang, J.2
McKnight, S.L.3
-
37
-
-
79953868396
-
Control of embryonic stem cell metastability by L-proline catabolism
-
Casalino L, Comes S, Lambazzi G et al. Control of embryonic stem cell metastability by L-proline catabolism. J Mol Cell Biol 2011; 3: 108-22.
-
(2011)
J Mol Cell Biol
, vol.3
, pp. 108-122
-
-
Casalino, L.1
Comes, S.2
Lambazzi, G.3
-
38
-
-
77951486317
-
L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture
-
Washington JM, Rathjen J, Felquer F et al. L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 2010; 298: C982-92.
-
(2010)
Am J Physiol Cell Physiol
, vol.298
, pp. C982-C992
-
-
Washington, J.M.1
Rathjen, J.2
Felquer, F.3
-
39
-
-
84886089856
-
L-Proline Induces a Mesenchymal-like Invasive Program in Embryonic Stem Cells by Remodeling H3K9 and H3K36 Methylation
-
Comes S, Gagliardi M, Laprano N et al. L-Proline Induces a Mesenchymal-like Invasive Program in Embryonic Stem Cells by Remodeling H3K9 and H3K36 Methylation. Stem Cell Reports 2013; 1: 307-21.
-
(2013)
Stem Cell Reports
, vol.1
, pp. 307-321
-
-
Comes, S.1
Gagliardi, M.2
Laprano, N.3
-
40
-
-
82755187396
-
The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner
-
Wang T, Chen K, Zeng X et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 2011; 9: 575-87.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 575-587
-
-
Wang, T.1
Chen, K.2
Zeng, X.3
-
41
-
-
84858414020
-
Cellular metabolism and disease: what do metabolic outliers teach us?
-
DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 2012; 148: 1132-44.
-
(2012)
Cell
, vol.148
, pp. 1132-1144
-
-
DeBerardinis, R.J.1
Thompson, C.B.2
-
42
-
-
84871001227
-
Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells
-
Kocabas F, Zheng J, Thet S et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 2012; 120: 4963-72.
-
(2012)
Blood
, vol.120
, pp. 4963-4972
-
-
Kocabas, F.1
Zheng, J.2
Thet, S.3
-
43
-
-
84885172074
-
FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells
-
Yeo H, Lyssiotis CA, Zhang Y et al. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J 2013; 32: 2589-602.
-
(2013)
EMBO J
, vol.32
, pp. 2589-2602
-
-
Yeo, H.1
Lyssiotis, C.A.2
Zhang, Y.3
-
44
-
-
84864870977
-
Metabolic differentiation in the embryonic retina
-
Agathocleous M, Love NK, Randlett O et al. Metabolic differentiation in the embryonic retina. Nat Cell Biol 2012; 14: 859-64.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 859-864
-
-
Agathocleous, M.1
Love, N.K.2
Randlett, O.3
-
45
-
-
77956205122
-
The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
-
Simsek T, Kocabas F, Zheng J et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7: 380-90.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 380-390
-
-
Simsek, T.1
Kocabas, F.2
Zheng, J.3
-
46
-
-
84872011926
-
Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
-
Takubo K, Nagamatsu G, Kobayashi CI et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013; 12: 49-61.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 49-61
-
-
Takubo, K.1
Nagamatsu, G.2
Kobayashi, C.I.3
-
47
-
-
34248359065
-
Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia
-
Parmar K, Mauch P, Vergilio J-A, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 2007; 104: 5431-6.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 5431-5436
-
-
Parmar, K.1
Mauch, P.2
Vergilio, J.-A.3
Sackstein, R.4
Down, J.D.5
-
48
-
-
80053916176
-
Metabolic regulation of hematopoietic stem cells in the hypoxic niche
-
Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011; 9: 298-310.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 298-310
-
-
Suda, T.1
Takubo, K.2
Semenza, G.L.3
-
49
-
-
84877575509
-
Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
-
Nombela-Arrieta C, Pivarnik G, Winkel B et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 2013; 15: 533-43.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 533-543
-
-
Nombela-Arrieta, C.1
Pivarnik, G.2
Winkel, B.3
-
50
-
-
84892610064
-
The bone marrow niche for haematopoietic stem cells
-
Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014; 505: 327-34.
