-
1
-
-
0028241271
-
Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior
-
Vitaterna M., et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 1994, 264:719-725.
-
(1994)
Science
, vol.264
, pp. 719-725
-
-
Vitaterna, M.1
-
3
-
-
0037118077
-
Circadian rhythms from flies to human
-
Panda S., et al. Circadian rhythms from flies to human. Nature 2002, 417:329-335.
-
(2002)
Nature
, vol.417
, pp. 329-335
-
-
Panda, S.1
-
4
-
-
33749031807
-
Molecular components of the mammalian circadian clock
-
Ko C.H., Takahashi J.S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006, 15:R271-R277.
-
(2006)
Hum. Mol. Genet.
, vol.15
-
-
Ko, C.H.1
Takahashi, J.S.2
-
5
-
-
33845611615
-
Interplay of circadian clocks and metabolic rhythms
-
Wijnen H., Young M.W. Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet. 2006, 40:409-448.
-
(2006)
Annu. Rev. Genet.
, vol.40
, pp. 409-448
-
-
Wijnen, H.1
Young, M.W.2
-
6
-
-
0023764577
-
A mutation of the circadian system in golden hamsters
-
Ralph M.R., Menaker M. A mutation of the circadian system in golden hamsters. Science 1988, 241:1225-1227.
-
(1988)
Science
, vol.241
, pp. 1225-1227
-
-
Ralph, M.R.1
Menaker, M.2
-
7
-
-
0034697099
-
Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau
-
Lowrey P.L., et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 2000, 288:483-492.
-
(2000)
Science
, vol.288
, pp. 483-492
-
-
Lowrey, P.L.1
-
8
-
-
41549142176
-
Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins
-
Meng Q-J., et al. Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 2008, 58:78-88.
-
(2008)
Neuron
, vol.58
, pp. 78-88
-
-
Meng, Q.-J.1
-
9
-
-
70349330769
-
Post-translational modifications in circadian rhythms
-
Mehra A., et al. Post-translational modifications in circadian rhythms. Trends Biochem. Sci. 2009, 34:483-490.
-
(2009)
Trends Biochem. Sci.
, vol.34
, pp. 483-490
-
-
Mehra, A.1
-
10
-
-
17244373578
-
Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
-
Nakajima M., et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 2005, 308:414-415.
-
(2005)
Science
, vol.308
, pp. 414-415
-
-
Nakajima, M.1
-
11
-
-
33644603280
-
Transcriptional feedback oscillators: maybe, maybe not...
-
Lakin-Thomas P.L. Transcriptional feedback oscillators: maybe, maybe not... J. Biol. Rhythms 2006, 21:83-92.
-
(2006)
J. Biol. Rhythms
, vol.21
, pp. 83-92
-
-
Lakin-Thomas, P.L.1
-
12
-
-
84861452257
-
Peroxiredoxins are conserved markers of circadian rhythms
-
Edgar R.S., et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012, 485:459-464.
-
(2012)
Nature
, vol.485
, pp. 459-464
-
-
Edgar, R.S.1
-
13
-
-
79952028561
-
Shift work and chronic disease: the epidemiological evidence
-
Wang X.S., et al. Shift work and chronic disease: the epidemiological evidence. Occup. Med. (Lond.) 2011, 61:78-89.
-
(2011)
Occup. Med. (Lond.)
, vol.61
, pp. 78-89
-
-
Wang, X.S.1
-
14
-
-
84863601152
-
Circadian disruption, sleep loss, and prostate cancer risk: a systematic review of epidemiologic studies
-
Sigurdardottir L.G., et al. Circadian disruption, sleep loss, and prostate cancer risk: a systematic review of epidemiologic studies. Cancer Epidemiol. Biomarkers Prev. 2012, 21:1002-1011.
-
(2012)
Cancer Epidemiol. Biomarkers Prev.
, vol.21
, pp. 1002-1011
-
-
Sigurdardottir, L.G.1
-
15
-
-
84869125804
-
Circadian rhythm disruption in cancer biology
-
Savvidis C., Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol. Med. 2012, 18:1249-1260.
-
(2012)
Mol. Med.
