메뉴 건너뛰기




Volumn 276, Issue 1, 2014, Pages 12-24

Metabolic regulation of stem cell function

Author keywords

Differentiation; Metabolism; Self renewal; Stem cell

Indexed keywords

5 HYDROXYMETHYLCYTOSINE; ACETYL COENZYME A; ADENOSINE TRIPHOSPHATE CITRATE SYNTHASE; ALDEHYDE DEHYDROGENASE; AMINO ACID; ANTIOXIDANT; DIOXYGENASE; DNA METHYLTRANSFERASE; FATTY ACID; FLAVINE ADENINE NUCLEOTIDE; FOLIC ACID; HISTONE DEACETYLASE; HISTONE DEMETHYLASE; HISTONE H3; HISTONE LYSINE METHYLTRANSFERASE; HOMOCYSTEINE; ISOCITRATE DEHYDROGENASE; LACTATE DEHYDROGENASE; NICOTINAMIDE ADENINE DINUCLEOTIDE; NICOTINAMIDE PHOSPHORIBOSYLTRANSFERASE; OXYGENASE; PHOSPHOLIPID; POLYDEOXYRIBONUCLEOTIDE SYNTHASE; PYROPHOSPHATE; PYRUVATE DEHYDROGENASE; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SIRTUIN; TRANSCRIPTION FACTOR; TRICARBOXYLIC ACID; ENZYME;

EID: 84906080047     PISSN: 09546820     EISSN: 13652796     Source Type: Journal    
DOI: 10.1111/joim.12247     Document Type: Article
Times cited : (58)

References (126)
  • 2
    • 84887368980 scopus 로고    scopus 로고
    • A network of heterochronic genes including Imp1 regulates temporal changes in stem cell properties
    • Nishino J, Kim S, Zhu Y, Zhu H, Morrison SJ. A network of heterochronic genes including Imp1 regulates temporal changes in stem cell properties. Elife 2013; 2: e00924.
    • (2013) Elife , vol.2 , pp. e00924
    • Nishino, J.1    Kim, S.2    Zhu, Y.3    Zhu, H.4    Morrison, S.J.5
  • 3
    • 77957551487 scopus 로고    scopus 로고
    • Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress
    • Chuikov S, Levi BP, Smith ML, Morrison SJ. Prdm16 promotes stem cell maintenance in multiple tissues, partly by regulating oxidative stress. Nat Cell Biol 2010; 12: 999-1006.
    • (2010) Nat Cell Biol , vol.12 , pp. 999-1006
    • Chuikov, S.1    Levi, B.P.2    Smith, M.L.3    Morrison, S.J.4
  • 4
    • 48149095026 scopus 로고    scopus 로고
    • Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells
    • Goyama S, Yamamoto G, Shimabe M et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 2008; 3: 207-20.
    • (2008) Cell Stem Cell , vol.3 , pp. 207-220
    • Goyama, S.1    Yamamoto, G.2    Shimabe, M.3
  • 5
    • 34547668398 scopus 로고    scopus 로고
    • Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells
    • Kim I, Saunders TL, Morrison SJ. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell 2007; 130: 470-83.
    • (2007) Cell , vol.130 , pp. 470-483
    • Kim, I.1    Saunders, T.L.2    Morrison, S.J.3
  • 6
    • 0038349957 scopus 로고    scopus 로고
    • Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells
    • Park I, Qian D, Kiel M et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302-5.
    • (2003) Nature , vol.423 , pp. 302-305
    • Park, I.1    Qian, D.2    Kiel, M.3
  • 7
    • 34548413178 scopus 로고    scopus 로고
    • Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal
    • McMahon KA, Hiew SY-L, Hadjur S et al. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 2007; 1: 338-45.
    • (2007) Cell Stem Cell , vol.1 , pp. 338-345
    • McMahon, K.A.1    Hiew, S.-L.2    Hadjur, S.3
  • 8
    • 34548462072 scopus 로고    scopus 로고
    • Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors
    • Jude CD, Climer L, Xu D, Artinger E, Fisher JK, Ernst P. Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors. Cell Stem Cell 2007; 1: 324-37.
    • (2007) Cell Stem Cell , vol.1 , pp. 324-337
    • Jude, C.D.1    Climer, L.2    Xu, D.3    Artinger, E.4    Fisher, J.K.5    Ernst, P.6
  • 9
    • 0037673984 scopus 로고    scopus 로고
    • Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells
    • Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255-60.
    • (2003) Nature , vol.423 , pp. 255-260
    • Lessard, J.1    Sauvageau, G.2
  • 10
    • 19944400789 scopus 로고    scopus 로고
    • Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice
    • Ema H, Sudo K, Seita J et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev Cell 2005; 8: 907-14.
    • (2005) Dev Cell , vol.8 , pp. 907-914
    • Ema, H.1    Sudo, K.2    Seita, J.3
  • 11
    • 33646376411 scopus 로고    scopus 로고
    • Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
    • Yilmaz OH, Valdez R, Theisen BK et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475-82.
    • (2006) Nature , vol.441 , pp. 475-482
    • Yilmaz, O.H.1    Valdez, R.2    Theisen, B.K.3
  • 12
    • 84875000886 scopus 로고    scopus 로고
    • Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches
    • Ding L, Morrison SJ. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 2013; 495: 231-5.
    • (2013) Nature , vol.495 , pp. 231-235
    • Ding, L.1    Morrison, S.J.2
  • 13
    • 84856147560 scopus 로고    scopus 로고
    • Endothelial and perivascular cells maintain haematopoietic stem cells
    • Ding L, Saunders TL, Enikolopov G, Morrison SJ. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 2012; 481: 457-62.