-
(2014)
Nature
, vol.505
, pp. 327-334
-
-
Morrison, S.J.1
Scadden, D.T.2
-
51
-
-
84856739946
-
Hypoxia-inducible factors in physiology and medicine
-
Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148: 399-408.
-
(2012)
Cell
, vol.148
, pp. 399-408
-
-
Semenza, G.L.1
-
52
-
-
77956217067
-
Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
-
Takubo K, Goda N, Yamada W et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010; 7: 391-402.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 391-402
-
-
Takubo, K.1
Goda, N.2
Yamada, W.3
-
53
-
-
85027932030
-
HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress
-
Rouault-Pierre K, Lopez-Onieva L, Foster K et al. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell 2013; 13: 549-63.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 549-563
-
-
Rouault-Pierre, K.1
Lopez-Onieva, L.2
Foster, K.3
-
54
-
-
77957584397
-
O2 regulates stem cells through Wnt/β-catenin signalling
-
Mazumdar J, O'Brien WT, Johnson RS et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol 2010; 12: 1007-13.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 1007-1013
-
-
Mazumdar, J.1
O'Brien, W.T.2
Johnson, R.S.3
-
55
-
-
33947520506
-
Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF
-
Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 2007; 282: 4524-32.
-
(2007)
J Biol Chem
, vol.282
, pp. 4524-4532
-
-
Koivunen, P.1
Hirsilä, M.2
Remes, A.M.3
Hassinen, I.E.4
Kivirikko, K.I.5
Myllyharju, J.6
-
56
-
-
84868007565
-
Physiological roles of mitochondrial reactive oxygen species
-
Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 2012; 48: 158-67.
-
(2012)
Mol Cell
, vol.48
, pp. 158-167
-
-
Sena, L.A.1
Chandel, N.S.2
-
57
-
-
84873608154
-
Mechanisms that regulate stem cell aging and life span
-
Signer RAJ, Morrison SJ. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 2013; 12: 152-65.
-
(2013)
Cell Stem Cell
, vol.12
, pp. 152-165
-
-
Signer, R.A.J.1
Morrison, S.J.2
-
58
-
-
0037136563
-
Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress
-
Kops GJPL, Dansen TB, Polderman PE et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 2002; 419: 316-21.
-
(2002)
Nature
, vol.419
, pp. 316-321
-
-
Kops, G.J.P.L.1
Dansen, T.B.2
Polderman, P.E.3
-
59
-
-
27844497945
-
FOXO transcription factors at the interface between longevity and tumor suppression
-
Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24: 7410-25.
-
(2005)
Oncogene
, vol.24
, pp. 7410-7425
-
-
Greer, E.L.1
Brunet, A.2
-
60
-
-
54449092731
-
Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells
-
Yalcin S, Zhang X, Luciano JP et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem 2008; 283: 25692-705.
-
(2008)
J Biol Chem
, vol.283
, pp. 25692-25705
-
-
Yalcin, S.1
Zhang, X.2
Luciano, J.P.3
-
61
-
-
34249882777
-
Foxo3a is essential for maintenance of the hematopoietic stem cell pool
-
Miyamoto K, Araki KY, Naka K et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101-12.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 101-112
-
-
Miyamoto, K.1
Araki, K.Y.2
Naka, K.3
-
63
-
-
70350497348
-
FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis
-
Paik J, Ding Z, Narurkar R et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 2009; 5: 540-53.
