메뉴 건너뛰기




Volumn 49, Issue 4, 2005, Pages 1068-1078

Bundling classifiers by bagging trees

Author keywords

Bagging; Ensemble methods; Error rate estimation; Method selection

Indexed keywords

BENCHMARKING; COMPUTER SOFTWARE; ERROR ANALYSIS; ESTIMATION; INFORMATION ANALYSIS; MATHEMATICAL MODELS; REGRESSION ANALYSIS; VECTORS;

EID: 19044398807     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2004.06.019     Document Type: Article
Times cited : (85)

References (33)
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 0004140497 scopus 로고    scopus 로고
    • Out-of-bag estimation
    • Statistics Department, University of California Berkeley, Berkeley, CA 94708
    • Breiman, L., 1996b. Out-of-bag estimation. Technical Report, Statistics Department, University of California Berkeley, Berkeley, CA 94708.
    • (1996) Technical Report
    • Breiman, L.1
  • 5
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • L. Breiman Stacked regressions Mach. Learn. 24 1996 49 64
    • (1996) Mach. Learn. , vol.24 , pp. 49-64
    • Breiman, L.1
  • 6
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman Arcing classifiers Ann. Statist. 26 3 1998 801 824
    • (1998) Ann. Statist. , vol.26 , Issue.3 , pp. 801-824
    • Breiman, L.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach. Learn. 45 1 2001 5 32
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • L. Breiman Statistical modeling the two cultures Statist. Sci. 16 3 2001 199 231 (with discussion)
    • (2001) Statist. Sci. , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 10
    • 0043289776 scopus 로고    scopus 로고
    • Analyzing bagging
    • P. Bühlmann, and B. Yu Analyzing bagging Ann. Statist. 30 4 2002 927 961
    • (2002) Ann. Statist. , vol.30 , Issue.4 , pp. 927-961
    • Bühlmann, P.1    Yu, B.2
  • 11
    • 0037189765 scopus 로고    scopus 로고
    • Using k-nearest-neighbor classification in the leaves of a tree
    • S.E. Buttrey, and C. Karo Using k-nearest-neighbor classification in the leaves of a tree Comput. Statist. Data Anal. 40 2002 27 37
    • (2002) Comput. Statist. Data Anal. , vol.40 , pp. 27-37
    • Buttrey, S.E.1    Karo, C.2
  • 12
    • 0036643067 scopus 로고    scopus 로고
    • Estimating generalization error on two-class datasets using out-of-bag estimates
    • T. Bylander Estimating generalization error on two-class datasets using out-of-bag estimates Mach. Learn. 48 2002 287 297
    • (2002) Mach. Learn. , vol.48 , pp. 287-297
    • Bylander, T.1
  • 13
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand, and T.P. Speed Comparison of discrimination methods for the classification of tumors using gene expression data J. Amer. Statist. Assoc. 97 457 2002 77 87
    • (2002) J. Amer. Statist. Assoc. , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 14
    • 0031536511 scopus 로고    scopus 로고
    • Improvements on cross-validation: The 0.632+ bootstrap method
    • B. Efron, and R. Tibshirani Improvements on cross-validation the 0.632+ bootstrap method J. Amer. Statist. Assoc. 92 438 1997 548 560
    • (1997) J. Amer. Statist. Assoc. , vol.92 , Issue.438 , pp. 548-560
    • Efron, B.1    Tibshirani, R.2
  • 15
    • 0037211316 scopus 로고    scopus 로고
    • Bagging tree classifiers for laser scanning images: Data- and simulation-based strategy
    • T. Hothorn, and B. Lausen Bagging tree classifiers for laser scanning images data- and simulation-based strategy Artificial Intell. Med. 27 2003 65 79
    • (2003) Artificial Intell. Med. , vol.27 , pp. 65-79
    • Hothorn, T.1    Lausen, B.2
  • 16
    • 0037410515 scopus 로고    scopus 로고
    • Double-bagging: Combining classifiers by bootstrap aggregation
    • T. Hothorn, and B. Lausen Double-bagging combining classifiers by bootstrap aggregation Pattern Recognition 36 6 2003 1303 1309
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1303-1309
    • Hothorn, T.1    Lausen, B.2
  • 18
    • 1542573450 scopus 로고    scopus 로고