    • (2012) Nature , vol.481 , pp. 457-462
    • Ding, L.1    Saunders, T.L.2    Enikolopov, G.3    Morrison, S.J.4
  • 14
    • 84902292966 scopus 로고    scopus 로고
    • Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies
    • Joseph C, Quach JM, Walkley CR, Lane SW, Lo Celso C, Purton LE. Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell 2013; 13: 520-33.
    • (2013) Cell Stem Cell , vol.13 , pp. 520-533
    • Joseph, C.1    Quach, J.M.2    Walkley, C.R.3    Lane, S.W.4    Lo Celso, C.5    Purton, L.E.6
  • 15
    • 0004179612 scopus 로고
    • New York, NY, USA: The MacMillan Company
    • Needham J. Chemical Embryology. New York, NY, USA: The MacMillan Company, 1931.
    • (1931) Chemical Embryology
    • Needham, J.1
  • 16
    • 84862994618 scopus 로고    scopus 로고
    • mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake
    • Yilmaz ÖH, Katajisto P, Lamming DW et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 2012; 486: 490-5.
    • (2012) Nature , vol.486 , pp. 490-495
    • Yilmaz, O.1    Katajisto, P.2    Lamming, D.W.3
  • 17
    • 78650175195 scopus 로고    scopus 로고
    • Stem cell dynamics in response to nutrient availability
    • McLeod CJ, Wang L, Wong C, Jones DL. Stem cell dynamics in response to nutrient availability. Curr Biol 2010; 20: 2100-5.
    • (2010) Curr Biol , vol.20 , pp. 2100-2105
    • McLeod, C.J.1    Wang, L.2    Wong, C.3    Jones, D.L.4
  • 18
    • 84885739806 scopus 로고    scopus 로고
    • Beyond the niche: tissue-level coordination of stem cell dynamics
    • O'Brien LE, Bilder D. Beyond the niche: tissue-level coordination of stem cell dynamics. Annu Rev Cell Dev Biol 2013; 29: 107-36.
    • (2013) Annu Rev Cell Dev Biol , vol.29 , pp. 107-136
    • O'Brien, L.E.1    Bilder, D.2
  • 20
    • 78649811793 scopus 로고    scopus 로고
    • Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
    • Nakada D, Saunders TL, Morrison SJ. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 2010; 468: 653-8.
    • (2010) Nature , vol.468 , pp. 653-658
    • Nakada, D.1    Saunders, T.L.2    Morrison, S.J.3
  • 21
    • 33846419112 scopus 로고    scopus 로고
    • FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
    • Tothova Z, Kollipara R, Huntly BJ et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128: 325-39.
    • (2007) Cell , vol.128 , pp. 325-339
    • Tothova, Z.1    Kollipara, R.2    Huntly, B.J.3
  • 22
    • 84872037830 scopus 로고    scopus 로고
    • Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
    • Yu WM, Liu X, Shen J et al. Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation. Cell Stem Cell 2013; 12: 62-74.
    • (2013) Cell Stem Cell , vol.12 , pp. 62-74
    • Yu, W.M.1    Liu, X.2    Shen, J.3
  • 23
    • 77952545479 scopus 로고    scopus 로고
    • Metabolic oxidation regulates embryonic stem cell differentiation
    • Yanes O, Clark J, Wong DM et al. Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 2010; 6: 411-7.
    • (2010) Nat Chem Biol , vol.6 , pp. 411-417
    • Yanes, O.1    Clark, J.2    Wong, D.M.3
  • 24
    • 84872160110 scopus 로고    scopus 로고
    • Influence of threonine metabolism on S-adenosylmethionine and histone methylation
    • Shyh-Chang N, Locasale JW, Lyssiotis CA et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 2013; 339: 222-6.
    • (2013) Science , vol.339 , pp. 222-226
    • Shyh-Chang, N.1    Locasale, J.W.2    Lyssiotis, C.A.3
  • 26
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 2011; 27: 441-64.
    • (2011) Annu Rev Cell Dev Biol , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 27
  • 29
    • 84860531487 scopus 로고    scopus 로고
    • HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition
    • Zhou W, Choi M, Margineantu D et al. HIF1α induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J 2012; 31: 2103-16.
    • (2012) EMBO J , vol.31 , pp. 2103-2116
    • Zhou, W.1    Choi, M.2    Margineantu, D.3
  • 30
    • 79551521189 scopus 로고    scopus 로고
    • A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells
    • Birket MJ, Orr AL, Gerencser AA et al. A reduction in ATP demand and mitochondrial activity with neural differentiation of human embryonic stem cells. J Cell Sci 2011; 124: 348-58.
    • (2011) J Cell Sci , vol.124 , pp. 348-358
    • Birket, M.J.1    Orr, A.L.2    Gerencser, A.A.3
  • 31
    • 79960945131 scopus 로고    scopus 로고
    • Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
    • Folmes CDL, Nelson TJ, Martinez-Fernandez A et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 2011; 14: 264-71.
    • (2011) Cell Metab , vol.14 , pp. 264-271
    • Folmes, C.D.L.1    Nelson, T.J.2    Martinez-Fernandez, A.3
  • 32
    • 83455235489 scopus 로고    scopus 로고
    • UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
    • Zhang J, Khvorostov I, Hong JS et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 2011; 30: 4860-73.
