메뉴 건너뛰기




Volumn 23, Issue 5, 2013, Pages 234-241

Connecting cellular metabolism to circadian clocks

Author keywords

Biological rhythms; Circadian clock; Metabolic oscillator; Redox biology

Indexed keywords

TRANSCRIPTOME;

EID: 84876791786     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2013.01.003     Document Type: Review
Times cited : (55)

References (97)
  • 1
    • 0028241271 scopus 로고
    • Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior
    • Vitaterna M., et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 1994, 264:719-725.
    • (1994) Science , vol.264 , pp. 719-725
    • Vitaterna, M.1
  • 3
    • 0037118077 scopus 로고    scopus 로고
    • Circadian rhythms from flies to human
    • Panda S., et al. Circadian rhythms from flies to human. Nature 2002, 417:329-335.
    • (2002) Nature , vol.417 , pp. 329-335
    • Panda, S.1
  • 4
    • 33749031807 scopus 로고    scopus 로고
    • Molecular components of the mammalian circadian clock
    • Ko C.H., Takahashi J.S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006, 15:R271-R277.
    • (2006) Hum. Mol. Genet. , vol.15
    • Ko, C.H.1    Takahashi, J.S.2
  • 5
    • 33845611615 scopus 로고    scopus 로고
    • Interplay of circadian clocks and metabolic rhythms
    • Wijnen H., Young M.W. Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet. 2006, 40:409-448.
    • (2006) Annu. Rev. Genet. , vol.40 , pp. 409-448
    • Wijnen, H.1    Young, M.W.2
  • 6
    • 0023764577 scopus 로고
    • A mutation of the circadian system in golden hamsters
    • Ralph M.R., Menaker M. A mutation of the circadian system in golden hamsters. Science 1988, 241:1225-1227.
    • (1988) Science , vol.241 , pp. 1225-1227
    • Ralph, M.R.1    Menaker, M.2
  • 7
    • 0034697099 scopus 로고    scopus 로고
    • Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau
    • Lowrey P.L., et al. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 2000, 288:483-492.
    • (2000) Science , vol.288 , pp. 483-492
    • Lowrey, P.L.1
  • 8
    • 41549142176 scopus 로고    scopus 로고
    • Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins
    • Meng Q-J., et al. Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 2008, 58:78-88.
    • (2008) Neuron , vol.58 , pp. 78-88
    • Meng, Q.-J.1
  • 9
    • 70349330769 scopus 로고    scopus 로고
    • Post-translational modifications in circadian rhythms
    • Mehra A., et al. Post-translational modifications in circadian rhythms. Trends Biochem. Sci. 2009, 34:483-490.
    • (2009) Trends Biochem. Sci. , vol.34 , pp. 483-490
    • Mehra, A.1
  • 10
    • 17244373578 scopus 로고    scopus 로고
    • Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro
    • Nakajima M., et al. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 2005, 308:414-415.
    • (2005) Science , vol.308 , pp. 414-415
    • Nakajima, M.1
  • 11
    • 33644603280 scopus 로고    scopus 로고
    • Transcriptional feedback oscillators: maybe, maybe not...
    • Lakin-Thomas P.L. Transcriptional feedback oscillators: maybe, maybe not... J. Biol. Rhythms 2006, 21:83-92.
    • (2006) J. Biol. Rhythms , vol.21 , pp. 83-92
    • Lakin-Thomas, P.L.1
  • 12
    • 84861452257 scopus 로고    scopus 로고
    • Peroxiredoxins are conserved markers of circadian rhythms
    • Edgar R.S., et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012, 485:459-464.
    • (2012) Nature , vol.485 , pp. 459-464
    • Edgar, R.S.1
  • 13
    • 79952028561 scopus 로고    scopus 로고
    • Shift work and chronic disease: the epidemiological evidence
    • Wang X.S., et al. Shift work and chronic disease: the epidemiological evidence. Occup. Med. (Lond.) 2011, 61:78-89.
    • (2011) Occup. Med. (Lond.) , vol.61 , pp. 78-89
    • Wang, X.S.1
  • 14
    • 84863601152 scopus 로고    scopus 로고
    • Circadian disruption, sleep loss, and prostate cancer risk: a systematic review of epidemiologic studies
    • Sigurdardottir L.G., et al. Circadian disruption, sleep loss, and prostate cancer risk: a systematic review of epidemiologic studies. Cancer Epidemiol. Biomarkers Prev. 2012, 21:1002-1011.