, vol.18
, pp. 1249-1260
-
-
Savvidis, C.1
Koutsilieris, M.2
-
16
-
-
84863494541
-
Correlation of the risk of breast cancer and disruption of the circadian rhythm (review)
-
Leonardi G.C., et al. Correlation of the risk of breast cancer and disruption of the circadian rhythm (review). Oncol. Rep. 2012, 28:418-428.
-
(2012)
Oncol. Rep.
, vol.28
, pp. 418-428
-
-
Leonardi, G.C.1
-
17
-
-
57649125104
-
Carcinogenicity of shift-work, painting, and fire-fighting
-
Straif K., et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007, 8:1065-1066.
-
(2007)
Lancet Oncol.
, vol.8
, pp. 1065-1066
-
-
Straif, K.1
-
18
-
-
84858154807
-
Circadian rhythms and tumor growth
-
Greene M.W. Circadian rhythms and tumor growth. Cancer Lett. 2012, 318:115-123.
-
(2012)
Cancer Lett.
, vol.318
, pp. 115-123
-
-
Greene, M.W.1
-
19
-
-
75149137910
-
Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis
-
Cappuccio F.P., et al. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 2010, 33:414-420.
-
(2010)
Diabetes Care
, vol.33
, pp. 414-420
-
-
Cappuccio, F.P.1
-
20
-
-
47249106843
-
Associations between sleep loss and increased risk of obesity and diabetes
-
Knutson K.L., Van Cauter E. Associations between sleep loss and increased risk of obesity and diabetes. Ann. N. Y. Acad. Sci. 2008, 1129:287-304.
-
(2008)
Ann. N. Y. Acad. Sci.
, vol.1129
, pp. 287-304
-
-
Knutson, K.L.1
Van Cauter, E.2
-
21
-
-
63149163425
-
Adverse metabolic and cardiovascular consequences of circadian misalignment
-
Scheer F.A.J.L., et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4453-4458.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 4453-4458
-
-
Scheer, F.A.J.L.1
-
22
-
-
84860383862
-
Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption
-
Buxton O.M., et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 2012, 4:129ra43.
-
(2012)
Sci. Transl. Med.
, vol.4
-
-
Buxton, O.M.1
-
23
-
-
84861529907
-
Social Jetlag and Obesity
-
Roenneberg T., et al. Social Jetlag and Obesity. Curr. Biol. 2012, 22:939-943.
-
(2012)
Curr. Biol.
, vol.22
, pp. 939-943
-
-
Roenneberg, T.1
-
24
-
-
84862008430
-
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
-
Hatori M., et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012, 15:848-860.
-
(2012)
Cell Metab.
, vol.15
, pp. 848-860
-
-
Hatori, M.1
-
25
-
-
44949131716
-
When clocks go bad: neurobehavioural consequences of disrupted circadian timing
-
Barnard A.R., Nolan P.M. When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PLoS Genet. 2008, 4:e1000040.
-
(2008)
PLoS Genet.
, vol.4
-
-
Barnard, A.R.1
Nolan, P.M.2
-
26
-
-
64549138507
-
Chronobiology, genetics and metabolic syndrome
-
Garaulet M., Madrid J.A. Chronobiology, genetics and metabolic syndrome. Curr. Opin. Lipidol. 2009, 20:127-134.
-
(2009)
Curr. Opin. Lipidol.
, vol.20
, pp. 127-134
-
-
Garaulet, M.1
Madrid, J.A.2
-
27
-
-
84875376141
-
Genetic basis of human circadian rhythm disorders
-
Jones C.R., et al. Genetic basis of human circadian rhythm disorders. Exp. Neurol. 2013, 243:28-33.
-
(2013)
Exp. Neurol.
, vol.243
, pp. 28-33
-
-
Jones, C.R.1
-
28
-
-
77958536928
-
CRY2 is associated with rapid cycling in bipolar disorder patients
-
Sjöholm L.K., et al. CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS ONE 2010, 5:e12632.
-
(2010)
PLoS ONE
, vol.5
-
-
Sjöholm, L.K.1
-
29
-
-
77949734695
-
CRY2 is associated with depression
-
Lavebratt C., et al. CRY2 is associated with depression. PLoS ONE 2010, 5:e9407.