    • (2011) EMBO J , vol.30 , pp. 4860-4873
    • Zhang, J.1    Khvorostov, I.2    Hong, J.S.3
  • 33
    • 78649647814 scopus 로고    scopus 로고
    • Reprogramming of human primary somatic cells by OCT4 and chemical compounds
    • Zhu S, Li W, Zhou H et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 2010; 7: 651-5.
    • (2010) Cell Stem Cell , vol.7 , pp. 651-655
    • Zhu, S.1    Li, W.2    Zhou, H.3
  • 34
    • 27744563079 scopus 로고    scopus 로고
    • The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells
    • St John JC, Ramalho-Santos J, Gray HL et al. The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 2005; 7: 141-53.
    • (2005) Cloning Stem Cells , vol.7 , pp. 141-153
    • St John, J.C.1    Ramalho-Santos, J.2    Gray, H.L.3
  • 35
    • 77951002352 scopus 로고    scopus 로고
    • The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells
    • Prigione A, Fauler B, Lurz R, Lehrach H, Adjaye J. The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells 2010; 28: 721-33.
    • (2010) Stem Cells , vol.28 , pp. 721-733
    • Prigione, A.1    Fauler, B.2    Lurz, R.3    Lehrach, H.4    Adjaye, J.5
  • 36
    • 80053139819 scopus 로고    scopus 로고
    • Targeted killing of a mammalian cell based upon its specialized metabolic state
    • Alexander PB, Wang J, McKnight SL. Targeted killing of a mammalian cell based upon its specialized metabolic state. Proc Natl Acad Sci U S A 2011; 108: 15828-33.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 15828-15833
    • Alexander, P.B.1    Wang, J.2    McKnight, S.L.3
  • 37
    • 79953868396 scopus 로고    scopus 로고
    • Control of embryonic stem cell metastability by L-proline catabolism
    • Casalino L, Comes S, Lambazzi G et al. Control of embryonic stem cell metastability by L-proline catabolism. J Mol Cell Biol 2011; 3: 108-22.
    • (2011) J Mol Cell Biol , vol.3 , pp. 108-122
    • Casalino, L.1    Comes, S.2    Lambazzi, G.3
  • 38
    • 77951486317 scopus 로고    scopus 로고
    • L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture
    • Washington JM, Rathjen J, Felquer F et al. L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 2010; 298: C982-92.
    • (2010) Am J Physiol Cell Physiol , vol.298 , pp. C982-C992
    • Washington, J.M.1    Rathjen, J.2    Felquer, F.3
  • 39
    • 84886089856 scopus 로고    scopus 로고
    • L-Proline Induces a Mesenchymal-like Invasive Program in Embryonic Stem Cells by Remodeling H3K9 and H3K36 Methylation
    • Comes S, Gagliardi M, Laprano N et al. L-Proline Induces a Mesenchymal-like Invasive Program in Embryonic Stem Cells by Remodeling H3K9 and H3K36 Methylation. Stem Cell Reports 2013; 1: 307-21.
    • (2013) Stem Cell Reports , vol.1 , pp. 307-321
    • Comes, S.1    Gagliardi, M.2    Laprano, N.3
  • 40
    • 82755187396 scopus 로고    scopus 로고
    • The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner
    • Wang T, Chen K, Zeng X et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell 2011; 9: 575-87.
    • (2011) Cell Stem Cell , vol.9 , pp. 575-587
    • Wang, T.1    Chen, K.2    Zeng, X.3
  • 41
    • 84858414020 scopus 로고    scopus 로고
    • Cellular metabolism and disease: what do metabolic outliers teach us?
    • DeBerardinis RJ, Thompson CB. Cellular metabolism and disease: what do metabolic outliers teach us? Cell 2012; 148: 1132-44.
    • (2012) Cell , vol.148 , pp. 1132-1144
    • DeBerardinis, R.J.1    Thompson, C.B.2
  • 42
    • 84871001227 scopus 로고    scopus 로고
    • Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells
    • Kocabas F, Zheng J, Thet S et al. Meis1 regulates the metabolic phenotype and oxidant defense of hematopoietic stem cells. Blood 2012; 120: 4963-72.
    • (2012) Blood , vol.120 , pp. 4963-4972
    • Kocabas, F.1    Zheng, J.2    Thet, S.3
  • 43
    • 84885172074 scopus 로고    scopus 로고
    • FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells
    • Yeo H, Lyssiotis CA, Zhang Y et al. FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells. EMBO J 2013; 32: 2589-602.
    • (2013) EMBO J , vol.32 , pp. 2589-2602
    • Yeo, H.1    Lyssiotis, C.A.2    Zhang, Y.3
  • 44
    • 84864870977 scopus 로고    scopus 로고
    • Metabolic differentiation in the embryonic retina
    • Agathocleous M, Love NK, Randlett O et al. Metabolic differentiation in the embryonic retina. Nat Cell Biol 2012; 14: 859-64.
    • (2012) Nat Cell Biol , vol.14 , pp. 859-864
    • Agathocleous, M.1    Love, N.K.2    Randlett, O.3
  • 45
    • 77956205122 scopus 로고    scopus 로고
    • The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
    • Simsek T, Kocabas F, Zheng J et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010; 7: 380-90.
    • (2010) Cell Stem Cell , vol.7 , pp. 380-390
    • Simsek, T.1    Kocabas, F.2    Zheng, J.3
  • 46
    • 84872011926 scopus 로고    scopus 로고
    • Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
    • Takubo K, Nagamatsu G, Kobayashi CI et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell 2013; 12: 49-61.
