-
1
-
-
50949090908
-
EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation
-
Bouilloux F, Juban G, Cohet N, et al. EKLF restricts megakaryocytic differentiation at the benefit of erythrocytic differentiation. Blood. 2008;112(3):576-584.
-
(2008)
Blood
, vol.112
, Issue.3
, pp. 576-584
-
-
Bouilloux, F.1
Juban, G.2
Cohet, N.3
-
2
-
-
37049035381
-
Novel role for EKLF in megakaryocyte lineage commitment
-
DOI 10.1182/blood-2007-03-082065
-
Frontelo P, Manwani D, Galdass M, et al. Novel role for EKLF in megakaryocyte lineage commitment. Blood. 2007;110(12):3871-3880. (Pubitemid 350248442)
-
(2007)
Blood
, vol.110
, Issue.12
, pp. 3871-3880
-
-
Frontelo, P.1
Manwani, D.2
Galdass, M.3
Karsunky, H.4
Lohmann, F.5
Gallagher, P.G.6
Bieker, J.J.7
-
3
-
-
84887325599
-
Congenital dyserythropoietic anemias: Molecular insights and diagnostic approach
-
Iolascon A, Heimpel H, Wahlin A, Tamary H. Congenital dyserythropoietic anemias: molecular insights and diagnostic approach. Blood. 2013;122(13):2162- 2166.
-
(2013)
Blood
, vol.122
, Issue.13
, pp. 2162-2166
-
-
Iolascon, A.1
Heimpel, H.2
Wahlin, A.3
Tamary, H.4
-
4
-
-
84883649384
-
Homozygous mutations in a predicted endonuclease are a novel cause of congenital dyserythropoietic anemia type I
-
WGS500 Consortium
-
Babbs C, Roberts NA, Sanchez-Pulido L, et al; WGS500 Consortium. Homozygous mutations in a predicted endonuclease are a novel cause of congenital dyserythropoietic anemia type I. Haematologica. 2013;98(9):1383-1387.
-
(2013)
Haematologica
, vol.98
, Issue.9
, pp. 1383-1387
-
-
Babbs, C.1
Roberts, N.A.2
Sanchez-Pulido, L.3
-
5
-
-
84859894479
-
Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply
-
Ask K, Jasencakova Z, Menard P, Feng Y, Almouzni G, Groth A. Codanin-1, mutated in the anaemic disease CDAI, regulates Asf1 function in S-phase histone supply. EMBO J. 2012;31(8):2013-2023.
-
(2012)
EMBO J
, vol.31
, Issue.8
, pp. 2013-2023
-
-
Ask, K.1
Jasencakova, Z.2
Menard, P.3
Feng, Y.4
Almouzni, G.5
Groth, A.6
-
6
-
-
79959496006
-
Codanin-1 mutations in congenital dyserythropoietic anemia type 1 affect HP1alpha localization in erythroblasts
-
Renella R, Roberts NA, Brown JM, et al. Codanin-1 mutations in congenital dyserythropoietic anemia type 1 affect HP1alpha localization in erythroblasts. Blood. 2011;117(25):6928-6938.
-
(2011)
Blood
, vol.117
, Issue.25
, pp. 6928-6938
-
-
Renella, R.1
Roberts, N.A.2
Brown, J.M.3
-
7
-
-
84869094254
-
Molecular mechanisms of pathology and treatment in Diamond Blackfan Anaemia
-
Horos R, von Lindern M. Molecular mechanisms of pathology and treatment in Diamond Blackfan Anaemia. Br J Haematol. 2012;159(5):514-527.
-
(2012)
Br J Haematol
, vol.159
, Issue.5
, pp. 514-527
-
-
Horos, R.1
Von Lindern, M.2
-
8
-
-
84863554398
-
Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia
-
Sankaran VG, Ghazvinian R, Do R, et al. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J Clin Invest. 2012;122(7):2439-2443.
-
(2012)
J Clin Invest
, vol.122
, Issue.7
, pp. 2439-2443
-
-
Sankaran, V.G.1
Ghazvinian, R.2
Do, R.3
-
9
-
-
84878995335
-
The molecular basis of β-thalassemia
-
Thein SL. The molecular basis of β-thalassemia. Cold Spring Harb Perspect Med. 2013;3(5):a011700.
-
(2013)
Cold Spring Harb Perspect Med
, vol.3
, Issue.5
-
-
Thein, S.L.1
-
10
-
-
12344325677
-
GATA1 in normal and malignant hematopoiesis
-
DOI 10.1016/j.semcdb.2004.11.002, PII S1084952104001041, Protein Synthesis in Health and Disease
-
Crispino JD. GATA1 in normal and malignant hematopoiesis. Semin Cell Dev Biol. 2005;16(1):137-147. (Pubitemid 40126884)
-
(2005)
Seminars in Cell and Developmental Biology
, vol.16
, Issue.1
, pp. 137-147
-
-
Crispino, J.D.1
-
11
-
-
0025203886
-
Transcriptional activation and DNA binding by the erythroid factor GF-1/ NF-E1/Eryf 1
-
Martin DI, Orkin SH. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf 1. Genes Dev. 1990;4(11):1886-1898. (Pubitemid 120012590)
-
(1990)
Genes and Development
, vol.4
, Issue.11
, pp. 1886-1898
-
-
Martin, D.I.K.1
Orkin, S.H.2
-
12
-
-
0029863093
-
A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction
-
Trainor CD, Omichinski JG, Vandergon TL, Gronenborn AM, Clore GM, Felsenfeld G. A palindromic regulatory site within vertebrate GATA-1 promoters requires both zinc fingers of the GATA-1 DNA-binding domain for high-affinity interaction. Mol Cell Biol. 1996;16(5):2238-2247. (Pubitemid 26123744)
-
(1996)
Molecular and Cellular Biology
, vol.16
, Issue.5
, pp. 2238-2247
-
-
Trainor, C.D.1
Omichinski, J.G.2
Vandergon, T.L.3
Gronenborn, A.M.4
Clore, G.M.5
Felsenfeld, G.6
-
13
-
-
0031472234
-
FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation
-
DOI 10.1016/S0092-8674(00)80318-9
-
Tsang AP, Visvader JE, Turner CA, et al. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell. 1997;90(1):109-119. (Pubitemid 28009423)