-
(2010)
PLoS ONE
, vol.5
-
-
Lavebratt, C.1
-
30
-
-
38649085338
-
Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk
-
Zhu Y., et al. Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. Breast Cancer Res. Treat. 2008, 107:421-425.
-
(2008)
Breast Cancer Res. Treat.
, vol.107
, pp. 421-425
-
-
Zhu, Y.1
-
31
-
-
77950867308
-
The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer
-
Yi C., et al. The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer. Breast Cancer Res. Treat. 2010, 120:663-669.
-
(2010)
Breast Cancer Res. Treat.
, vol.120
, pp. 663-669
-
-
Yi, C.1
-
32
-
-
41149093338
-
Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: association with higher body mass index
-
Monteleone P., et al. Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: association with higher body mass index. Neurosci. Lett. 2008, 435:30-33.
-
(2008)
Neurosci. Lett.
, vol.435
, pp. 30-33
-
-
Monteleone, P.1
-
33
-
-
35448972542
-
Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes
-
Woon P.Y., et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14412-14417.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 14412-14417
-
-
Woon, P.Y.1
-
34
-
-
84877582413
-
Impact of REV-ERB alpha gene polymorphisms on obesity phenotypes in adult and adolescent samples
-
Goumidi L., et al. Impact of REV-ERB alpha gene polymorphisms on obesity phenotypes in adult and adolescent samples. Int. J. Obes. Relat. Metab. Disord. 2012, 10.1038/ijo.2012.117.
-
(2012)
Int. J. Obes. Relat. Metab. Disord.
-
-
Goumidi, L.1
-
35
-
-
79957961146
-
Human diurnal preference and circadian rhythmicity are not associated with the CLOCK 3111C/T gene polymorphism
-
Chang A-M., et al. Human diurnal preference and circadian rhythmicity are not associated with the CLOCK 3111C/T gene polymorphism. J. Biol. Rhythms 2011, 26:276-279.
-
(2011)
J. Biol. Rhythms
, vol.26
, pp. 276-279
-
-
Chang, A.-M.1
-
36
-
-
79551580565
-
Clock T3111C and Per2 C111G SNPs do not influence circadian rhythmicity in healthy Italian population
-
Choub A., et al. Clock T3111C and Per2 C111G SNPs do not influence circadian rhythmicity in healthy Italian population. Neurol. Sci. 2011, 32:89-93.
-
(2011)
Neurol. Sci.
, vol.32
, pp. 89-93
-
-
Choub, A.1
-
37
-
-
84863698179
-
Six novel susceptibility Loci for early-onset androgenetic alopecia and their unexpected association with common diseases
-
Li R., et al. Six novel susceptibility Loci for early-onset androgenetic alopecia and their unexpected association with common diseases. PLoS Genet. 2012, 8:e1002746.
-
(2012)
PLoS Genet.
, vol.8
-
-
Li, R.1
-
38
-
-
77951889295
-
The mammalian circadian timing system: organization and coordination of central and peripheral clocks
-
Dibner C., et al. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72:517-549.
-
(2010)
Annu. Rev. Physiol.
, vol.72
, pp. 517-549
-
-
Dibner, C.1
-
39
-
-
84860299312
-
Timing to perfection: the biology of central and peripheral circadian clocks
-
Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 2012, 74:246-260.
-
(2012)
Neuron
, vol.74
, pp. 246-260
-
-
Albrecht, U.1
-
40
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva B., et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010, 466:627-631.
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
-
41
-
-
78650501389
-
CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function
-
Andrews J.L., et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:19090-19095.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 19090-19095
-
-
Andrews, J.L.1
-
42
-
-
70349764508
-
REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis
-
Le Martelot G., et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 2009, 7:e1000181.
-
(2009)
PLoS Biol.
, vol.7
-
-
Le Martelot, G.1
-
43
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D., et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011, 331:1315-1319.
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
-
44
-
-
84866287843
-
Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription
-
Spengler M.L., et al. Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2457-E2465.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
-
-
Spengler, M.L.1
-
45
-
-
84864524230
-
Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines
-
Narasimamurthy R., et al. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:12662-12667.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 12662-12667
-
-
Narasimamurthy, R.1
-
46
-
-
48249140220
-
Diurnal rhythms of autophagy: implications for cell biology and human disease
-
Sachdeva U.M., Thompson C.B. Diurnal rhythms of autophagy: implications for cell biology and human disease. Autophagy 2008, 4:581-589.