    • (2013) Cell Stem Cell , vol.12 , pp. 49-61
    • Takubo, K.1    Nagamatsu, G.2    Kobayashi, C.I.3
  • 47
    • 34248359065 scopus 로고    scopus 로고
    • Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia
    • Parmar K, Mauch P, Vergilio J-A, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 2007; 104: 5431-6.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 5431-5436
    • Parmar, K.1    Mauch, P.2    Vergilio, J.-A.3    Sackstein, R.4    Down, J.D.5
  • 48
    • 80053916176 scopus 로고    scopus 로고
    • Metabolic regulation of hematopoietic stem cells in the hypoxic niche
    • Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011; 9: 298-310.
    • (2011) Cell Stem Cell , vol.9 , pp. 298-310
    • Suda, T.1    Takubo, K.2    Semenza, G.L.3
  • 49
    • 84877575509 scopus 로고    scopus 로고
    • Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment
    • Nombela-Arrieta C, Pivarnik G, Winkel B et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol 2013; 15: 533-43.
    • (2013) Nat Cell Biol , vol.15 , pp. 533-543
    • Nombela-Arrieta, C.1    Pivarnik, G.2    Winkel, B.3
  • 50
    • 84892610064 scopus 로고    scopus 로고
    • The bone marrow niche for haematopoietic stem cells
    • Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature 2014; 505: 327-34.
    • (2014) Nature , vol.505 , pp. 327-334
    • Morrison, S.J.1    Scadden, D.T.2
  • 51
    • 84856739946 scopus 로고    scopus 로고
    • Hypoxia-inducible factors in physiology and medicine
    • Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148: 399-408.
    • (2012) Cell , vol.148 , pp. 399-408
    • Semenza, G.L.1
  • 52
    • 77956217067 scopus 로고    scopus 로고
    • Regulation of the HIF-1alpha level is essential for hematopoietic stem cells
    • Takubo K, Goda N, Yamada W et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell 2010; 7: 391-402.
    • (2010) Cell Stem Cell , vol.7 , pp. 391-402
    • Takubo, K.1    Goda, N.2    Yamada, W.3
  • 53
    • 85027932030 scopus 로고    scopus 로고
    • HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress
    • Rouault-Pierre K, Lopez-Onieva L, Foster K et al. HIF-2α protects human hematopoietic stem/progenitors and acute myeloid leukemic cells from apoptosis induced by endoplasmic reticulum stress. Cell Stem Cell 2013; 13: 549-63.
    • (2013) Cell Stem Cell , vol.13 , pp. 549-563
    • Rouault-Pierre, K.1    Lopez-Onieva, L.2    Foster, K.3
  • 54
    • 77957584397 scopus 로고    scopus 로고
    • O2 regulates stem cells through Wnt/β-catenin signalling
    • Mazumdar J, O'Brien WT, Johnson RS et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol 2010; 12: 1007-13.
    • (2010) Nat Cell Biol , vol.12 , pp. 1007-1013
    • Mazumdar, J.1    O'Brien, W.T.2    Johnson, R.S.3
  • 55
    • 33947520506 scopus 로고    scopus 로고
    • Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF
    • Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF. J Biol Chem 2007; 282: 4524-32.
    • (2007) J Biol Chem , vol.282 , pp. 4524-4532
    • Koivunen, P.1    Hirsilä, M.2    Remes, A.M.3    Hassinen, I.E.4    Kivirikko, K.I.5    Myllyharju, J.6
  • 56
    • 84868007565 scopus 로고    scopus 로고
    • Physiological roles of mitochondrial reactive oxygen species
    • Sena LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 2012; 48: 158-67.
    • (2012) Mol Cell , vol.48 , pp. 158-167
    • Sena, L.A.1    Chandel, N.S.2
  • 57
    • 84873608154 scopus 로고    scopus 로고
    • Mechanisms that regulate stem cell aging and life span
    • Signer RAJ, Morrison SJ. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 2013; 12: 152-65.
    • (2013) Cell Stem Cell , vol.12 , pp. 152-165
    • Signer, R.A.J.1    Morrison, S.J.2
  • 58
    • 0037136563 scopus 로고    scopus 로고
    • Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress
    • Kops GJPL, Dansen TB, Polderman PE et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 2002; 419: 316-21.
    • (2002) Nature , vol.419 , pp. 316-321
    • Kops, G.J.P.L.1    Dansen, T.B.2    Polderman, P.E.3
  • 59
    • 27844497945 scopus 로고    scopus 로고
    • FOXO transcription factors at the interface between longevity and tumor suppression
    • Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24: 7410-25.
    • (2005) Oncogene , vol.24 , pp. 7410-7425
    • Greer, E.L.1    Brunet, A.2
  • 60
    • 54449092731 scopus 로고    scopus 로고
    • Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells
    • Yalcin S, Zhang X, Luciano JP et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem 2008; 283: 25692-705.
    • (2008) J Biol Chem , vol.283 , pp. 25692-25705
    • Yalcin, S.1    Zhang, X.2    Luciano, J.P.3
  • 61
    • 34249882777 scopus 로고    scopus 로고
    • Foxo3a is essential for maintenance of the hematopoietic stem cell pool
    • Miyamoto K, Araki KY, Naka K et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101-12.
    • (2007) Cell Stem Cell , vol.1 , pp. 101-112
    • Miyamoto, K.1    Araki, K.Y.2    Naka, K.3
  • 63
    • 70350497348 scopus 로고    scopus 로고
    • FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis
    • Paik J, Ding Z, Narurkar R et al. FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell 2009; 5: 540-53.