-
(1997)
Cell
, vol.90
, Issue.1
, pp. 109-119
-
-
Tsang, A.P.1
Visvader, J.E.2
Turner, C.A.3
Fujiwara, Y.4
Channing, Y.5
Weiss, M.J.6
Crossley, M.7
Orkin, S.H.8
-
14
-
-
0034052854
-
Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA 1
-
DOI 10.1038/73480
-
Nichols KE, Crispino JD, Poncz M, et al. Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet. 2000;24(3):266-270. (Pubitemid 30132195)
-
(2000)
Nature Genetics
, vol.24
, Issue.3
, pp. 266-270
-
-
Nichols, K.E.1
Crispino, J.D.2
Poncz, M.3
White, J.G.4
Orkin, S.H.5
Maris, J.M.6
Weiss, M.J.7
-
15
-
-
0033083804
-
Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: The GATA-1:FOG complex
-
DOI 10.1016/S1097-2765(00)80312-3
-
Crispino JD, Lodish MB, MacKay JP, Orkin SH. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol Cell. 1999;3(2):219-228. (Pubitemid 29292622)
-
(1999)
Molecular Cell
, vol.3
, Issue.2
, pp. 219-228
-
-
Crispino, J.D.1
Lodish, M.B.2
MacKay, J.P.3
Orkin, S.H.4
-
16
-
-
23844457607
-
Dyserythropoietic anemia and thrombocytopenia due to a novel mutation in GATA-1
-
DOI 10.1159/000086586
-
Del Vecchio GC, Giordani L, De Santis A, De Mattia D. Dyserythropoietic anemia and thrombocytopenia due to a novel mutation in GATA-1. Acta Haematol. 2005;114(2):113-116. (Pubitemid 41160941)
-
(2005)
Acta Haematologica
, vol.114
, Issue.2
, pp. 113-116
-
-
Del, V.G.C.1
Giordani, L.2
De Santis, A.3
De Mattia, D.4
-
17
-
-
34147165665
-
X-linked gray platelet syndrome due to a GATA1 Arg216Gln mutation
-
DOI 10.1182/blood-2006-02-004101
-
Tubman VN, Levine JE, Campagna DR, et al. X-linked gray platelet syndrome due to a GATA1 Arg216Gln mutation. Blood. 2007;109(8):3297-3299. (Pubitemid 46572516)
-
(2007)
Blood
, vol.109
, Issue.8
, pp. 3297-3299
-
-
Tubman, V.N.1
Levine, J.E.2
Campagna, D.R.3
Monahan-Earley, R.4
Dvorak, A.M.5
Neufeld, E.J.6
Fleming, M.D.7
-
18
-
-
33947223723
-
Congenital erythropoietic porphyria due to a mutation in GATA1: The first trans-acting mutation causative for a human porphyria
-
DOI 10.1182/blood-2006-06-022848
-
Phillips JD, Steensma DP, Pulsipher MA, Spangrude GJ, Kushner JP. Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood. 2007;109(6):2618-2621. (Pubitemid 46425911)
-
(2007)
Blood
, vol.109
, Issue.6
, pp. 2618-2621
-
-
Phillips, J.D.1
Steensma, D.P.2
Pulsipher, M.A.3
Spangrude, G.J.4
Kushner, J.P.5
-
19
-
-
39149123486
-
G208R germline mutation [4]
-
DOI 10.1038/sj.leu.2404904, PII 2404904
-
Kratz CP, Niemeyer CM, Karow A, Volz-Fleckenstein M, Schmitt-Gräff A, Strahm B. Congenital transfusion-dependent anemia and thrombocytopenia with myelodysplasia due to a recurrent GATA1(G208R) germline mutation. Leukemia. 2008;22(2):432-434. (Pubitemid 351250551)
-
(2008)
Leukemia
, vol.22
, Issue.2
, pp. 432-434
-
-
Kratz, C.P.1
Niemeyer, C.M.2
Karow, A.3
Volz-Fleckenstein, M.4
Schmitt-Graff, A.5
Strahm, B.6
-
20
-
-
84884190615
-
Analysis of disease-causing GATA1 mutations in murine gene complementation systems
-
Campbell AE, Wilkinson-White L, Mackay JP, Matthews JM, Blobel GA. Analysis of disease-causing GATA1 mutations in murine gene complementation systems. Blood. 2013;121(26):5218-5227.
-
(2013)
Blood
, vol.121
, Issue.26
, pp. 5218-5227
-
-
Campbell, A.E.1
Wilkinson-White, L.2
Mackay, J.P.3
Matthews, J.M.4
Blobel, G.A.5
-
21
-
-
84875054519
-
A novel GATA1 mutation (Stop414Arg) in a family with the rare X-linked blood group Lu(a-b-) phenotype and mild macrothrombocytic thrombocytopenia
-
Singleton BK, Roxby DJ, Stirling JW, et al. A novel GATA1 mutation (Stop414Arg) in a family with the rare X-linked blood group Lu(a-b-) phenotype and mild macrothrombocytic thrombocytopenia. Br J Haematol. 2013;161(1):139-142.
-
(2013)
Br J Haematol
, vol.161
, Issue.1
, pp. 139-142
-
-
Singleton, B.K.1
Roxby, D.J.2
Stirling, J.W.3
-
23
-
-
33745579586
-
An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis
-
DOI 10.1038/ng1825, PII N1825
-
Hollanda LM, Lima CS, Cunha AF, et al. An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis. Nat Genet. 2006;38(7):807-812. (Pubitemid 43980602)
-
(2006)
Nature Genetics
, vol.38
, Issue.7
, pp. 807-812
-
-
Hollanda, L.M.1
Lima, C.S.P.2
Cunha, A.F.3
Albuquerque, D.M.4
Vassallo, J.5
Ozelo, M.C.6
Joazeiro, P.P.7
Saad, S.T.O.8
Costa, F.F.9
-
24
-
-
84899666581
-
Loss of GATA-1 full length as a cause of Diamond-Blackfan anemia phenotype
-
published online ahead of print January 22, 2014
-
Parrella SAA, Aspesi A, Quarello P, et al. Loss of GATA-1 full length as a cause of Diamond-Blackfan anemia phenotype [published online ahead of print January 22, 2014]. Pediatr Blood Cancer.
-
Pediatr Blood Cancer
-
-
Parrella, S.A.A.1
Aspesi, A.2
Quarello, P.3
-
26
-
-
0029001881
-
Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals
-
Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995;10(2):224-228.