    • Classification trees with unbiased multiway splits
    • H. Kim, and W.-Y. Loh Classification trees with unbiased multiway splits J. Amer. Statist.l Assoc. 96 454 2001 589 604
    • (2001) J. Amer. Statist.l Assoc. , vol.96 , Issue.454 , pp. 589-604
    • Kim, H.1    Loh, W.-Y.2
  • 20
    • 0042688770 scopus 로고    scopus 로고
    • New multivariate tests for data with an inherent structure
    • J. Läuter, E. Glimm, and S. Kropf New multivariate tests for data with an inherent structure Biometrical J. 38 1 1996 5 23
    • (1996) Biometrical J. , vol.38 , Issue.1 , pp. 5-23
    • Läuter, J.1    Glimm, E.2    Kropf, S.3
  • 21
    • 0032282386 scopus 로고    scopus 로고
    • Multivariate tests based on left-spherically distributed linear scores
    • J. Läuter, E. Glimm, and S. Kropf Multivariate tests based on left-spherically distributed linear scores Ann. Statist. 26 5 1998 1972 1988 (correction: 1999, vol. 27, p. 1441)
    • (1998) Ann. Statist. , vol.26 , Issue.5 , pp. 1972-1988
    • Läuter, J.1    Glimm, E.2    Kropf, S.3
  • 22
    • 0030342815 scopus 로고    scopus 로고
    • Combining estimates in regression and classification
    • M. LeBlanc, and R. Tibshirani Combining estimates in regression and classification J. Amer. Statist. Assoc. 91 436 1996 1641 1650
    • (1996) J. Amer. Statist. Assoc. , vol.91 , Issue.436 , pp. 1641-1650
    • Leblanc, M.1    Tibshirani, R.2
  • 24
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • A. Liaw, and M. Wiener Classification and regression by randomForest R News 2 3 2002 18 22 URL http://CRAN.R-project.org/doc/Rnews/
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 25
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • C.J. Merz Using correspondence analysis to combine classifiers Mach. Learn. 36 1-2 1999 33 58
    • (1999) Mach. Learn. , vol.36 , Issue.1-2 , pp. 33-58
    • Merz, C.J.1
  • 26
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • D. Meyer, F. Leisch, and K. Hornik The support vector machine under test Neurocomputing 55 1-2 2003 169 186
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 27
    • 0031573284 scopus 로고    scopus 로고
    • A consistent combined classification rule
    • M. Mojirsheibani A consistent combined classification rule Statist. Probab. Lett. 36 1 1997 43 47
    • (1997) Statist. Probab. Lett. , vol.36 , Issue.1 , pp. 43-47
    • Mojirsheibani, M.1
  • 28
    • 1542637622 scopus 로고    scopus 로고
    • Combining classifiers via discretization
    • M. Mojirsheibani Combining classifiers via discretization J. Amer. Statist. Assoc. 94 446 1999 600 609
    • (1999) J. Amer. Statist. Assoc. , vol.94 , Issue.446 , pp. 600-609
    • Mojirsheibani, M.1
  • 29
    • 0036250785 scopus 로고    scopus 로고
    • An almost sure optimal combined classification rule
    • M. Mojirsheibani An almost sure optimal combined classification rule J. Multivariate Anal. 81 2002 28 46
    • (2002) J. Multivariate Anal. , vol.81 , pp. 28-46
    • Mojirsheibani, M.1
  • 30
    • 0013321815 scopus 로고    scopus 로고
    • Ipred: Improved predictors
    • A. Peters, T. Hothorn, and B. Lausen ipred improved predictors R News 2 2 2002 33 36 URL http://CRAN.R-project.org/doc/Rnews/
    • (2002) R News , vol.2 , Issue.2 , pp. 33-36
    • Peters, A.1    Hothorn, T.2    Lausen, B.3
  • 31
    • 0001738242 scopus 로고    scopus 로고
    • The out-of-bootstrap method for model averaging and selection
    • Cleveland Clinic, University of Toronto
    • Rao, J.S., Tibshirani, R., 1997. The out-of-bootstrap method for model averaging and selection. Technical Report, Cleveland Clinic, University of Toronto.
    • (1997) Technical Report
    • Rao, J.S.1    Tibshirani, R.2
  • 32
    • 1542573460 scopus 로고    scopus 로고
    • Adaptive regression by mixing
    • Y. Yang Adaptive regression by mixing J. Amer. Statist. Assoc. 96 454 2001 574 588
    • (2001) J. Amer. Statist. Assoc. , vol.96 , Issue.454 , pp. 574-588
    • Yang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.