-
(2009)
Cell Stem Cell
, vol.5
, pp. 540-553
-
-
Paik, J.1
Ding, Z.2
Narurkar, R.3
-
64
-
-
79955974326
-
Prdm16 is a physiologic regulator of hematopoietic stem cells
-
Aguilo F, Avagyan S, Labar A et al. Prdm16 is a physiologic regulator of hematopoietic stem cells. Blood 2011; 117: 5057-66.
-
(2011)
Blood
, vol.117
, pp. 5057-5066
-
-
Aguilo, F.1
Avagyan, S.2
Labar, A.3
-
65
-
-
7244250309
-
Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells
-
Ito K, Hirao A, Arai F et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431: 997-1002.
-
(2004)
Nature
, vol.431
, pp. 997-1002
-
-
Ito, K.1
Hirao, A.2
Arai, F.3
-
66
-
-
0035281565
-
Ataxia telangiectasia mutated is essential during adult neurogenesis
-
Allen DM, van Praag H, Ray J et al. Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes Dev 2001; 15: 554-66.
-
(2001)
Genes Dev
, vol.15
, pp. 554-566
-
-
Allen, D.M.1
van Praag, H.2
Ray, J.3
-
67
-
-
69249127963
-
Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling
-
Kim J, Wong PKY. Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cells 2009; 27: 1987-98.
-
(2009)
Stem Cells
, vol.27
, pp. 1987-1998
-
-
Kim, J.1
Wong, P.K.Y.2
-
68
-
-
78650968492
-
Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner
-
Le Belle JE, Orozco NM, Paucar AA et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011; 8: 59-71.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 59-71
-
-
Le Belle, J.E.1
Orozco, N.M.2
Paucar, A.A.3
-
69
-
-
84874229027
-
Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development
-
Hamanaka RB, Glasauer A, Hoover P et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci Signal 2013; 6: ra8.
-
(2013)
Sci Signal
, vol.6
, pp. ra8
-
-
Hamanaka, R.B.1
Glasauer, A.2
Hoover, P.3
-
70
-
-
77953283847
-
AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species
-
Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 2010; 115: 4030-8.
-
(2010)
Blood
, vol.115
, pp. 4030-4038
-
-
Juntilla, M.M.1
Patil, V.D.2
Calamito, M.3
Joshi, R.P.4
Birnbaum, M.J.5
Koretzky, G.A.6
-
71
-
-
84873410016
-
Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration
-
Love NR, Chen Y, Ishibashi S et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 2013; 15: 222-8.
-
(2013)
Nat Cell Biol
, vol.15
, pp. 222-228
-
-
Love, N.R.1
Chen, Y.2
Ishibashi, S.3
-
72
-
-
80053904684
-
Mitochondrial complex III ROS regulate adipocyte differentiation
-
Tormos KV, Anso E, Hamanaka RB et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab 2011; 14: 537-44.
-
(2011)
Cell Metab
, vol.14
, pp. 537-544
-
-
Tormos, K.V.1
Anso, E.2
Hamanaka, R.B.3
-
73
-
-
70349446465
-
Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
-
Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009; 461: 537-41.
-
(2009)
Nature
, vol.461
, pp. 537-541
-
-
Owusu-Ansah, E.1
Banerjee, U.2
-
74
-
-
82955227412
-
In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis
-
Albrecht SC, Barata AG, Grosshans J, Teleman AA, Dick TP. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 2011; 14: 819-29.
-
(2011)
Cell Metab
, vol.14
, pp. 819-829
-
-
Albrecht, S.C.1
Barata, A.G.2
Grosshans, J.3
Teleman, A.A.4
Dick, T.P.5
-
75
-
-
0033529756
-
Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity
-
Storms RW, Trujillo AP, Springer JB et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci 1999; 96: 9118-23.
-
(1999)
Proc Natl Acad Sci
, vol.96
, pp. 9118-9123
-
-
Storms, R.W.1
Trujillo, A.P.2
Springer, J.B.3
-
76
-
-
61849158175
-
Aldehyde dehydrogenase 1a1 is dispensable for stem cell function in the mouse hematopoietic and nervous systems
-
Levi BP, Yilmaz OH, Duester G, Morrison SJ. Aldehyde dehydrogenase 1a1 is dispensable for stem cell function in the mouse hematopoietic and nervous systems. Blood 2009; 113: 1670-80.