    • (2012) Cancer Epidemiol. Biomarkers Prev. , vol.21 , pp. 1002-1011
    • Sigurdardottir, L.G.1
  • 15
    • 84869125804 scopus 로고    scopus 로고
    • Circadian rhythm disruption in cancer biology
    • Savvidis C., Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol. Med. 2012, 18:1249-1260.
    • (2012) Mol. Med. , vol.18 , pp. 1249-1260
    • Savvidis, C.1    Koutsilieris, M.2
  • 16
    • 84863494541 scopus 로고    scopus 로고
    • Correlation of the risk of breast cancer and disruption of the circadian rhythm (review)
    • Leonardi G.C., et al. Correlation of the risk of breast cancer and disruption of the circadian rhythm (review). Oncol. Rep. 2012, 28:418-428.
    • (2012) Oncol. Rep. , vol.28 , pp. 418-428
    • Leonardi, G.C.1
  • 17
    • 57649125104 scopus 로고    scopus 로고
    • Carcinogenicity of shift-work, painting, and fire-fighting
    • Straif K., et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007, 8:1065-1066.
    • (2007) Lancet Oncol. , vol.8 , pp. 1065-1066
    • Straif, K.1
  • 18
    • 84858154807 scopus 로고    scopus 로고
    • Circadian rhythms and tumor growth
    • Greene M.W. Circadian rhythms and tumor growth. Cancer Lett. 2012, 318:115-123.
    • (2012) Cancer Lett. , vol.318 , pp. 115-123
    • Greene, M.W.1
  • 19
    • 75149137910 scopus 로고    scopus 로고
    • Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis
    • Cappuccio F.P., et al. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 2010, 33:414-420.
    • (2010) Diabetes Care , vol.33 , pp. 414-420
    • Cappuccio, F.P.1
  • 20
    • 47249106843 scopus 로고    scopus 로고
    • Associations between sleep loss and increased risk of obesity and diabetes
    • Knutson K.L., Van Cauter E. Associations between sleep loss and increased risk of obesity and diabetes. Ann. N. Y. Acad. Sci. 2008, 1129:287-304.
    • (2008) Ann. N. Y. Acad. Sci. , vol.1129 , pp. 287-304
    • Knutson, K.L.1    Van Cauter, E.2
  • 21
    • 63149163425 scopus 로고    scopus 로고
    • Adverse metabolic and cardiovascular consequences of circadian misalignment
    • Scheer F.A.J.L., et al. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:4453-4458.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 4453-4458
    • Scheer, F.A.J.L.1
  • 22
    • 84860383862 scopus 로고    scopus 로고
    • Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption
    • Buxton O.M., et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption. Sci. Transl. Med. 2012, 4:129ra43.
    • (2012) Sci. Transl. Med. , vol.4
    • Buxton, O.M.1
  • 23
    • 84861529907 scopus 로고    scopus 로고
    • Social Jetlag and Obesity
    • Roenneberg T., et al. Social Jetlag and Obesity. Curr. Biol. 2012, 22:939-943.
    • (2012) Curr. Biol. , vol.22 , pp. 939-943
    • Roenneberg, T.1
  • 24
    • 84862008430 scopus 로고    scopus 로고
    • Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
    • Hatori M., et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012, 15:848-860.
    • (2012) Cell Metab. , vol.15 , pp. 848-860
    • Hatori, M.1
  • 25
    • 44949131716 scopus 로고    scopus 로고
    • When clocks go bad: neurobehavioural consequences of disrupted circadian timing
    • Barnard A.R., Nolan P.M. When clocks go bad: neurobehavioural consequences of disrupted circadian timing. PLoS Genet. 2008, 4:e1000040.
    • (2008) PLoS Genet. , vol.4
    • Barnard, A.R.1    Nolan, P.M.2
  • 26
    • 64549138507 scopus 로고    scopus 로고
    • Chronobiology, genetics and metabolic syndrome
    • Garaulet M., Madrid J.A. Chronobiology, genetics and metabolic syndrome. Curr. Opin. Lipidol. 2009, 20:127-134.
    • (2009) Curr. Opin. Lipidol. , vol.20 , pp. 127-134
    • Garaulet, M.1    Madrid, J.A.2
  • 27
    • 84875376141 scopus 로고    scopus 로고
    • Genetic basis of human circadian rhythm disorders
    • Jones C.R., et al. Genetic basis of human circadian rhythm disorders. Exp. Neurol. 2013, 243:28-33.