-
(1995)
Nat Genet
, vol.10
, Issue.2
, pp. 224-228
-
-
Tournamille, C.1
Colin, Y.2
Cartron, J.P.3
Le Van Kim, C.4
-
27
-
-
84896828347
-
X-linked sideroblastic anemia due to ALAS2 intron 1 enhancer element GATA binding site mutations
-
Campagna DR, de Bie CI, Schmitz-Abe K, et al. X-linked sideroblastic anemia due to ALAS2 intron 1 enhancer element GATA binding site mutations. Am J Hematol. 2013;89(3):315-319.
-
(2013)
Am J Hematol
, vol.89
, Issue.3
, pp. 315-319
-
-
Campagna, D.R.1
De Bie, C.I.2
Schmitz-Abe, K.3
-
28
-
-
84896689530
-
Identification of the novel erythroid-specific enhancer for ALAS2 gene and its loss-offunction mutation associated with congenital sideroblastic anemia
-
Kaneko K, Furuyama K, Fujiwara T, et al. Identification of the novel erythroid-specific enhancer for ALAS2 gene and its loss-offunction mutation associated with congenital sideroblastic anemia. Haematologica. 2014;99(20):252-261.
-
(2014)
Haematologica
, vol.99
, Issue.20
, pp. 252-261
-
-
Kaneko, K.1
Furuyama, K.2
Fujiwara, T.3
-
29
-
-
0035103547
-
Uroporphyrinogen III synthase erythroid promoter mutations in adjacent GATA1 and CP2 elements cause congenital erythropoietic porphyria
-
Solis C, Aizencang GI, Astrin KH, Bishop DF, Desnick RJ. Uroporphyrinogen III synthase erythroid promoter mutations in adjacent GATA1 and CP2 elements cause congenital erythropoietic porphyria. J Clin Invest. 2001;107(6):753-762. (Pubitemid 32225361)
-
(2001)
Journal of Clinical Investigation
, vol.107
, Issue.6
, pp. 753-762
-
-
Solis, C.1
Aizencang, G.I.2
Astrin, K.H.3
Bishop, D.F.4
Desnick, R.J.5
-
30
-
-
8644228649
-
Global regulation of erythroid gene expression by transcription factor GATA-1
-
DOI 10.1182/blood-2004-04-1603
-
Welch JJ, Watts JA, Vakoc CR, et al. Global regulation of erythroid gene expression by transcription factor GATA-1. Blood. 2004;104(10):3136-3147. (Pubitemid 39507127)
-
(2004)
Blood
, vol.104
, Issue.10
, pp. 3136-3147
-
-
Welch, J.J.1
Watts, J.A.2
Vakoc, C.R.3
Yao, Y.4
Wang, H.5
Hardison, R.C.6
Blobel, G.A.7
Chodosh, L.A.8
Weiss, M.J.9
-
31
-
-
70449638281
-
Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis
-
Yu M, Riva L, Xie H, et al. Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. Mol Cell. 2009;36(4):682-695.
-
(2009)
Mol Cell
, vol.36
, Issue.4
, pp. 682-695
-
-
Yu, M.1
Riva, L.2
Xie, H.3
-
32
-
-
70449696134
-
Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression
-
Cheng Y, Wu W, Kumar SA, et al. Erythroid GATA1 function revealed by genome-wide analysis of transcription factor occupancy, histone modifications, and mRNA expression. Genome Res. 2009;19(12):2172-2184.
-
(2009)
Genome Res
, vol.19
, Issue.12
, pp. 2172-2184
-
-
Cheng, Y.1
Wu, W.2
Kumar, S.A.3
-
33
-
-
70449675049
-
Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy
-
Fujiwara T, O'Geen H, Keles S, et al. Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. Mol Cell. 2009;36(4):667-681.
-
(2009)
Mol Cell
, vol.36
, Issue.4
, pp. 667-681
-
-
Fujiwara, T.1
O'Geen, H.2
Keles, S.3
-
34
-
-
20044381309
-
Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1
-
DOI 10.1038/ng1566
-
Li Z, Godinho FJ, Klusmann JH, Garriga-Canut M, Yu C, Orkin SH. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet. 2005;37(6):613-619. (Pubitemid 40770416)
-
(2005)
Nature Genetics
, vol.37
, Issue.6
, pp. 613-619
-
-
Li, Z.1
Godinho, F.J.2
Klusmann, J.-H.3
Garriga-Canut, M.4
Yu, C.5
Orkin, S.H.6
-
35
-
-
0035903475
-
In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis
-
DOI 10.1093/emboj/20.18.5250
-
Shimizu R, Takahashi S, Ohneda K, Engel JD, Yamamoto M. In vivo requirements for GATA-1 functional domains during primitive and definitive erythropoiesis. EMBO J. 2001;20(18):5250-5260. (Pubitemid 32910919)
-
(2001)
EMBO Journal
, vol.20
, Issue.18
, pp. 5250-5260
-
-
Shimizu, R.1
Takahashi, S.2
Ohneda, K.3
Engel, J.D.4
Yamamoto, M.5
-
36
-
-
77954071946
-
Gfi1-cells and circuits: Unraveling transcriptional networks of development and disease
-
Phelan JD, Shroyer NF, Cook T, Gebelein B, Grimes HL. Gfi1-cells and circuits: unraveling transcriptional networks of development and disease. Curr Opin Hematol. 2010;17(4):300-307.
-
(2010)
Curr Opin Hematol
, vol.17
, Issue.4
, pp. 300-307
-
-
Phelan, J.D.1
Shroyer, N.F.2
Cook, T.3
Gebelein, B.4
Grimes, H.L.5
-
38
-
-
22744437648
-
GATA-1 forms distinct activating and repressive complexes in erythroid cells
-
DOI 10.1038/sj.emboj.7600702
-
Rodriguez P, Bonte E, Krijgsveld J, et al. GATA-1 forms distinct activating and repressive complexes in erythroid cells. EMBO J. 2005;24(13):2354-2366. (Pubitemid 41032587)
-
(2005)
EMBO Journal
, vol.24
, Issue.13
, pp. 2354-2366
-
-
Rodriguez, P.1
Bonte, E.2
Krijgsveld, J.3
Kolodziej, K.E.4
Guyot, B.5
Heck, A.J.R.6
Vyas, P.7
De Boer, E.8
Grosveld, F.9
Strouboulis, J.10
-
39
-
-
0036467868
-
The zinc-finger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages
-
DOI 10.1101/gad.959102
-
Saleque S, Cameron S, Orkin SH. The zincfinger proto-oncogene Gfi-1b is essential for development of the erythroid and megakaryocytic lineages. Genes Dev. 2002;16(3):301-306. (Pubitemid 34111410)
-
(2002)
Genes and Development
, vol.16
, Issue.3
, pp. 301-306
-
-
Saleque, S.1
Cameron, S.2
Orkin, S.H.3
-
40
-
-
77950986252
-
Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage
-
Randrianarison-Huetz V, Laurent B, Bardet V, Blobe GC, Huetz F, Duménil D. Gfi-1B controls human erythroid and megakaryocytic differentiation by regulating TGF-beta signaling at the bipotent erythro-megakaryocytic progenitor stage. Blood. 2010;115(14):2784-2795.