-
(2009)
Blood
, vol.113
, pp. 1670-1680
-
-
Levi, B.P.1
Yilmaz, O.H.2
Duester, G.3
Morrison, S.J.4
-
77
-
-
84866952680
-
Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function
-
Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 2012; 489: 571-5.
-
(2012)
Nature
, vol.489
, pp. 571-575
-
-
Garaycoechea, J.I.1
Crossan, G.P.2
Langevin, F.3
Daly, M.4
Arends, M.J.5
Patel, K.J.6
-
78
-
-
79960037006
-
Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice
-
Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 2011; 475: 53-8.
-
(2011)
Nature
, vol.475
, pp. 53-58
-
-
Langevin, F.1
Crossan, G.P.2
Rosado, I.V.3
Arends, M.J.4
Patel, K.J.5
-
79
-
-
84886812954
-
The nexus of chromatin regulation and intermediary metabolism
-
Gut P, Verdin E. The nexus of chromatin regulation and intermediary metabolism. Nature 2013; 502: 489-98.
-
(2013)
Nature
, vol.502
, pp. 489-498
-
-
Gut, P.1
Verdin, E.2
-
80
-
-
79955960768
-
Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
-
Cai L, Sutter BM, Li B, Tu BP. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 2011; 42: 426-37.
-
(2011)
Mol Cell
, vol.42
, pp. 426-437
-
-
Cai, L.1
Sutter, B.M.2
Li, B.3
Tu, B.P.4
-
81
-
-
84870169302
-
Driving the cell cycle through metabolism
-
Cai L, Tu BP. Driving the cell cycle through metabolism. Annu Rev Cell Dev Biol 2012; 28: 59-87.
-
(2012)
Annu Rev Cell Dev Biol
, vol.28
, pp. 59-87
-
-
Cai, L.1
Tu, B.P.2
-
82
-
-
66249105703
-
ATP-citrate lyase links cellular metabolism to histone acetylation
-
Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 2009; 324: 1076-80.
-
(2009)
Science
, vol.324
, pp. 1076-1080
-
-
Wellen, K.E.1
Hatzivassiliou, G.2
Sachdeva, U.M.3
Bui, T.V.4
Cross, J.R.5
Thompson, C.B.6
-
83
-
-
77249107134
-
Carbon metabolism-mediated myogenic differentiation
-
Bracha AL, Ramanathan A, Huang S, Ingber DE, Schreiber SL. Carbon metabolism-mediated myogenic differentiation. Nat Chem Biol 2010; 6: 202-4.
-
(2010)
Nat Chem Biol
, vol.6
, pp. 202-204
-
-
Bracha, A.L.1
Ramanathan, A.2
Huang, S.3
Ingber, D.E.4
Schreiber, S.L.5
-
84
-
-
77956382385
-
Sirtuin 1 regulation of developmental genes during differentiation of stem cells
-
Calvanese V, Lara E, Suárez-Alvarez B et al. Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc Natl Acad Sci U S A 2010; 107: 13736-41.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 13736-13741
-
-
Calvanese, V.1
Lara, E.2
Suárez-Alvarez, B.3
-
85
-
-
78751506082
-
SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse
-
Ou X, Chae H-D, Wang R-H et al. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse. Blood 2011; 117: 440-50.
-
(2011)
Blood
, vol.117
, pp. 440-450
-
-
Ou, X.1
Chae, H.-D.2
Wang, R.-H.3
-
86
-
-
42349085704
-
Sirt1 contributes critically to the redox-dependent fate of neural progenitors
-
Prozorovski T, Schulze-Topphoff U, Glumm R et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 2008; 10: 385-94.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 385-394
-
-
Prozorovski, T.1
Schulze-Topphoff, U.2
Glumm, R.3
-
87
-
-
84874238886
-
SIRT3 reverses aging-associated degeneration
-
Brown K, Xie S, Qiu X et al. SIRT3 reverses aging-associated degeneration. Cell Rep 2013; 3: 319-27.