    • (2013) Exp. Neurol. , vol.243 , pp. 28-33
    • Jones, C.R.1
  • 28
    • 77958536928 scopus 로고    scopus 로고
    • CRY2 is associated with rapid cycling in bipolar disorder patients
    • Sjöholm L.K., et al. CRY2 is associated with rapid cycling in bipolar disorder patients. PLoS ONE 2010, 5:e12632.
    • (2010) PLoS ONE , vol.5
    • Sjöholm, L.K.1
  • 29
    • 77949734695 scopus 로고    scopus 로고
    • CRY2 is associated with depression
    • Lavebratt C., et al. CRY2 is associated with depression. PLoS ONE 2010, 5:e9407.
    • (2010) PLoS ONE , vol.5
    • Lavebratt, C.1
  • 30
    • 38649085338 scopus 로고    scopus 로고
    • Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk
    • Zhu Y., et al. Non-synonymous polymorphisms in the circadian gene NPAS2 and breast cancer risk. Breast Cancer Res. Treat. 2008, 107:421-425.
    • (2008) Breast Cancer Res. Treat. , vol.107 , pp. 421-425
    • Zhu, Y.1
  • 31
    • 77950867308 scopus 로고    scopus 로고
    • The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer
    • Yi C., et al. The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer. Breast Cancer Res. Treat. 2010, 120:663-669.
    • (2010) Breast Cancer Res. Treat. , vol.120 , pp. 663-669
    • Yi, C.1
  • 32
    • 41149093338 scopus 로고    scopus 로고
    • Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: association with higher body mass index
    • Monteleone P., et al. Investigation of 3111T/C polymorphism of the CLOCK gene in obese individuals with or without binge eating disorder: association with higher body mass index. Neurosci. Lett. 2008, 435:30-33.
    • (2008) Neurosci. Lett. , vol.435 , pp. 30-33
    • Monteleone, P.1
  • 33
    • 35448972542 scopus 로고    scopus 로고
    • Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes
    • Woon P.Y., et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:14412-14417.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 14412-14417
    • Woon, P.Y.1
  • 34
    • 84877582413 scopus 로고    scopus 로고
    • Impact of REV-ERB alpha gene polymorphisms on obesity phenotypes in adult and adolescent samples
    • Goumidi L., et al. Impact of REV-ERB alpha gene polymorphisms on obesity phenotypes in adult and adolescent samples. Int. J. Obes. Relat. Metab. Disord. 2012, 10.1038/ijo.2012.117.
    • (2012) Int. J. Obes. Relat. Metab. Disord.
    • Goumidi, L.1
  • 35
    • 79957961146 scopus 로고    scopus 로고
    • Human diurnal preference and circadian rhythmicity are not associated with the CLOCK 3111C/T gene polymorphism
    • Chang A-M., et al. Human diurnal preference and circadian rhythmicity are not associated with the CLOCK 3111C/T gene polymorphism. J. Biol. Rhythms 2011, 26:276-279.
    • (2011) J. Biol. Rhythms , vol.26 , pp. 276-279
    • Chang, A.-M.1
  • 36
    • 79551580565 scopus 로고    scopus 로고
    • Clock T3111C and Per2 C111G SNPs do not influence circadian rhythmicity in healthy Italian population
    • Choub A., et al. Clock T3111C and Per2 C111G SNPs do not influence circadian rhythmicity in healthy Italian population. Neurol. Sci. 2011, 32:89-93.
    • (2011) Neurol. Sci. , vol.32 , pp. 89-93
    • Choub, A.1
  • 37
    • 84863698179 scopus 로고    scopus 로고
    • Six novel susceptibility Loci for early-onset androgenetic alopecia and their unexpected association with common diseases
    • Li R., et al. Six novel susceptibility Loci for early-onset androgenetic alopecia and their unexpected association with common diseases. PLoS Genet. 2012, 8:e1002746.
    • (2012) PLoS Genet. , vol.8
    • Li, R.1
  • 38
    • 77951889295 scopus 로고    scopus 로고
    • The mammalian circadian timing system: organization and coordination of central and peripheral clocks
    • Dibner C., et al. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 2010, 72:517-549.