    • (2009) Cell Stem Cell , vol.5 , pp. 540-553
    • Paik, J.1    Ding, Z.2    Narurkar, R.3
  • 64
    • 79955974326 scopus 로고    scopus 로고
    • Prdm16 is a physiologic regulator of hematopoietic stem cells
    • Aguilo F, Avagyan S, Labar A et al. Prdm16 is a physiologic regulator of hematopoietic stem cells. Blood 2011; 117: 5057-66.
    • (2011) Blood , vol.117 , pp. 5057-5066
    • Aguilo, F.1    Avagyan, S.2    Labar, A.3
  • 65
    • 7244250309 scopus 로고    scopus 로고
    • Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells
    • Ito K, Hirao A, Arai F et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431: 997-1002.
    • (2004) Nature , vol.431 , pp. 997-1002
    • Ito, K.1    Hirao, A.2    Arai, F.3
  • 66
    • 0035281565 scopus 로고    scopus 로고
    • Ataxia telangiectasia mutated is essential during adult neurogenesis
    • Allen DM, van Praag H, Ray J et al. Ataxia telangiectasia mutated is essential during adult neurogenesis. Genes Dev 2001; 15: 554-66.
    • (2001) Genes Dev , vol.15 , pp. 554-566
    • Allen, D.M.1    van Praag, H.2    Ray, J.3
  • 67
    • 69249127963 scopus 로고    scopus 로고
    • Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling
    • Kim J, Wong PKY. Loss of ATM impairs proliferation of neural stem cells through oxidative stress-mediated p38 MAPK signaling. Stem Cells 2009; 27: 1987-98.
    • (2009) Stem Cells , vol.27 , pp. 1987-1998
    • Kim, J.1    Wong, P.K.Y.2
  • 68
    • 78650968492 scopus 로고    scopus 로고
    • Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner
    • Le Belle JE, Orozco NM, Paucar AA et al. Proliferative neural stem cells have high endogenous ROS levels that regulate self-renewal and neurogenesis in a PI3K/Akt-dependant manner. Cell Stem Cell 2011; 8: 59-71.
    • (2011) Cell Stem Cell , vol.8 , pp. 59-71
    • Le Belle, J.E.1    Orozco, N.M.2    Paucar, A.A.3
  • 69
    • 84874229027 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development
    • Hamanaka RB, Glasauer A, Hoover P et al. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development. Sci Signal 2013; 6: ra8.
    • (2013) Sci Signal , vol.6 , pp. ra8
    • Hamanaka, R.B.1    Glasauer, A.2    Hoover, P.3
  • 70
    • 77953283847 scopus 로고    scopus 로고
    • AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species
    • Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA. AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 2010; 115: 4030-8.
    • (2010) Blood , vol.115 , pp. 4030-4038
    • Juntilla, M.M.1    Patil, V.D.2    Calamito, M.3    Joshi, R.P.4    Birnbaum, M.J.5    Koretzky, G.A.6
  • 71
    • 84873410016 scopus 로고    scopus 로고
    • Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration
    • Love NR, Chen Y, Ishibashi S et al. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration. Nat Cell Biol 2013; 15: 222-8.
    • (2013) Nat Cell Biol , vol.15 , pp. 222-228
    • Love, N.R.1    Chen, Y.2    Ishibashi, S.3
  • 72
    • 80053904684 scopus 로고    scopus 로고
    • Mitochondrial complex III ROS regulate adipocyte differentiation
    • Tormos KV, Anso E, Hamanaka RB et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab 2011; 14: 537-44.
    • (2011) Cell Metab , vol.14 , pp. 537-544
    • Tormos, K.V.1    Anso, E.2    Hamanaka, R.B.3
  • 73
    • 70349446465 scopus 로고    scopus 로고
    • Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation
    • Owusu-Ansah E, Banerjee U. Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 2009; 461: 537-41.
    • (2009) Nature , vol.461 , pp. 537-541
    • Owusu-Ansah, E.1    Banerjee, U.2
  • 74
    • 82955227412 scopus 로고    scopus 로고
    • In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis
    • Albrecht SC, Barata AG, Grosshans J, Teleman AA, Dick TP. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 2011; 14: 819-29.
    • (2011) Cell Metab , vol.14 , pp. 819-829
    • Albrecht, S.C.1    Barata, A.G.2    Grosshans, J.3    Teleman, A.A.4    Dick, T.P.5
  • 75
    • 0033529756 scopus 로고    scopus 로고
    • Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity
    • Storms RW, Trujillo AP, Springer JB et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci 1999; 96: 9118-23.
    • (1999) Proc Natl Acad Sci , vol.96 , pp. 9118-9123
    • Storms, R.W.1    Trujillo, A.P.2    Springer, J.B.3
  • 76
    • 61849158175 scopus 로고    scopus 로고
    • Aldehyde dehydrogenase 1a1 is dispensable for stem cell function in the mouse hematopoietic and nervous systems
    • Levi BP, Yilmaz OH, Duester G, Morrison SJ. Aldehyde dehydrogenase 1a1 is dispensable for stem cell function in the mouse hematopoietic and nervous systems. Blood 2009; 113: 1670-80.
    • (2009) Blood , vol.113 , pp. 1670-1680
    • Levi, B.P.1    Yilmaz, O.H.2    Duester, G.3    Morrison, S.J.4
  • 77
    • 84866952680 scopus 로고    scopus 로고
    • Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function
    • Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 2012; 489: 571-5.