-
(2008)
Autophagy
, vol.4
, pp. 581-589
-
-
Sachdeva, U.M.1
Thompson, C.B.2
-
47
-
-
81255177778
-
Temporal orchestration of circadian autophagy rhythm by C/EBPβ
-
Ma D., et al. Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J. 2011, 30:4642-4651.
-
(2011)
EMBO J.
, vol.30
, pp. 4642-4651
-
-
Ma, D.1
-
48
-
-
84863895758
-
Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis
-
Geyfman M., et al. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11758-11763.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 11758-11763
-
-
Geyfman, M.1
-
49
-
-
84863572695
-
Krüppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes
-
Spörl F., et al. Krüppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:10903-10908.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 10903-10908
-
-
Spörl, F.1
-
50
-
-
84856266250
-
The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping
-
O'Neill J.S., Reddy A.B. The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping. Biochem. Soc. Trans. 2012, 40:44-50.
-
(2012)
Biochem. Soc. Trans.
, vol.40
, pp. 44-50
-
-
O'Neill, J.S.1
Reddy, A.B.2
-
51
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Nakahata Y., et al. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009, 324:654-657.
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
-
52
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey K.M., et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009, 324:651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
-
53
-
-
0035919479
-
Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
-
Rutter J., et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001, 293:510-514.
-
(2001)
Science
, vol.293
, pp. 510-514
-
-
Rutter, J.1
-
54
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher G., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
55
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata Y., et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
56
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
Lamia K.A., et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009, 326:437-440.
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
-
57
-
-
0037113902
-
Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts
-
Hirota T., et al. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J. Biol. Chem. 2002, 277:44244-44251.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 44244-44251
-
-
Hirota, T.1
-
58
-
-
77953394284
-
Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver
-
Guillaumond F., et al. Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver. Mol. Cell. Biol. 2010, 30:3059-3070.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 3059-3070
-
-
Guillaumond, F.1
-
59
-
-
75649101290
-
Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork
-
Hirota T., et al. Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes Cells 2010, 15:111-121.
-
(2010)
Genes Cells
, vol.15
, pp. 111-121
-
-
Hirota, T.1
-
60
-
-
78349311677
-
Genomics and systems approaches in the mammalian circadian clock
-
Baggs J.E., Hogenesch J.B. Genomics and systems approaches in the mammalian circadian clock. Curr. Opin. Genet. Dev. 2010, 20:581-587.
-
(2010)
Curr. Opin. Genet. Dev.
, vol.20
, pp. 581-587
-
-
Baggs, J.E.1
Hogenesch, J.B.2
-
61
-
-
84857124907
-
The human circadian metabolome
-
Dallmann R., et al. The human circadian metabolome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2625-2629.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 2625-2629
-
-
Dallmann, R.1
-
62
-
-
84871917034
-
Human blood metabolite timetable indicates internal body time
-
Kasukawa T., et al. Human blood metabolite timetable indicates internal body time. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:15036-15041.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 15036-15041
-
-
Kasukawa, T.1
-
63
-
-
84859459231
-
Coordination of the transcriptome and metabolome by the circadian clock
-
Eckel-Mahan K.L., et al. Coordination of the transcriptome and metabolome by the circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:5541-5546.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 5541-5546
-
-
Eckel-Mahan, K.L.1
-
64
-
-
84861150401
-
Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites
-
Fustin J-M., et al. Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites. Cell Rep. 2012, 1:341-349.
-
(2012)
Cell Rep.
, vol.1
, pp. 341-349
-
-
Fustin, J.-M.1
-
65
-
-
77955438266
-
Mutations in the circadian gene CLOCK in colorectal cancer
-
Alhopuro P., et al. Mutations in the circadian gene CLOCK in colorectal cancer. Mol. Cancer Res. 2010, 8:952-960.
-
(2010)
Mol. Cancer Res.