    • (2010) Annu. Rev. Physiol. , vol.72 , pp. 517-549
    • Dibner, C.1
  • 39
    • 84860299312 scopus 로고    scopus 로고
    • Timing to perfection: the biology of central and peripheral circadian clocks
    • Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 2012, 74:246-260.
    • (2012) Neuron , vol.74 , pp. 246-260
    • Albrecht, U.1
  • 40
    • 77954848215 scopus 로고    scopus 로고
    • Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
    • Marcheva B., et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010, 466:627-631.
    • (2010) Nature , vol.466 , pp. 627-631
    • Marcheva, B.1
  • 41
    • 78650501389 scopus 로고    scopus 로고
    • CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function
    • Andrews J.L., et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:19090-19095.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 19090-19095
    • Andrews, J.L.1
  • 42
    • 70349764508 scopus 로고    scopus 로고
    • REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis
    • Le Martelot G., et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol. 2009, 7:e1000181.
    • (2009) PLoS Biol. , vol.7
    • Le Martelot, G.1
  • 43
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng D., et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011, 331:1315-1319.
    • (2011) Science , vol.331 , pp. 1315-1319
    • Feng, D.1
  • 44
    • 84866287843 scopus 로고    scopus 로고
    • Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription
    • Spengler M.L., et al. Core circadian protein CLOCK is a positive regulator of NF-κB-mediated transcription. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:E2457-E2465.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109
    • Spengler, M.L.1
  • 45
    • 84864524230 scopus 로고    scopus 로고
    • Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines
    • Narasimamurthy R., et al. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:12662-12667.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 12662-12667
    • Narasimamurthy, R.1
  • 46
    • 48249140220 scopus 로고    scopus 로고
    • Diurnal rhythms of autophagy: implications for cell biology and human disease
    • Sachdeva U.M., Thompson C.B. Diurnal rhythms of autophagy: implications for cell biology and human disease. Autophagy 2008, 4:581-589.
    • (2008) Autophagy , vol.4 , pp. 581-589
    • Sachdeva, U.M.1    Thompson, C.B.2
  • 47
    • 81255177778 scopus 로고    scopus 로고
    • Temporal orchestration of circadian autophagy rhythm by C/EBPβ
    • Ma D., et al. Temporal orchestration of circadian autophagy rhythm by C/EBPβ. EMBO J. 2011, 30:4642-4651.
    • (2011) EMBO J. , vol.30 , pp. 4642-4651
    • Ma, D.1
  • 48
    • 84863895758 scopus 로고    scopus 로고
    • Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis
    • Geyfman M., et al. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:11758-11763.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 11758-11763
    • Geyfman, M.1
  • 49
    • 84863572695 scopus 로고    scopus 로고
    • Krüppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes
    • Spörl F., et al. Krüppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:10903-10908.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 10903-10908
    • Spörl, F.1
  • 50
    • 84856266250 scopus 로고    scopus 로고
    • The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping
    • O'Neill J.S., Reddy A.B. The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping. Biochem. Soc. Trans. 2012, 40:44-50.
    • (2012) Biochem. Soc. Trans. , vol.40 , pp. 44-50
    • O'Neill, J.S.1    Reddy, A.B.2
  • 51
    • 65549118773 scopus 로고    scopus 로고
    • Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
    • Nakahata Y., et al. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009, 324:654-657.
    • (2009) Science , vol.324 , pp. 654-657
    • Nakahata, Y.1
  • 52
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
    • Ramsey K.M., et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 2009, 324:651-654.
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.M.1
  • 53
    • 0035919479 scopus 로고    scopus 로고
    • Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors
    • Rutter J., et al. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001, 293:510-514.
    • (2001) Science , vol.293 , pp. 510-514
    • Rutter, J.1
  • 54
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher G., et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 2008, 134:317-328.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1
  • 55
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata Y., et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 2008, 134:329-340.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 56
    • 70350128135 scopus 로고    scopus 로고
    • AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
    • Lamia K.A., et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 2009, 326:437-440.
    • (2009) Science , vol.326 , pp. 437-440
    • Lamia, K.A.1
  • 57
    • 0037113902 scopus 로고    scopus 로고
    • Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts
    • Hirota T., et al. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J. Biol. Chem. 2002, 277:44244-44251.