    • (2012) Nature , vol.489 , pp. 571-575
    • Garaycoechea, J.I.1    Crossan, G.P.2    Langevin, F.3    Daly, M.4    Arends, M.J.5    Patel, K.J.6
  • 78
    • 79960037006 scopus 로고    scopus 로고
    • Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice
    • Langevin F, Crossan GP, Rosado IV, Arends MJ, Patel KJ. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 2011; 475: 53-8.
    • (2011) Nature , vol.475 , pp. 53-58
    • Langevin, F.1    Crossan, G.P.2    Rosado, I.V.3    Arends, M.J.4    Patel, K.J.5
  • 79
    • 84886812954 scopus 로고    scopus 로고
    • The nexus of chromatin regulation and intermediary metabolism
    • Gut P, Verdin E. The nexus of chromatin regulation and intermediary metabolism. Nature 2013; 502: 489-98.
    • (2013) Nature , vol.502 , pp. 489-498
    • Gut, P.1    Verdin, E.2
  • 80
    • 79955960768 scopus 로고    scopus 로고
    • Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
    • Cai L, Sutter BM, Li B, Tu BP. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 2011; 42: 426-37.
    • (2011) Mol Cell , vol.42 , pp. 426-437
    • Cai, L.1    Sutter, B.M.2    Li, B.3    Tu, B.P.4
  • 81
    • 84870169302 scopus 로고    scopus 로고
    • Driving the cell cycle through metabolism
    • Cai L, Tu BP. Driving the cell cycle through metabolism. Annu Rev Cell Dev Biol 2012; 28: 59-87.
    • (2012) Annu Rev Cell Dev Biol , vol.28 , pp. 59-87
    • Cai, L.1    Tu, B.P.2
  • 84
    • 77956382385 scopus 로고    scopus 로고
    • Sirtuin 1 regulation of developmental genes during differentiation of stem cells
    • Calvanese V, Lara E, Suárez-Alvarez B et al. Sirtuin 1 regulation of developmental genes during differentiation of stem cells. Proc Natl Acad Sci U S A 2010; 107: 13736-41.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 13736-13741
    • Calvanese, V.1    Lara, E.2    Suárez-Alvarez, B.3
  • 85
    • 78751506082 scopus 로고    scopus 로고
    • SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse
    • Ou X, Chae H-D, Wang R-H et al. SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse. Blood 2011; 117: 440-50.
    • (2011) Blood , vol.117 , pp. 440-450
    • Ou, X.1    Chae, H.-D.2    Wang, R.-H.3
  • 86
    • 42349085704 scopus 로고    scopus 로고
    • Sirt1 contributes critically to the redox-dependent fate of neural progenitors
    • Prozorovski T, Schulze-Topphoff U, Glumm R et al. Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 2008; 10: 385-94.
    • (2008) Nat Cell Biol , vol.10 , pp. 385-394
    • Prozorovski, T.1    Schulze-Topphoff, U.2    Glumm, R.3
  • 87
    • 84874238886 scopus 로고    scopus 로고
    • SIRT3 reverses aging-associated degeneration
    • Brown K, Xie S, Qiu X et al. SIRT3 reverses aging-associated degeneration. Cell Rep 2013; 3: 319-27.
    • (2013) Cell Rep , vol.3 , pp. 319-327
    • Brown, K.1    Xie, S.2    Qiu, X.3
  • 88
    • 39749087530 scopus 로고    scopus 로고
    • SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization
    • Han M-K, Song E-K, Guo Y, Ou X, Mantel C, Broxmeyer HE. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2008; 2: 241-51.
    • (2008) Cell Stem Cell , vol.2 , pp. 241-251
    • Han, M.-K.1    Song, E.-K.2    Guo, Y.3    Ou, X.4    Mantel, C.5    Broxmeyer, H.E.6
  • 89
    • 84879591586 scopus 로고    scopus 로고
    • Sirt1 ablation promotes stress-induced loss of epigenetic and genomic hematopoietic stem and progenitor cell maintenance
    • Singh SK, Williams CA, Klarmann K, Burkett SS, Keller JR, Oberdoerffer P. Sirt1 ablation promotes stress-induced loss of epigenetic and genomic hematopoietic stem and progenitor cell maintenance. J Exp Med 2013; 210: 987-1001.
    • (2013) J Exp Med , vol.210 , pp. 987-1001
    • Singh, S.K.1    Williams, C.A.2    Klarmann, K.3    Burkett, S.S.4    Keller, J.R.5    Oberdoerffer, P.6
  • 91
    • 0043244921 scopus 로고    scopus 로고
    • Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
    • Fulco M, Schiltz RL, Iezzi S et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 2003; 12: 51-62.
    • (2003) Mol Cell , vol.12 , pp. 51-62
    • Fulco, M.1    Schiltz, R.L.2    Iezzi, S.3
  • 92
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
    • Fulco M, Cen Y, Zhao P et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 2008; 14: 661-73.
    • (2008) Dev Cell , vol.14 , pp. 661-673
    • Fulco, M.1    Cen, Y.2    Zhao, P.3
  • 93
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C, Kumar C, Gnad F et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009; 325: 834-40.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1    Kumar, C.2    Gnad, F.3
  • 94
    • 77149148756 scopus 로고    scopus 로고
    • Regulation of cellular metabolism by protein lysine acetylation
    • Zhao S, Xu W, Jiang W et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010; 327: 1000-4.