, vol.8
, pp. 952-960
-
-
Alhopuro, P.1
-
66
-
-
84867667011
-
Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
-
Koike N., et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012, 338:349-354.
-
(2012)
Science
, vol.338
, pp. 349-354
-
-
Koike, N.1
-
67
-
-
79952255290
-
Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism
-
Hatanaka F., et al. Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. Mol. Cell. Biol. 2010, 30:5636-5648.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 5636-5648
-
-
Hatanaka, F.1
-
68
-
-
79952261359
-
Genome-wide and phase-specific dNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
-
Rey G., et al. Genome-wide and phase-specific dNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 2011, 9:e1000595.
-
(2011)
PLoS Biol.
, vol.9
-
-
Rey, G.1
-
69
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β
-
Cho H., et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 2012, 485:123-127.
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
-
70
-
-
84859329911
-
Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
-
Bugge A., et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 2012, 26:657-667.
-
(2012)
Genes Dev.
, vol.26
, pp. 657-667
-
-
Bugge, A.1
-
71
-
-
84860291442
-
Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
-
Solt L.A., et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 2012, 485:62-68.
-
(2012)
Nature
, vol.485
, pp. 62-68
-
-
Solt, L.A.1
-
72
-
-
53349164230
-
Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks
-
Ukai-Tadenuma M., et al. Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat. Cell Biol. 2008, 10:1154-1163.
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 1154-1163
-
-
Ukai-Tadenuma, M.1
-
73
-
-
84864309100
-
Clocks, metabolism, and the epigenome
-
Feng D., Lazar M.A. Clocks, metabolism, and the epigenome. Mol. Cell 2012, 47:158-167.
-
(2012)
Mol. Cell
, vol.47
, pp. 158-167
-
-
Feng, D.1
Lazar, M.A.2
-
74
-
-
84870288931
-
Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
-
Le Martelot G., et al. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 2012, 10:e1001442.
-
(2012)
PLoS Biol.
, vol.10
-
-
Le Martelot, G.1
-
75
-
-
84870553909
-
Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
-
Vollmers C., et al. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 2012, 16:833-845.
-
(2012)
Cell Metab.
, vol.16
, pp. 833-845
-
-
Vollmers, C.1
-
76
-
-
84881506759
-
Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
-
Menet J.S., et al. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 2012, 1:e00011.
-
(2012)
eLife
, vol.1
-
-
Menet, J.S.1
-
77
-
-
79551506940
-
Post-transcriptional control of circadian rhythms
-
Kojima S., et al. Post-transcriptional control of circadian rhythms. J. Cell Sci. 2011, 124:311-320.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 311-320
-
-
Kojima, S.1
-
78
-
-
78751686549
-
MiRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock
-
Alvarez-Saavedra M., et al. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum. Mol. Genet. 2011, 20:731-751.
-
(2011)
Hum. Mol. Genet.
, vol.20
, pp. 731-751
-
-
Alvarez-Saavedra, M.1
-
79
-
-
84862496485
-
Regulation of alternative splicing by the circadian clock and food related cues
-
McGlincy N.J., et al. Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol. 2012, 13:R54.
-
(2012)
Genome Biol.
, vol.13
-
-
McGlincy, N.J.1
-
80
-
-
84867670963
-
Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally
-
Morf J., et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 2012, 338:379-383.
-
(2012)
Science
, vol.338
, pp. 379-383
-
-
Morf, J.1
-
81
-
-
84871581540
-
Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression
-
Kojima S., et al. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 2012, 26:2724-2736.
-
(2012)
Genes Dev.
, vol.26
, pp. 2724-2736
-
-
Kojima, S.1
-
82
-
-
33744515807
-
Circadian orchestration of the hepatic proteome
-
Reddy A.B., et al. Circadian orchestration of the hepatic proteome. Curr. Biol. 2006, 16:1107-1115.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1107-1115
-
-
Reddy, A.B.1
-
83
-
-
79957491160
-
Proteasome function is required for biological timing throughout the twenty-four hour cycle
-
van Ooijen G., et al. Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr. Biol. 2011, 21:869-875.
-
(2011)
Curr. Biol.
, vol.21
, pp. 869-875
-
-
van Ooijen, G.1
-
84
-
-
84868097990
-
Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome
-
Stratmann M., et al. Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol. Cell 2012, 48:277-287.