-
(2010)
Blood
, vol.115
, Issue.14
, pp. 2784-2795
-
-
Randrianarison-Huetz, V.1
Laurent, B.2
Bardet, V.3
Blobe, G.C.4
Huetz, F.5
Duménil, D.6
-
41
-
-
84887514998
-
GFI1B mutation causes a bleeding disorder with abnormal platelet function
-
Stevenson WS, Morel-Kopp MC, Chen Q, et al. GFI1B mutation causes a bleeding disorder with abnormal platelet function. J Thromb Haemost. 2013;11(11):2039-2047.
-
(2013)
J Thromb Haemost
, vol.11
, Issue.11
, pp. 2039-2047
-
-
Stevenson, W.S.1
Morel-Kopp, M.C.2
Chen, Q.3
-
42
-
-
84892566252
-
A dominant-negative GFI1B mutation in the Gray platelet syndrome
-
Monteferrario D, Bolar NA, Marneth AE, et al. A dominant-negative GFI1B mutation in the Gray platelet syndrome. N Engl J Med. 2014;370(3):245-253.
-
(2014)
N Engl J Med
, vol.370
, Issue.3
, pp. 245-253
-
-
Monteferrario, D.1
Bolar, N.A.2
Marneth, A.E.3
-
43
-
-
0027211845
-
A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins
-
Miller IJ, Bieker JJ. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol. 1993;13(5):2776-2786. (Pubitemid 23133950)
-
(1993)
Molecular and Cellular Biology
, vol.13
, Issue.5
, pp. 2776-2786
-
-
Miller, I.J.1
Bieker, J.J.2
-
44
-
-
84871890500
-
EKLF/KLF1, a tissue-restricted integrator of transcriptional control, chromatin remodeling, and lineage determination
-
Yien YY, Bieker JJ. EKLF/KLF1, a tissue-restricted integrator of transcriptional control, chromatin remodeling, and lineage determination. Mol Cell Biol. 2013;33(1):4-13.
-
(2013)
Mol Cell Biol
, vol.33
, Issue.1
, pp. 4-13
-
-
Yien, Y.Y.1
Bieker, J.J.2
-
45
-
-
0028990264
-
Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF
-
Perkins AC, Sharpe AH, Orkin SH. Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature. 1995;375(6529):318-322.
-
(1995)
Nature
, vol.375
, Issue.6529
, pp. 318-322
-
-
Perkins, A.C.1
Sharpe, A.H.2
Orkin, S.H.3
-
46
-
-
0029010790
-
Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene
-
Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F. Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature. 1995;375(6529):316-318.
-
(1995)
Nature
, vol.375
, Issue.6529
, pp. 316-318
-
-
Nuez, B.1
Michalovich, D.2
Bygrave, A.3
Ploemacher, R.4
Grosveld, F.5
-
47
-
-
77952632060
-
EKLF directly activates the p21WAF1/CIP1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation
-
Siatecka M, Lohmann F, Bao S, Bieker JJ. EKLF directly activates the p21WAF1/CIP1 gene by proximal promoter and novel intronic regulatory regions during erythroid differentiation. Mol Cell Biol. 2010;30(11):2811-2822.
-
(2010)
Mol Cell Biol
, vol.30
, Issue.11
, pp. 2811-2822
-
-
Siatecka, M.1
Lohmann, F.2
Bao, S.3
Bieker, J.J.4
-
48
-
-
33646675621
-
Major erythrocyte membrane protein genes in EKLF-deficient mice
-
DOI 10.1016/j.exphem.2006.02.018, PII S0301472X06001263
-
Nilson DG, Sabatino DE, Bodine DM, Gallagher PG. Major erythrocyte membrane protein genes in EKLF-deficient mice. Exp Hematol. 2006;34(6):705-712. (Pubitemid 43737096)
-
(2006)
Experimental Hematology
, vol.34
, Issue.6
, pp. 705-712
-
-
Nilson, D.G.1
Sabatino, D.E.2
Bodine, D.M.3
Gallagher, P.G.4
-
49
-
-
84870543736
-
Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq
-
Tallack MR, Magor GW, Dartigues B, et al. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq. Genome Res. 2012;22(12):2385-2398.
-
(2012)
Genome Res
, vol.22
, Issue.12
, pp. 2385-2398
-
-
Tallack, M.R.1
Magor, G.W.2
Dartigues, B.3
-
50
-
-
84863264788
-
A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation
-
Wontakal SN, Guo X, Smith C, et al. A core erythroid transcriptional network is repressed by a master regulator of myelo-lymphoid differentiation. Proc Natl Acad Sci U S A. 2012;109(10):3832-3837.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.10
, pp. 3832-3837
-
-
Wontakal, S.N.1
Guo, X.2
Smith, C.3
-
51
-
-
52649088204
-
Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype
-
Singleton BK, Burton NM, Green C, Brady RL, Anstee DJ. Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. Blood. 2008;112(5):2081-2088.
-
(2008)
Blood
, vol.112
, Issue.5
, pp. 2081-2088
-
-
Singleton, B.K.1
Burton, N.M.2
Green, C.3
Brady, R.L.4
Anstee, D.J.5
-
52
-
-
84868191127
-
Blood group phenotypes resulting from mutations in erythroid transcription factors
-
Singleton BK, Frayne J, Anstee DJ. Blood group phenotypes resulting from mutations in erythroid transcription factors. Curr Opin Hematol. 2012;19(6):486-493.