    • (2002) J. Biol. Chem. , vol.277 , pp. 44244-44251
    • Hirota, T.1
  • 58
    • 77953394284 scopus 로고    scopus 로고
    • Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver
    • Guillaumond F., et al. Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver. Mol. Cell. Biol. 2010, 30:3059-3070.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 3059-3070
    • Guillaumond, F.1
  • 59
    • 75649101290 scopus 로고    scopus 로고
    • Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork
    • Hirota T., et al. Transcriptional repressor TIEG1 regulates Bmal1 gene through GC box and controls circadian clockwork. Genes Cells 2010, 15:111-121.
    • (2010) Genes Cells , vol.15 , pp. 111-121
    • Hirota, T.1
  • 60
    • 78349311677 scopus 로고    scopus 로고
    • Genomics and systems approaches in the mammalian circadian clock
    • Baggs J.E., Hogenesch J.B. Genomics and systems approaches in the mammalian circadian clock. Curr. Opin. Genet. Dev. 2010, 20:581-587.
    • (2010) Curr. Opin. Genet. Dev. , vol.20 , pp. 581-587
    • Baggs, J.E.1    Hogenesch, J.B.2
  • 61
    • 84857124907 scopus 로고    scopus 로고
    • The human circadian metabolome
    • Dallmann R., et al. The human circadian metabolome. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2625-2629.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 2625-2629
    • Dallmann, R.1
  • 62
    • 84871917034 scopus 로고    scopus 로고
    • Human blood metabolite timetable indicates internal body time
    • Kasukawa T., et al. Human blood metabolite timetable indicates internal body time. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:15036-15041.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 15036-15041
    • Kasukawa, T.1
  • 63
    • 84859459231 scopus 로고    scopus 로고
    • Coordination of the transcriptome and metabolome by the circadian clock
    • Eckel-Mahan K.L., et al. Coordination of the transcriptome and metabolome by the circadian clock. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:5541-5546.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 5541-5546
    • Eckel-Mahan, K.L.1
  • 64
    • 84861150401 scopus 로고    scopus 로고
    • Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites
    • Fustin J-M., et al. Rhythmic nucleotide synthesis in the liver: temporal segregation of metabolites. Cell Rep. 2012, 1:341-349.
    • (2012) Cell Rep. , vol.1 , pp. 341-349
    • Fustin, J.-M.1
  • 65
    • 77955438266 scopus 로고    scopus 로고
    • Mutations in the circadian gene CLOCK in colorectal cancer
    • Alhopuro P., et al. Mutations in the circadian gene CLOCK in colorectal cancer. Mol. Cancer Res. 2010, 8:952-960.
    • (2010) Mol. Cancer Res. , vol.8 , pp. 952-960
    • Alhopuro, P.1
  • 66
    • 84867667011 scopus 로고    scopus 로고
    • Transcriptional architecture and chromatin landscape of the core circadian clock in mammals
    • Koike N., et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science 2012, 338:349-354.
    • (2012) Science , vol.338 , pp. 349-354
    • Koike, N.1
  • 67
    • 79952255290 scopus 로고    scopus 로고
    • Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism
    • Hatanaka F., et al. Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism. Mol. Cell. Biol. 2010, 30:5636-5648.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 5636-5648
    • Hatanaka, F.1
  • 68
    • 79952261359 scopus 로고    scopus 로고
    • Genome-wide and phase-specific dNA-binding rhythms of BMAL1 control circadian output functions in mouse liver
    • Rey G., et al. Genome-wide and phase-specific dNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 2011, 9:e1000595.
    • (2011) PLoS Biol. , vol.9
    • Rey, G.1
  • 69
    • 84860264490 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β
    • Cho H., et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 2012, 485:123-127.
    • (2012) Nature , vol.485 , pp. 123-127
    • Cho, H.1
  • 70
    • 84859329911 scopus 로고    scopus 로고
    • Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
    • Bugge A., et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev. 2012, 26:657-667.
    • (2012) Genes Dev. , vol.26 , pp. 657-667
    • Bugge, A.1
  • 71
    • 84860291442 scopus 로고    scopus 로고
    • Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
    • Solt L.A., et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 2012, 485:62-68.
    • (2012) Nature , vol.485 , pp. 62-68
    • Solt, L.A.1
  • 72
    • 53349164230 scopus 로고    scopus 로고
    • Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks
    • Ukai-Tadenuma M., et al. Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat. Cell Biol. 2008, 10:1154-1163.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 1154-1163
    • Ukai-Tadenuma, M.1
  • 73
    • 84864309100 scopus 로고    scopus 로고
    • Clocks, metabolism, and the epigenome
    • Feng D., Lazar M.A. Clocks, metabolism, and the epigenome. Mol. Cell 2012, 47:158-167.