-
(2013)
Cell Rep
, vol.3
, pp. 319-327
-
-
Brown, K.1
Xie, S.2
Qiu, X.3
-
88
-
-
39749087530
-
SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization
-
Han M-K, Song E-K, Guo Y, Ou X, Mantel C, Broxmeyer HE. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2008; 2: 241-51.
-
(2008)
Cell Stem Cell
, vol.2
, pp. 241-251
-
-
Han, M.-K.1
Song, E.-K.2
Guo, Y.3
Ou, X.4
Mantel, C.5
Broxmeyer, H.E.6
-
89
-
-
84879591586
-
Sirt1 ablation promotes stress-induced loss of epigenetic and genomic hematopoietic stem and progenitor cell maintenance
-
Singh SK, Williams CA, Klarmann K, Burkett SS, Keller JR, Oberdoerffer P. Sirt1 ablation promotes stress-induced loss of epigenetic and genomic hematopoietic stem and progenitor cell maintenance. J Exp Med 2013; 210: 987-1001.
-
(2013)
J Exp Med
, vol.210
, pp. 987-1001
-
-
Singh, S.K.1
Williams, C.A.2
Klarmann, K.3
Burkett, S.S.4
Keller, J.R.5
Oberdoerffer, P.6
-
91
-
-
0043244921
-
Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
-
Fulco M, Schiltz RL, Iezzi S et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003; 12: 51-62.
-
(2003)
Mol Cell
, vol.12
, pp. 51-62
-
-
Fulco, M.1
Schiltz, R.L.2
Iezzi, S.3
-
92
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
-
Fulco M, Cen Y, Zhao P et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 2008; 14: 661-73.
-
(2008)
Dev Cell
, vol.14
, pp. 661-673
-
-
Fulco, M.1
Cen, Y.2
Zhao, P.3
-
93
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary C, Kumar C, Gnad F et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325: 834-40.
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
Kumar, C.2
Gnad, F.3
-
94
-
-
77149148756
-
Regulation of cellular metabolism by protein lysine acetylation
-
Zhao S, Xu W, Jiang W et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010; 327: 1000-4.
-
(2010)
Science
, vol.327
, pp. 1000-1004
-
-
Zhao, S.1
Xu, W.2
Jiang, W.3
-
95
-
-
67349190247
-
Linking DNA methylation and histone modification: patterns and paradigms
-
Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10: 295-304.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 295-304
-
-
Cedar, H.1
Bergman, Y.2
-
96
-
-
84873469666
-
Nutrient Sensing, Metabolism, and Cell Growth Control
-
Yuan H-X, Xiong Y, Guan K-L. Nutrient Sensing, Metabolism, and Cell Growth Control. Mol Cell 2013; 49: 379-87.
-
(2013)
Mol Cell
, vol.49
, pp. 379-387
-
-
Yuan, H.-X.1
Xiong, Y.2
Guan, K.-L.3
-
97
-
-
77953702324
-
Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
-
Dang L, White DW, Gross S et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2010; 465: 966.
-
(2010)
Nature
, vol.465
, pp. 966
-
-
Dang, L.1
White, D.W.2
Gross, S.3
-
98
-
-
78651463452
-
Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases
-
Xu W, Yang H, Liu Y et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19: 17-30.
-
(2011)
Cancer Cell
, vol.19
, pp. 17-30
-
-
Xu, W.1
Yang, H.2
Liu, Y.3
-
99
-
-
84865520089
-
IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics
-
Sasaki M, Knobbe CB, Munger JC et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012; 488: 656-9.