-
(2012)
Curr Opin Hematol
, vol.19
, Issue.6
, pp. 486-493
-
-
Singleton, B.K.1
Frayne, J.2
Anstee, D.J.3
-
53
-
-
77957016122
-
Severe anemia in the Nan mutant mouse caused by sequence-selective disruption of erythroid Kruppel-like factor
-
Siatecka M, Sahr KE, Andersen SG, Mezei M, Bieker JJ, Peters LL. Severe anemia in the Nan mutant mouse caused by sequence-selective disruption of erythroid Kruppel-like factor. Proc Natl Acad Sci U S A. 2010;107(34):15151- 15156.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.34
, pp. 15151-15156
-
-
Siatecka, M.1
Sahr, K.E.2
Andersen, S.G.3
Mezei, M.4
Bieker, J.J.5
Peters, L.L.6
-
54
-
-
78649451381
-
Mutation in erythroid specific transcription factor KLF1 causes Hereditary Spherocytosis in the Nan hemolytic anemia mouse model
-
Heruth DP, Hawkins T, Logsdon DP, et al. Mutation in erythroid specific transcription factor KLF1 causes Hereditary Spherocytosis in the Nan hemolytic anemia mouse model. Genomics. 2010;96(5):303-307.
-
(2010)
Genomics
, vol.96
, Issue.5
, pp. 303-307
-
-
Heruth, D.P.1
Hawkins, T.2
Logsdon, D.P.3
-
55
-
-
8044241134
-
Dominant haemolytic anaemia
-
Lyon MF. Dominant haemolytic anaemia. Mouse News Lett. 1993;68:68.
-
(1993)
Mouse News Lett
, vol.68
, pp. 68
-
-
Lyon, M.F.1
-
56
-
-
78249264453
-
A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia
-
Arnaud L, Saison C, Helias V, et al. A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Am J Hum Genet. 2010;87(5):721-727.
-
(2010)
Am J Hum Genet
, vol.87
, Issue.5
, pp. 721-727
-
-
Arnaud, L.1
Saison, C.2
Helias, V.3
-
57
-
-
84897515773
-
Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression
-
Viprakasit V, Ekwattanakit S, Riolueang S, et al. Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression. Blood. 2014;123(10):1586-1595.
-
(2014)
Blood
, vol.123
, Issue.10
, pp. 1586-1595
-
-
Viprakasit, V.1
Ekwattanakit, S.2
Riolueang, S.3
-
58
-
-
80052919973
-
Mutations in the second zinc finger of human EKLF reduce promoter affinity but give rise to benign and disease phenotypes
-
Singleton BK, Lau W, Fairweather VS, et al. Mutations in the second zinc finger of human EKLF reduce promoter affinity but give rise to benign and disease phenotypes. Blood. 2011;118(11):3137-3145.
-
(2011)
Blood
, vol.118
, Issue.11
, pp. 3137-3145
-
-
Singleton, B.K.1
Lau, W.2
Fairweather, V.S.3
-
60
-
-
77956622584
-
Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin
-
Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet. 2010;42(9):801-805.
-
(2010)
Nat Genet
, vol.42
, Issue.9
, pp. 801-805
-
-
Borg, J.1
Papadopoulos, P.2
Georgitsi, M.3
-
61
-
-
34748864128
-
A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15
-
DOI 10.1038/ng2108, PII NG2108
-
Menzel S, Garner C, Gut I, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet. 2007;39(10):1197-1199. (Pubitemid 47482679)
-
(2007)
Nature Genetics
, vol.39
, Issue.10
, pp. 1197-1199
-
-
Menzel, S.1
Garner, C.2
Gut, I.3
Matsuda, F.4
Yamaguchi, M.5
Heath, S.6
Foglio, M.7
Zelenika, D.8
Boland, A.9
Rooks, H.10
Best, S.11
Spector, T.D.12
Farrall, M.13
Lathrop, M.14
Thein, S.L.15
-
62
-
-
50149117726
-
DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease
-
Lettre G, Sankaran VG, Bezerra MA, et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A. 2008;105(33):11869-11874.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.33
, pp. 11869-11874
-
-
Lettre, G.1
Sankaran, V.G.2
Bezerra, M.A.3
-
63
-
-
40349092939
-
Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia
-
DOI 10.1073/pnas.0711566105
-
Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci U S A. 2008;105(5):1620-1625. (Pubitemid 351346564)
-
(2008)
Proceedings of the National Academy of Sciences of the United States of America
, vol.105
, Issue.5
, pp. 1620-1625
-
-
Uda, M.1
Galanello, R.2
Sanna, S.3
Lettre, G.4
Sankaran, V.G.5
Chen, W.6
Usala, G.7
Busonero, F.8
Maschio, A.9
Albai, G.10
Piras, M.G.11
Sestu, N.12
Lai, S.13
Dei, M.14
Mulas, A.15
Crisponi, L.16
Naitza, S.17
Asunis, I.18
Deiana, M.19
Nagaraja, R.20
Perseu, L.21
Satta, S.22
Cipollina, M.D.23
Sollaino, C.24
Moi, P.25
Hirschhorn, J.N.26
Orkin, S.H.27
Abecasis, G.R.28
Schlessinger, D.29
Cao, A.30
more..
-
64
-
-
57849083996
-
Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A
-
Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839-1842.
-
(2008)
Science
, vol.322
, Issue.5909
, pp. 1839-1842
-
-
Sankaran, V.G.1
Menne, T.F.2
Xu, J.3
-
65
-
-
69349092063
-
Developmental and species-divergent globin switching are driven by BCL11A
-
Sankaran VG, Xu J, Ragoczy T, et al. Developmental and species-divergent globin switching are driven by BCL11A. Nature. 2009;460(7259):1093-1097.
-
(2009)
Nature
, vol.460
, Issue.7259
, pp. 1093-1097
-
-
Sankaran, V.G.1
Xu, J.2
Ragoczy, T.3
-
66
-
-
77956630402
-
KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching
-
Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM. KLF1 regulates BCL11A expression and gamma- to beta-globin gene switching. Nat Genet. 2010;42(9):742-744.
-
(2010)
Nat Genet
, vol.42
, Issue.9
, pp. 742-744
-
-
Zhou, D.1
Liu, K.2
Sun, C.W.3
Pawlik, K.M.4
Townes, T.M.5
-
67
-
-
79953117530
-
Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer
-
Wilber A, Hargrove PW, Kim YS, et al. Therapeutic levels of fetal hemoglobin in erythroid progeny of β-thalassemic CD34+ cells after lentiviral vector-mediated gene transfer. Blood. 2011;117(10):2817-2826.