    • (2010) Science , vol.327 , pp. 1000-1004
    • Zhao, S.1    Xu, W.2    Jiang, W.3
  • 95
    • 67349190247 scopus 로고    scopus 로고
    • Linking DNA methylation and histone modification: patterns and paradigms
    • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10: 295-304.
    • (2009) Nat Rev Genet , vol.10 , pp. 295-304
    • Cedar, H.1    Bergman, Y.2
  • 96
    • 84873469666 scopus 로고    scopus 로고
    • Nutrient Sensing, Metabolism, and Cell Growth Control
    • Yuan H-X, Xiong Y, Guan K-L. Nutrient Sensing, Metabolism, and Cell Growth Control. Mol Cell 2013; 49: 379-87.
    • (2013) Mol Cell , vol.49 , pp. 379-387
    • Yuan, H.-X.1    Xiong, Y.2    Guan, K.-L.3
  • 97
    • 77953702324 scopus 로고    scopus 로고
    • Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
    • Dang L, White DW, Gross S et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2010; 465: 966.
    • (2010) Nature , vol.465 , pp. 966
    • Dang, L.1    White, D.W.2    Gross, S.3
  • 98
    • 78651463452 scopus 로고    scopus 로고
    • Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases
    • Xu W, Yang H, Liu Y et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 2011; 19: 17-30.
    • (2011) Cancer Cell , vol.19 , pp. 17-30
    • Xu, W.1    Yang, H.2    Liu, Y.3
  • 99
    • 84865520089 scopus 로고    scopus 로고
    • IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics
    • Sasaki M, Knobbe CB, Munger JC et al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 2012; 488: 656-9.
    • (2012) Nature , vol.488 , pp. 656-659
    • Sasaki, M.1    Knobbe, C.B.2    Munger, J.C.3
  • 100
    • 84875496294 scopus 로고    scopus 로고
    • (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible
    • Losman J-A, Looper RE, Koivunen P et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 2013; 339: 1621-5.
    • (2013) Science , vol.339 , pp. 1621-1625
    • Losman, J.-A.1    Looper, R.E.2    Koivunen, P.3
  • 101
    • 84858796262 scopus 로고    scopus 로고
    • IDH mutation impairs histone demethylation and results in a block to cell differentiation
    • Lu C, Ward PS, Kapoor GS et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012; 483: 474-8.
    • (2012) Nature , vol.483 , pp. 474-478
    • Lu, C.1    Ward, P.S.2    Kapoor, G.S.3
  • 102
    • 84862632865 scopus 로고    scopus 로고
    • Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors
    • Xiao M, Yang H, Xu W et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 2012; 26: 1326-38.
    • (2012) Genes Dev , vol.26 , pp. 1326-1338
    • Xiao, M.1    Yang, H.2    Xu, W.3
  • 103
    • 84870375316 scopus 로고    scopus 로고
    • Histone lysine methylation dynamics: establishment, regulation, and biological impact
    • Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 2012; 48: 491-507.
    • (2012) Mol Cell , vol.48 , pp. 491-507
    • Black, J.C.1    Van Rechem, C.2    Whetstine, J.R.3
  • 104
    • 84859176881 scopus 로고    scopus 로고
    • FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure
    • Hino S, Sakamoto A, Nagaoka K et al. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun 2012; 3: 758.
    • (2012) Nat Commun , vol.3 , pp. 758
    • Hino, S.1    Sakamoto, A.2    Nagaoka, K.3
  • 105
    • 84856962477 scopus 로고    scopus 로고
    • Enhancer decommissioning by LSD1 during embryonic stem cell differentiation
    • Whyte WA, Bilodeau S, Orlando DA et al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 2012; 482: 221-5.
    • (2012) Nature , vol.482 , pp. 221-225
    • Whyte, W.A.1    Bilodeau, S.2    Orlando, D.A.3
  • 106
    • 84865864630 scopus 로고    scopus 로고
    • Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation
    • Sprüssel A, Schulte JH, Weber S et al. Lysine-specific demethylase 1 restricts hematopoietic progenitor proliferation and is essential for terminal differentiation. Leukemia 2012; 26: 2039-51.
    • (2012) Leukemia , vol.26 , pp. 2039-2051
    • Sprüssel, A.1    Schulte, J.H.2    Weber, S.3
  • 107
    • 84879308118 scopus 로고    scopus 로고
    • Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation
    • Kerenyi MA, Shao Z, Hsu Y-J et al. Histone demethylase Lsd1 represses hematopoietic stem and progenitor cell signatures during blood cell maturation. Elife 2013; 2: e00633.
    • (2013) Elife , vol.2 , pp. e00633
    • Kerenyi, M.A.1    Shao, Z.2    Hsu, Y.-J.3
  • 108
    • 84860184939 scopus 로고    scopus 로고
    • Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation
    • Hanover JA, Krause MW, Love DC. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol 2012; 13: 312-21.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 312-321
    • Hanover, J.A.1    Krause, M.W.2    Love, D.C.3
  • 109
    • 78650447665 scopus 로고    scopus 로고
    • Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code
    • Sakabe K, Wang Z, Hart GW. Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 2010; 107: 19915-20.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 19915-19920
    • Sakabe, K.1    Wang, Z.2    Hart, G.W.3
  • 110
    • 84863622379 scopus 로고    scopus 로고
    • O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network
    • Jang H, Kim TW, Yoon S et al. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 2012; 11: 62-74.
    • (2012) Cell Stem Cell , vol.11 , pp. 62-74
    • Jang, H.1    Kim, T.W.2    Yoon, S.3
  • 111
    • 0034705030 scopus 로고    scopus 로고
    • The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny
    • Shafi R, Iyer SP, Ellies LG et al. The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. Proc Natl Acad Sci U S A 2000; 97: 5735-9.