-
(2012)
Nature
, vol.488
, pp. 656-659
-
-
Sasaki, M.1
Knobbe, C.B.2
Munger, J.C.3
-
100
-
-
84875496294
-
(R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible
-
Losman J-A, Looper RE, Koivunen P et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013; 339: 1621-5.
-
(2013)
Science
, vol.339
, pp. 1621-1625
-
-
Losman, J.-A.1
Looper, R.E.2
Koivunen, P.3
-
101
-
-
84858796262
-
IDH mutation impairs histone demethylation and results in a block to cell differentiation
-
Lu C, Ward PS, Kapoor GS et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012; 483: 474-8.
-
(2012)
Nature
, vol.483
, pp. 474-478
-
-
Lu, C.1
Ward, P.S.2
Kapoor, G.S.3
-
102
-
-
84862632865
-
Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
-
Xiao M, Yang H, Xu W et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 2012; 26: 1326-38.
-
(2012)
Genes Dev
, vol.26
, pp. 1326-1338
-
-
Xiao, M.1
Yang, H.2
Xu, W.3
-
103
-
-
84870375316
-
Histone lysine methylation dynamics: establishment, regulation, and biological impact
-
Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 2012; 48: 491-507.
-
(2012)
Mol Cell
, vol.48
, pp. 491-507
-
-
Black, J.C.1
Van Rechem, C.2
Whetstine, J.R.3
-
104
-
-
84859176881
-
FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure
-
Hino S, Sakamoto A, Nagaoka K et al. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun 2012; 3: 758.
-
(2012)
Nat Commun
, vol.3
, pp. 758
-
-
Hino, S.1
Sakamoto, A.2
Nagaoka, K.3
-
105
-
-
84856962477
-
Enhancer decommissioning by LSD1 during embryonic stem cell differentiation
-
Whyte WA, Bilodeau S, Orlando DA et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 2012; 482: 221-5.
-
(2012)
Nature
, vol.482
, pp. 221-225
-
-
Whyte, W.A.1
Bilodeau, S.2
Orlando, D.A.3
-
106
-
-
84865864630
-
Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation
-
Sprüssel A, Schulte JH, Weber S et al. Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia 2012; 26: 2039-51.
-
(2012)
Leukemia
, vol.26
, pp. 2039-2051
-
-
Sprüssel, A.1
Schulte, J.H.2
Weber, S.3
-
107
-
-
84879308118
-
Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation
-
Kerenyi MA, Shao Z, Hsu Y-J et al. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. Elife 2013; 2: e00633.
-
(2013)
Elife
, vol.2
, pp. e00633
-
-
Kerenyi, M.A.1
Shao, Z.2
Hsu, Y.-J.3
-
108
-
-
84860184939
-
Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation
-
Hanover JA, Krause MW, Love DC. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 2012; 13: 312-21.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 312-321
-
-
Hanover, J.A.1
Krause, M.W.2
Love, D.C.3
-
109
-
-
78650447665
-
Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code
-
Sakabe K, Wang Z, Hart GW. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 2010; 107: 19915-20.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 19915-19920
-
-
Sakabe, K.1
Wang, Z.2
Hart, G.W.3
-
110
-
-
84863622379
-
O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network
-
Jang H, Kim TW, Yoon S et al. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 2012; 11: 62-74.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 62-74
-
-
Jang, H.1
Kim, T.W.2
Yoon, S.3
-
111
-
-
0034705030
-
The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny
-
Shafi R, Iyer SP, Ellies LG et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci U S A 2000; 97: 5735-9.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 5735-5739
-
-
Shafi, R.1
Iyer, S.P.2
Ellies, L.G.3
-
112
-
-
0035281979
-
Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis
-
Drummond-Barbosa D, Spradling AC. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 2001; 231: 265-78.
-
(2001)
Dev Biol
, vol.231
, pp. 265-278
-
-
Drummond-Barbosa, D.1
Spradling, A.C.2
-
113
-
-
23644444460
-
Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila
-
LaFever L, Drummond-Barbosa D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 2005; 309: 1071-3.