-
(2011)
Blood
, vol.117
, Issue.10
, pp. 2817-2826
-
-
Wilber, A.1
Hargrove, P.W.2
Kim, Y.S.3
-
68
-
-
81555205756
-
Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing
-
Xu J, Peng C, Sankaran VG, et al. Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing. Science. 2011;334(6058):993-996.
-
(2011)
Science
, vol.334
, Issue.6058
, pp. 993-996
-
-
Xu, J.1
Peng, C.2
Sankaran, V.G.3
-
69
-
-
0028858855
-
Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL
-
Shivdasani RA, Mayer EL, Orkin SH. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature. 1995;373(6513):432- 434.
-
(1995)
Nature
, vol.373
, Issue.6513
, pp. 432-434
-
-
Shivdasani, R.A.1
Mayer, E.L.2
Orkin, S.H.3
-
70
-
-
0029121271
-
Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene
-
Robb L, Lyons I, Li R, et al. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci U S A. 1995;92(15):7075-7079.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, Issue.15
, pp. 7075-7079
-
-
Robb, L.1
Lyons, I.2
Li, R.3
-
71
-
-
0037472895
-
Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene
-
DOI 10.1038/nature01345
-
Mikkola HK, Klintman J, Yang H, et al. Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature. 2003;421(6922):547-551. (Pubitemid 36168449)
-
(2003)
Nature
, vol.421
, Issue.6922
, pp. 547-551
-
-
Mikkola, H.K.A.1
Klintman, J.2
Yang, H.3
Hock, H.4
Schlaeger, T.M.5
Fujiwara, Y.6
Orkin, S.H.7
-
72
-
-
0037417892
-
12
-
DOI 10.1073/pnas.0237324100
-
Hall MA, Curtis DJ, Metcalf D, et al. The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc Natl Acad Sci U S A. 2003;100(3):992-997. (Pubitemid 36183943)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.3
, pp. 992-997
-
-
Hall, M.A.1
Curtis, D.J.2
Metcalf, D.3
Elefanty, A.G.4
Sourris, K.5
Robb, L.6
Gothert, J.R.7
Jane, S.M.8
Begley, C.G.9
-
73
-
-
0030999645
-
The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins
-
DOI 10.1093/emboj/16.11.3145
-
Wadman IA, Osada H, Grütz GG, et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 1997;16(11):3145-3157. (Pubitemid 27234954)
-
(1997)
EMBO Journal
, vol.16
, Issue.11
, pp. 3145-3157
-
-
Wadman, I.A.1
Osada, H.2
Grutz, G.G.3
Agulnick, A.D.4
Westphal, H.5
Forster, A.6
Rabbitts, T.H.7
-
74
-
-
35348887715
-
Mechanisms of transcription factor deregulation in lymphoid cell transformation
-
DOI 10.1038/sj.onc.1210766, PII 1210766
-
O'Neil J, Look AT. Mechanisms of transcription factor deregulation in lymphoid cell transformation. Oncogene. 2007;26(47):6838-6849. (Pubitemid 47585107)
-
(2007)
Oncogene
, vol.26
, Issue.47
, pp. 6838-6849
-
-
O'Neil, J.1
Look, A.T.2
-
75
-
-
84863649033
-
Master regulatory GATA transcription factors: Mechanistic principles and emerging links to hematologic malignancies
-
Bresnick EH, Katsumura KR, Lee HY, Johnson KD, Perkins AS. Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res. 2012;40(13):5819-5831.
-
(2012)
Nucleic Acids Res
, vol.40
, Issue.13
, pp. 5819-5831
-
-
Bresnick, E.H.1
Katsumura, K.R.2
Lee, H.Y.3
Johnson, K.D.4
Perkins, A.S.5
-
76
-
-
84858673741
-
The role of the GATA2 transcription factor in normal and malignant hematopoiesis
-
Vicente C, Conchillo A, García-Sánchez MA, Odero MD. The role of the GATA2 transcription factor in normal and malignant hematopoiesis. Crit Rev Oncol Hematol. 2012;82(1):1-17.
-
(2012)
Crit Rev Oncol Hematol
, vol.82
, Issue.1
, pp. 1-17
-
-
Vicente, C.1
Conchillo, A.2
García-Sánchez, M.A.3
Odero, M.D.4
-
77
-
-
0028022916
-
An early haematopoietic defect in mice lacking the transcription factor GATA-2
-
DOI 10.1038/371221a0
-
Tsai FY, Keller G, Kuo FC, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371(6494):221-226. (Pubitemid 24293019)
-
(1994)
Nature
, vol.371
, Issue.6494
, pp. 221-226
-
-
Tsal, F.-Y.1
Keller, G.2
Kuo, F.C.3
Weiss, M.4
Chen, J.5
Rosenblatt, M.6
Alt, F.W.7
Orkin, S.H.8
-
78
-
-
5444223724
-
GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells
-
DOI 10.1084/jem.20031556
-
Ling KW, Ottersbach K, van Hamburg JP, et al. GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. J Exp Med. 2004;200(7):871-882. (Pubitemid 39362923)
-
(2004)
Journal of Experimental Medicine
, vol.200
, Issue.7
, pp. 871-882
-
-
Ling, K.-W.1
Ottersbach, K.2
Van Hamburg, J.P.3
Oziemlak, A.4
Tsai, F.-Y.5
Orkin, S.H.6
Ploemacher, R.7
Hendriks, R.W.8
Dzierzak, E.9
-
79
-
-
80053383273
-
Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia
-
Hahn CN, Chong CE, Carmichael CL, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011;43(10):1012-1017.
-
(2011)
Nat Genet
, vol.43
, Issue.10
, pp. 1012-1017
-
-
Hahn, C.N.1
Chong, C.E.2
Carmichael, C.L.3
-
80
-
-
79961074298
-
Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome
-
Hsu AP, Sampaio EP, Khan J, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653-2655.
-
(2011)
Blood
, vol.118
, Issue.10
, pp. 2653-2655
-
-
Hsu, A.P.1
Sampaio, E.P.2
Khan, J.3
-
81
-
-
80053385569
-
Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome)
-
Ostergaard P, Simpson MA, Connell FC, et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet. 2011;43(10):929-931.