-
(2012)
Mol. Cell
, vol.48
, pp. 277-287
-
-
Stratmann, M.1
-
85
-
-
84867905300
-
Non-transcriptional oscillators in circadian timekeeping
-
van Ooijen G., Millar A.J. Non-transcriptional oscillators in circadian timekeeping. Trends Biochem. Sci. 2012, 37:484-492.
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 484-492
-
-
van Ooijen, G.1
Millar, A.J.2
-
86
-
-
79251539603
-
Circadian rhythms persist without transcription in a eukaryote
-
O'Neill J.S., et al. Circadian rhythms persist without transcription in a eukaryote. Nature 2011, 469:554-558.
-
(2011)
Nature
, vol.469
, pp. 554-558
-
-
O'Neill, J.S.1
-
87
-
-
79251566511
-
Circadian clocks in human red blood cells
-
O'Neill J.S., Reddy A.B. Circadian clocks in human red blood cells. Nature 2011, 469:498-503.
-
(2011)
Nature
, vol.469
, pp. 498-503
-
-
O'Neill, J.S.1
Reddy, A.B.2
-
88
-
-
84865080952
-
Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons
-
Wang T.A., et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 2012, 337:839-842.
-
(2012)
Science
, vol.337
, pp. 839-842
-
-
Wang, T.A.1
-
89
-
-
84861964383
-
Feedback control of adrenal steroidogenesis via H(2)O(2)-dependent, reversible inactivation of peroxiredoxin III in mitochondria
-
Kil I.S., et al. Feedback control of adrenal steroidogenesis via H(2)O(2)-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 2012, 46:584-594.
-
(2012)
Mol. Cell
, vol.46
, pp. 584-594
-
-
Kil, I.S.1
-
90
-
-
79953012491
-
Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor rev-erb{beta}
-
Gupta N., Ragsdale S.W. Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor rev-erb{beta}. J. Biol. Chem. 2011, 286:4392-4403.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 4392-4403
-
-
Gupta, N.1
Ragsdale, S.W.2
-
91
-
-
47949112304
-
A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2
-
Yang J., et al. A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol. Cell. Biol. 2008, 28:4697-4711.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 4697-4711
-
-
Yang, J.1
-
92
-
-
33747591416
-
Metabolic cycles as an underlying basis of biological oscillations
-
Tu B.P., McKnight S.L. Metabolic cycles as an underlying basis of biological oscillations. Nat. Rev. Mol. Cell Biol. 2006, 7:696-701.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 696-701
-
-
Tu, B.P.1
McKnight, S.L.2
-
93
-
-
34248598677
-
Redox rhythmicity: clocks at the core of temporal coherence
-
Lloyd D., Murray D.B. Redox rhythmicity: clocks at the core of temporal coherence. Bioessays 2007, 29:465-473.
-
(2007)
Bioessays
, vol.29
, pp. 465-473
-
-
Lloyd, D.1
Murray, D.B.2
-
94
-
-
77954911030
-
E3 ligases Arf-bp1 and Pam mediate lithium-stimulated degradation of the circadian heme receptor Rev-erb alpha
-
Yin L., et al. E3 ligases Arf-bp1 and Pam mediate lithium-stimulated degradation of the circadian heme receptor Rev-erb alpha. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11614-11619.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 11614-11619
-
-
Yin, L.1
-
95
-
-
58749109143
-
Circadian gene expression is resilient to large fluctuations in overall transcription rates
-
Dibner C., et al. Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 2009, 28:123-134.
-
(2009)
EMBO J.
, vol.28
, pp. 123-134
-
-
Dibner, C.1
-
96
-
-
79959366611
-
A molecular mechanism for circadian clock negative feedback
-
Duong H.A., et al. A molecular mechanism for circadian clock negative feedback. Science 2011, 332:1436-1439.
-
(2011)
Science
, vol.332
, pp. 1436-1439
-
-
Duong, H.A.1
-
97
-
-
84864739194
-
Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
-
Padmanabhan K., et al. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 2012, 337:599-602.
-
(2012)
Science
, vol.337
, pp. 599-602
-
-
Padmanabhan, K.1
|