-
(2005)
Science
, vol.309
, pp. 1071-1073
-
-
LaFever, L.1
Drummond-Barbosa, D.2
-
114
-
-
59049103731
-
Insulin levels control female germline stem cell maintenance via the niche in Drosophila
-
Hsu H-J, Drummond-Barbosa D. Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci U S A 2009; 106: 1117-21.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 1117-1121
-
-
Hsu, H.-J.1
Drummond-Barbosa, D.2
-
115
-
-
78650503295
-
Nutrition-responsive glia control exit of neural stem cells from quiescence
-
Chell JM, Brand AH. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 2010; 143: 1161-73.
-
(2010)
Cell
, vol.143
, pp. 1161-1173
-
-
Chell, J.M.1
Brand, A.H.2
-
116
-
-
79953044605
-
Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila
-
Sousa-Nunes R, Yee LL, Gould AP. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 2011; 471: 508-12.
-
(2011)
Nature
, vol.471
, pp. 508-512
-
-
Sousa-Nunes, R.1
Yee, L.L.2
Gould, A.P.3
-
117
-
-
84859808755
-
Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila
-
Benmimoun B, Polesello C, Waltzer L, Haenlin M. Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development 2012; 139: 1713-7.
-
(2012)
Development
, vol.139
, pp. 1713-1717
-
-
Benmimoun, B.1
Polesello, C.2
Waltzer, L.3
Haenlin, M.4
-
118
-
-
84859429092
-
Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila
-
Shim J, Mukherjee T, Banerjee U. Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nat Cell Biol 2012; 14: 394-400.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 394-400
-
-
Shim, J.1
Mukherjee, T.2
Banerjee, U.3
-
119
-
-
50649099122
-
Aging and survival: the genetics of life span extension by dietary restriction
-
Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 2008; 77: 727-54.
-
(2008)
Annu Rev Biochem
, vol.77
, pp. 727-754
-
-
Mair, W.1
Dillin, A.2
-
120
-
-
38949159709
-
Effects of dietary restriction on hematopoietic stem-cell aging are genetically regulated
-
Ertl RP, Chen J, Astle CM, Duffy TM, Harrison DE. Effects of dietary restriction on hematopoietic stem-cell aging are genetically regulated. Blood 2008; 111: 1709-16.
-
(2008)
Blood
, vol.111
, pp. 1709-1716
-
-
Ertl, R.P.1
Chen, J.2
Astle, C.M.3
Duffy, T.M.4
Harrison, D.E.5
-
121
-
-
80155123827
-
Altered modes of stem cell division drive adaptive intestinal growth
-
O'Brien LE, Soliman SS, Li X, Bilder D. Altered modes of stem cell division drive adaptive intestinal growth. Cell 2011; 147: 603-14.
-
(2011)
Cell
, vol.147
, pp. 603-614
-
-
O'Brien, L.E.1
Soliman, S.S.2
Li, X.3
Bilder, D.4
-
122
-
-
79960761944
-
An emerging role for TOR signaling in mammalian tissue and stem cell physiology
-
Russell RC, Fang C, Guan K-L. An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development 2011; 138: 3343-56.
-
(2011)
Development
, vol.138
, pp. 3343-3356
-
-
Russell, R.C.1
Fang, C.2
Guan, K.-L.3
-
123
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40: 310-22.
-
(2010)
Mol Cell
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
124
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-76.
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
125
-
-
36248966518
-
Induction of pluripotent stem cells from adult human fibroblasts by defined factors
-
Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-72.
-
(2007)
Cell
, vol.131
, pp. 861-872
-
-
Takahashi, K.1
Tanabe, K.2
Ohnuki, M.3
-
126
-
-
36749043230
-
Induced pluripotent stem cell lines derived from human somatic cells
-
Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917-20.
-
(2007)
Science
, vol.318
, pp. 1917-1920
-
-
Yu, J.1
Vodyanik, M.A.2
Smuga-Otto, K.3
|