-
(2011)
Nat Genet
, vol.43
, Issue.10
, pp. 929-931
-
-
Ostergaard, P.1
Simpson, M.A.2
Connell, F.C.3
-
82
-
-
0027264128
-
Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner
-
Briegel K, Lim KC, Plank C, Beug H, Engel JD, Zenke M. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Genes Dev. 1993;7(6):1097-1109. (Pubitemid 23170832)
-
(1993)
Genes and Development
, vol.7
, Issue.6
, pp. 1097-1109
-
-
Briegel, K.1
Lim, K.-C.2
Plank, C.3
Beug, H.4
Engel, J.D.5
Zenke, M.6
-
83
-
-
0033565812
-
A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal
-
Heyworth C, Gale K, Dexter M, May G, Enver TA. A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal. Genes Dev. 1999;13(14):1847-1860. (Pubitemid 29353051)
-
(1999)
Genes and Development
, vol.13
, Issue.14
, pp. 1847-1860
-
-
Heyworth, C.1
Gale, K.2
Dexter, M.3
May, G.4
Enver, T.5
-
84
-
-
0041806587
-
GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling
-
DOI 10.1073/pnas.1432147100
-
Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc Natl Acad Sci U S A. 2003;100(15):8811-8816. (Pubitemid 36899180)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.15
, pp. 8811-8816
-
-
Grass, J.A.1
Boyer, M.E.2
Pal, S.3
Wu, J.4
Weiss, M.J.5
Bresnick, E.H.6
-
85
-
-
78049432269
-
A single cis element maintains repression of the key developmental regulator Gata2
-
Snow JW, Trowbridge JJ, Fujiwara T, et al. A single cis element maintains repression of the key developmental regulator Gata2. PLoS Genet. 2010;6(9):e1001103.
-
(2010)
PLoS Genet
, vol.6
, Issue.9
-
-
Snow, J.W.1
Trowbridge, J.J.2
Fujiwara, T.3
-
86
-
-
84867280730
-
Combinatorial regulation of tissue specification by GATA and FOG factors
-
Chlon TM, Crispino JD. Combinatorial regulation of tissue specification by GATA and FOG factors. Development. 2012;139(21):3905-3916.
-
(2012)
Development
, vol.139
, Issue.21
, pp. 3905-3916
-
-
Chlon, T.M.1
Crispino, J.D.2
-
87
-
-
0032522474
-
Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG
-
Tsang AP, Fujiwara Y, Hom DB, Orkin SH. Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev. 1998;12(8):1176-1188. (Pubitemid 28194053)
-
(1998)
Genes and Development
, vol.12
, Issue.8
, pp. 1176-1188
-
-
Tsang, A.P.1
Fujiwara, Y.2
Horn, D.B.3
Orkin, S.H.4
-
88
-
-
0344198634
-
Endothelial lineage-mediated loss of the GATA cofactor Friend of GATA 1 impairs cardiac development
-
DOI 10.1073/pnas.1936250100
-
Katz SG, Williams A, Yang J, et al. Endothelial lineage-mediated loss of the GATA cofactor Friend of GATA 1 impairs cardiac development. Proc Natl Acad Sci U S A. 2003;100(24):14030-14035. (Pubitemid 37499185)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.SUPPL. 2
, pp. 14030-14035
-
-
Katz, S.G.1
Williams, A.2
Yang, J.3
Fujiwara, Y.4
Tsang, A.P.5
Epstein, J.A.6
Orkin, S.H.7
-
89
-
-
84891159436
-
Ldb1 complexes: The new master regulators of erythroid gene transcription
-
Love PE, Warzecha C, Li L. Ldb1 complexes: the new master regulators of erythroid gene transcription. Trends Genet. 2014;30(1):1-9.
-
(2014)
Trends Genet
, vol.30
, Issue.1
, pp. 1-9
-
-
Love, P.E.1
Warzecha, C.2
Li, L.3
-
90
-
-
0027243681
-
Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein
-
DOI 10.1038/362722a0
-
Andrews NC, Erdjument-Bromage H, Davidson MB, Tempst P, Orkin SH. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature. 1993;362(6422):722-728. (Pubitemid 23125974)
-
(1993)
Nature
, vol.362
, Issue.6422
, pp. 722-728
-
-
Andrews, N.C.1
Erdjument-Bromage, H.2
Davidson, M.B.3
Tempst, P.4
Orkin, S.H.5
-
91
-
-
0032037890
-
The NF-E2 transcription factor
-
Andrews NC. The NF-E2 transcription factor. Int J Biochem Cell Biol. 1998;30(4):429-432.
-
(1998)
Int J Biochem Cell Biol
, vol.30
, Issue.4
, pp. 429-432
-
-
Andrews, N.C.1
-
92
-
-
20244365505
-
Gene expression profiling in polycythaemia vera: Overexpression of transcription factor NF-E2
-
DOI 10.1111/j.1365-2141.2005.05416.x
-
Goerttler PS, Kreutz C, Donauer J, et al. Gene expression profiling in polycythaemia vera: overexpression of transcription factor NF-E2. Br J Haematol. 2005;129(1):138-150. (Pubitemid 40524062)
-
(2005)
British Journal of Haematology
, vol.129
, Issue.1
, pp. 138-150
-
-
Goerttler, P.S.1
Kreutz, C.2
Donauer, J.3
Faller, D.4
Maiwald, T.5
Marz, E.6
Rumberger, B.7
Sparna, T.8
Schmitt-Graff, A.9
Wilpert, J.10
Timmer, J.11
Walz, G.12
Pahl, H.L.13
-
93
-
-
84876511310
-
Elevated nuclear factor erythroid-2 levels promote epo-independent erythroid maturation and recapitulate the hematopoietic stem cell and common myeloid progenitor expansion observed in polycythemia vera patients
-
Bogeska R, Pahl HL. Elevated nuclear factor erythroid-2 levels promote epo-independent erythroid maturation and recapitulate the hematopoietic stem cell and common myeloid progenitor expansion observed in polycythemia vera patients. Stem Cells Transl Med. 2013;2(2):112-117.
-
(2013)
Stem Cells Transl Med
, vol.2
, Issue.2
, pp. 112-117
-
-
Bogeska, R.1
Pahl, H.L.2
-
94
-
-
84856911269
-
A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2
-
Kaufmann KB, Gründer A, Hadlich T, et al. A novel murine model of myeloproliferative disorders generated by overexpression of the transcription factor NF-E2. J Exp Med. 2012;209(1):35-50.