    • (2000) Proc Natl Acad Sci U S A , vol.97 , pp. 5735-5739
    • Shafi, R.1    Iyer, S.P.2    Ellies, L.G.3
  • 112
    • 0035281979 scopus 로고    scopus 로고
    • Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis
    • Drummond-Barbosa D, Spradling AC. Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 2001; 231: 265-78.
    • (2001) Dev Biol , vol.231 , pp. 265-278
    • Drummond-Barbosa, D.1    Spradling, A.C.2
  • 113
    • 23644444460 scopus 로고    scopus 로고
    • Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila
    • LaFever L, Drummond-Barbosa D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 2005; 309: 1071-3.
    • (2005) Science , vol.309 , pp. 1071-1073
    • LaFever, L.1    Drummond-Barbosa, D.2
  • 114
    • 59049103731 scopus 로고    scopus 로고
    • Insulin levels control female germline stem cell maintenance via the niche in Drosophila
    • Hsu H-J, Drummond-Barbosa D. Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc Natl Acad Sci U S A 2009; 106: 1117-21.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 1117-1121
    • Hsu, H.-J.1    Drummond-Barbosa, D.2
  • 115
    • 78650503295 scopus 로고    scopus 로고
    • Nutrition-responsive glia control exit of neural stem cells from quiescence
    • Chell JM, Brand AH. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 2010; 143: 1161-73.
    • (2010) Cell , vol.143 , pp. 1161-1173
    • Chell, J.M.1    Brand, A.H.2
  • 116
    • 79953044605 scopus 로고    scopus 로고
    • Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila
    • Sousa-Nunes R, Yee LL, Gould AP. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 2011; 471: 508-12.
    • (2011) Nature , vol.471 , pp. 508-512
    • Sousa-Nunes, R.1    Yee, L.L.2    Gould, A.P.3
  • 117
    • 84859808755 scopus 로고    scopus 로고
    • Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila
    • Benmimoun B, Polesello C, Waltzer L, Haenlin M. Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development 2012; 139: 1713-7.
    • (2012) Development , vol.139 , pp. 1713-1717
    • Benmimoun, B.1    Polesello, C.2    Waltzer, L.3    Haenlin, M.4
  • 118
    • 84859429092 scopus 로고    scopus 로고
    • Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila
    • Shim J, Mukherjee T, Banerjee U. Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nat Cell Biol 2012; 14: 394-400.
    • (2012) Nat Cell Biol , vol.14 , pp. 394-400
    • Shim, J.1    Mukherjee, T.2    Banerjee, U.3
  • 119
    • 50649099122 scopus 로고    scopus 로고
    • Aging and survival: the genetics of life span extension by dietary restriction
    • Mair W, Dillin A. Aging and survival: the genetics of life span extension by dietary restriction. Annu Rev Biochem 2008; 77: 727-54.
    • (2008) Annu Rev Biochem , vol.77 , pp. 727-754
    • Mair, W.1    Dillin, A.2
  • 120
    • 38949159709 scopus 로고    scopus 로고
    • Effects of dietary restriction on hematopoietic stem-cell aging are genetically regulated
    • Ertl RP, Chen J, Astle CM, Duffy TM, Harrison DE. Effects of dietary restriction on hematopoietic stem-cell aging are genetically regulated. Blood 2008; 111: 1709-16.
    • (2008) Blood , vol.111 , pp. 1709-1716
    • Ertl, R.P.1    Chen, J.2    Astle, C.M.3    Duffy, T.M.4    Harrison, D.E.5
  • 121
    • 80155123827 scopus 로고    scopus 로고
    • Altered modes of stem cell division drive adaptive intestinal growth
    • O'Brien LE, Soliman SS, Li X, Bilder D. Altered modes of stem cell division drive adaptive intestinal growth. Cell 2011; 147: 603-14.
    • (2011) Cell , vol.147 , pp. 603-614
    • O'Brien, L.E.1    Soliman, S.S.2    Li, X.3    Bilder, D.4
  • 122
    • 79960761944 scopus 로고    scopus 로고
    • An emerging role for TOR signaling in mammalian tissue and stem cell physiology
    • Russell RC, Fang C, Guan K-L. An emerging role for TOR signaling in mammalian tissue and stem cell physiology. Development 2011; 138: 3343-56.
    • (2011) Development , vol.138 , pp. 3343-3356
    • Russell, R.C.1    Fang, C.2    Guan, K.-L.3
  • 123
    • 78649348967 scopus 로고    scopus 로고
    • Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
    • Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40: 310-22.
    • (2010) Mol Cell , vol.40 , pp. 310-322
    • Sengupta, S.1    Peterson, T.R.2    Sabatini, D.M.3
  • 124
    • 33747195353 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
    • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-76.
    • (2006) Cell , vol.126 , pp. 663-676
    • Takahashi, K.1    Yamanaka, S.2
  • 125
    • 36248966518 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from adult human fibroblasts by defined factors
    • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861-72.
    • (2007) Cell , vol.131 , pp. 861-872
    • Takahashi, K.1    Tanabe, K.2    Ohnuki, M.3
  • 126
    • 36749043230 scopus 로고    scopus 로고
    • Induced pluripotent stem cell lines derived from human somatic cells
    • Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917-20.
    • (2007) Science , vol.318 , pp. 1917-1920
    • Yu, J.1    Vodyanik, M.A.2    Smuga-Otto, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.