    • (2012) Mol. Cell , vol.47 , pp. 158-167
    • Feng, D.1    Lazar, M.A.2
  • 74
    • 84870288931 scopus 로고    scopus 로고
    • Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles
    • Le Martelot G., et al. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles. PLoS Biol. 2012, 10:e1001442.
    • (2012) PLoS Biol. , vol.10
    • Le Martelot, G.1
  • 75
    • 84870553909 scopus 로고    scopus 로고
    • Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome
    • Vollmers C., et al. Circadian oscillations of protein-coding and regulatory RNAs in a highly dynamic mammalian liver epigenome. Cell Metab. 2012, 16:833-845.
    • (2012) Cell Metab. , vol.16 , pp. 833-845
    • Vollmers, C.1
  • 76
    • 84881506759 scopus 로고    scopus 로고
    • Nascent-Seq reveals novel features of mouse circadian transcriptional regulation
    • Menet J.S., et al. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. eLife 2012, 1:e00011.
    • (2012) eLife , vol.1
    • Menet, J.S.1
  • 77
    • 79551506940 scopus 로고    scopus 로고
    • Post-transcriptional control of circadian rhythms
    • Kojima S., et al. Post-transcriptional control of circadian rhythms. J. Cell Sci. 2011, 124:311-320.
    • (2011) J. Cell Sci. , vol.124 , pp. 311-320
    • Kojima, S.1
  • 78
    • 78751686549 scopus 로고    scopus 로고
    • MiRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock
    • Alvarez-Saavedra M., et al. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum. Mol. Genet. 2011, 20:731-751.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 731-751
    • Alvarez-Saavedra, M.1
  • 79
    • 84862496485 scopus 로고    scopus 로고
    • Regulation of alternative splicing by the circadian clock and food related cues
    • McGlincy N.J., et al. Regulation of alternative splicing by the circadian clock and food related cues. Genome Biol. 2012, 13:R54.
    • (2012) Genome Biol. , vol.13
    • McGlincy, N.J.1
  • 80
    • 84867670963 scopus 로고    scopus 로고
    • Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally
    • Morf J., et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 2012, 338:379-383.
    • (2012) Science , vol.338 , pp. 379-383
    • Morf, J.1
  • 81
    • 84871581540 scopus 로고    scopus 로고
    • Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression
    • Kojima S., et al. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 2012, 26:2724-2736.
    • (2012) Genes Dev. , vol.26 , pp. 2724-2736
    • Kojima, S.1
  • 82
    • 33744515807 scopus 로고    scopus 로고
    • Circadian orchestration of the hepatic proteome
    • Reddy A.B., et al. Circadian orchestration of the hepatic proteome. Curr. Biol. 2006, 16:1107-1115.
    • (2006) Curr. Biol. , vol.16 , pp. 1107-1115
    • Reddy, A.B.1
  • 83
    • 79957491160 scopus 로고    scopus 로고
    • Proteasome function is required for biological timing throughout the twenty-four hour cycle
    • van Ooijen G., et al. Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr. Biol. 2011, 21:869-875.
    • (2011) Curr. Biol. , vol.21 , pp. 869-875
    • van Ooijen, G.1
  • 84
    • 84868097990 scopus 로고    scopus 로고
    • Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome
    • Stratmann M., et al. Circadian Dbp transcription relies on highly dynamic BMAL1-CLOCK interaction with E boxes and requires the proteasome. Mol. Cell 2012, 48:277-287.
    • (2012) Mol. Cell , vol.48 , pp. 277-287
    • Stratmann, M.1
  • 85
    • 84867905300 scopus 로고    scopus 로고
    • Non-transcriptional oscillators in circadian timekeeping
    • van Ooijen G., Millar A.J. Non-transcriptional oscillators in circadian timekeeping. Trends Biochem. Sci. 2012, 37:484-492.
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 484-492
    • van Ooijen, G.1    Millar, A.J.2
  • 86
    • 79251539603 scopus 로고    scopus 로고
    • Circadian rhythms persist without transcription in a eukaryote
    • O'Neill J.S., et al. Circadian rhythms persist without transcription in a eukaryote. Nature 2011, 469:554-558.