-
(2012)
J Exp Med
, vol.209
, Issue.1
, pp. 35-50
-
-
Kaufmann, K.B.1
Gründer, A.2
Hadlich, T.3
-
95
-
-
84879557768
-
MPN patients harbor recurrent truncating mutations in transcription factor NF-E2
-
Jutzi JS, Bogeska R, Nikoloski G, et al. MPN patients harbor recurrent truncating mutations in transcription factor NF-E2. J Exp Med. 2013;210(5):1003-1019.
-
(2013)
J Exp Med
, vol.210
, Issue.5
, pp. 1003-1019
-
-
Jutzi, J.S.1
Bogeska, R.2
Nikoloski, G.3
-
96
-
-
0029051295
-
Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development
-
Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, et al. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell. 1995;81(5):695-704.
-
(1995)
Cell
, vol.81
, Issue.5
, pp. 695-704
-
-
Shivdasani, R.A.1
Rosenblatt, M.F.2
Zucker-Franklin, D.3
-
97
-
-
0029050860
-
Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2
-
Shivdasani RA, Orkin SH. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci U S A. 1995;92(19):8690-8694.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, Issue.19
, pp. 8690-8694
-
-
Shivdasani, R.A.1
Orkin, S.H.2
-
99
-
-
68149162593
-
Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II
-
Schwarz K, Iolascon A, Verissimo F, et al. Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat Genet. 2009;41(8):936-940.
-
(2009)
Nat Genet
, vol.41
, Issue.8
, pp. 936-940
-
-
Schwarz, K.1
Iolascon, A.2
Verissimo, F.3
-
100
-
-
84863957813
-
SEC23B is required for the maintenance of murine professional secretory tissues
-
Tao J, Zhu M, Wang H, et al. SEC23B is required for the maintenance of murine professional secretory tissues. Proc Natl Acad Sci U S A. 2012;109(29):E2001-E2009.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.29
-
-
Tao, J.1
Zhu, M.2
Wang, H.3
-
101
-
-
47249142778
-
Revealing the architecture of gene regulation: The promise of eQTL studies
-
Gilad Y, Rifkin SA, Pritchard JK. Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet. 2008;24(8):408-415.
-
(2008)
Trends Genet
, vol.24
, Issue.8
, pp. 408-415
-
-
Gilad, Y.1
Rifkin, S.A.2
Pritchard, J.K.3
-
102
-
-
84871464519
-
Seventy-five genetic loci influencing the human red blood cell
-
van der Harst P, Zhang W, Mateo Leach I, et al. Seventy-five genetic loci influencing the human red blood cell. Nature. 2012;492(7429):369-375.
-
(2012)
Nature
, vol.492
, Issue.7429
, pp. 369-375
-
-
Van Der Harst, P.1
Zhang, W.2
Mateo Leach, I.3
-
103
-
-
65349107708
-
Discovering the genetics underlying foetal haemoglobin production in adults
-
Thein SL, Menzel S. Discovering the genetics underlying foetal haemoglobin production in adults. Br J Haematol. 2009;145(4):455-467.
-
(2009)
Br J Haematol
, vol.145
, Issue.4
, pp. 455-467
-
-
Thein, S.L.1
Menzel, S.2
-
104
-
-
84885620722
-
An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level
-
Bauer DE, Kamran SC, Lessard S, et al. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013;342(6155):253-257.
-
(2013)
Science
, vol.342
, Issue.6155
, pp. 253-257
-
-
Bauer, D.E.1
Kamran, S.C.2
Lessard, S.3
-
105
-
-
84879264708
-
ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering
-
Gaj T, Gersbach CA, Barbas CF III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397-405.
-
(2013)
Trends Biotechnol
, vol.31
, Issue.7
, pp. 397-405
-
-
Gaj, T.1
Gersbach, C.A.2
Barbas III, C.F.3
-
106
-
-
84866600774
-
Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number
-
Sankaran VG, Ludwig LS, Sicinska E, et al. Cyclin D3 coordinates the cell cycle during differentiation to regulate erythrocyte size and number. Genes Dev. 2012;26(18):2075-2087.
-
(2012)
Genes Dev
, vol.26
, Issue.18
, pp. 2075-2087
-
-
Sankaran, V.G.1
Ludwig, L.S.2
Sicinska, E.3
-
107
-
-
84892507301
-
Applications of high-throughput DNA sequencing to benign hematology
-
Sankaran VG, Gallagher PG. Applications of high-throughput DNA sequencing to benign hematology. Blood. 2013;122(22):3575-3582.
-
(2013)
Blood
, vol.122
, Issue.22
, pp. 3575-3582
-
-
Sankaran, V.G.1
Gallagher, P.G.2
-
108
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013;153(4):910-918.
-
(2013)
Cell
, vol.153
, Issue.4
, pp. 910-918
-
-
Wang, H.1
Yang, H.2
Shivalila, C.S.3
-
109
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
ENCODE Project Consortium
-
Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M; ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57-74.
-
(2012)
Nature
, vol.489
, Issue.7414
, pp. 57-74
-
-
Bernstein, B.E.1
Birney, E.2
Dunham, I.3
Green, E.D.4
Gunter, C.5
Snyder, M.6
-
110
-
-
79955550445
-
A user's guide to the encyclopedia of DNA elements (ENCODE)
-
ENCODE Project Consortium
-
Consortium EP; ENCODE Project Consortium. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 2011;9(4):e1001046.
-
(2011)
PLoS Biol
, vol.9
, Issue.4
-
-
Consortium, E.P.1
-
111
-
-
84890502397
-
Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps
-
Mortazavi A, Pepke S, Jansen C, et al. Integrating and mining the chromatin landscape of cell-type specificity using self-organizing maps. Genome Res. 2013;23(12):2136-2148.
-
(2013)
Genome Res
, vol.23
, Issue.12
, pp. 2136-2148
-
-
Mortazavi, A.1
Pepke, S.2
Jansen, C.3
-
112
-
-
85047689917
-
FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia
-
DOI 10.1172/JCI200421197
-
Raslova H, Komura E, Le Couédic JP, et al. FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia. J Clin Invest. 2004;114(1):77-84. (Pubitemid 39071646)
-
(2004)
Journal of Clinical Investigation
, vol.114
, Issue.1
, pp. 77-84
-
-
Raslova, H.1
Komura, E.2
Le, C.J.P.3
Larbret, F.4
Debili, N.5
Feunteun, J.6
Danos, O.7
Albagli, O.8
Vainchenker, W.9
Favier, R.10
|