    • (2011) Nature , vol.469 , pp. 554-558
    • O'Neill, J.S.1
  • 87
    • 79251566511 scopus 로고    scopus 로고
    • Circadian clocks in human red blood cells
    • O'Neill J.S., Reddy A.B. Circadian clocks in human red blood cells. Nature 2011, 469:498-503.
    • (2011) Nature , vol.469 , pp. 498-503
    • O'Neill, J.S.1    Reddy, A.B.2
  • 88
    • 84865080952 scopus 로고    scopus 로고
    • Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons
    • Wang T.A., et al. Circadian rhythm of redox state regulates excitability in suprachiasmatic nucleus neurons. Science 2012, 337:839-842.
    • (2012) Science , vol.337 , pp. 839-842
    • Wang, T.A.1
  • 89
    • 84861964383 scopus 로고    scopus 로고
    • Feedback control of adrenal steroidogenesis via H(2)O(2)-dependent, reversible inactivation of peroxiredoxin III in mitochondria
    • Kil I.S., et al. Feedback control of adrenal steroidogenesis via H(2)O(2)-dependent, reversible inactivation of peroxiredoxin III in mitochondria. Mol. Cell 2012, 46:584-594.
    • (2012) Mol. Cell , vol.46 , pp. 584-594
    • Kil, I.S.1
  • 90
    • 79953012491 scopus 로고    scopus 로고
    • Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor rev-erb{beta}
    • Gupta N., Ragsdale S.W. Thiol-disulfide redox dependence of heme binding and heme ligand switching in nuclear hormone receptor rev-erb{beta}. J. Biol. Chem. 2011, 286:4392-4403.
    • (2011) J. Biol. Chem. , vol.286 , pp. 4392-4403
    • Gupta, N.1    Ragsdale, S.W.2
  • 91
    • 47949112304 scopus 로고    scopus 로고
    • A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2
    • Yang J., et al. A novel heme-regulatory motif mediates heme-dependent degradation of the circadian factor period 2. Mol. Cell. Biol. 2008, 28:4697-4711.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 4697-4711
    • Yang, J.1
  • 92
    • 33747591416 scopus 로고    scopus 로고
    • Metabolic cycles as an underlying basis of biological oscillations
    • Tu B.P., McKnight S.L. Metabolic cycles as an underlying basis of biological oscillations. Nat. Rev. Mol. Cell Biol. 2006, 7:696-701.
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 696-701
    • Tu, B.P.1    McKnight, S.L.2
  • 93
    • 34248598677 scopus 로고    scopus 로고
    • Redox rhythmicity: clocks at the core of temporal coherence
    • Lloyd D., Murray D.B. Redox rhythmicity: clocks at the core of temporal coherence. Bioessays 2007, 29:465-473.
    • (2007) Bioessays , vol.29 , pp. 465-473
    • Lloyd, D.1    Murray, D.B.2
  • 94
    • 77954911030 scopus 로고    scopus 로고
    • E3 ligases Arf-bp1 and Pam mediate lithium-stimulated degradation of the circadian heme receptor Rev-erb alpha
    • Yin L., et al. E3 ligases Arf-bp1 and Pam mediate lithium-stimulated degradation of the circadian heme receptor Rev-erb alpha. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:11614-11619.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 11614-11619
    • Yin, L.1
  • 95
    • 58749109143 scopus 로고    scopus 로고
    • Circadian gene expression is resilient to large fluctuations in overall transcription rates
    • Dibner C., et al. Circadian gene expression is resilient to large fluctuations in overall transcription rates. EMBO J. 2009, 28:123-134.
    • (2009) EMBO J. , vol.28 , pp. 123-134
    • Dibner, C.1
  • 96
    • 79959366611 scopus 로고    scopus 로고
    • A molecular mechanism for circadian clock negative feedback
    • Duong H.A., et al. A molecular mechanism for circadian clock negative feedback. Science 2011, 332:1436-1439.
    • (2011) Science , vol.332 , pp. 1436-1439
    • Duong, H.A.1
  • 97
    • 84864739194 scopus 로고    scopus 로고
    • Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex
    • Padmanabhan K., et al. Feedback regulation of transcriptional termination by the mammalian circadian clock PERIOD complex. Science 2012, 337:599-602.
    • (2012) Science , vol.337 , pp. 599-602
    • Padmanabhan, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.