-
1
-
-
0031997059
-
Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data
-
Jimenez L.O., and Landgrebe D.A. Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 28 (1998) 39-54
-
(1998)
IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
, vol.28
, pp. 39-54
-
-
Jimenez, L.O.1
Landgrebe, D.A.2
-
3
-
-
0028516150
-
Nonparametric multivariate density estimation: a comparative study
-
Hwang J., Lay S., and Lippman A. Nonparametric multivariate density estimation: a comparative study. IEEE Trans. Signal Process. 42 (1994) 2795-2810
-
(1994)
IEEE Trans. Signal Process.
, vol.42
, pp. 2795-2810
-
-
Hwang, J.1
Lay, S.2
Lippman, A.3
-
5
-
-
33745891586
-
-
Physica-Verlag, Springer, Wurzburg, Berlin
-
Guyon I., Gunn S., Nikravesh M., and Zadeh L. Feature Extraction, Foundations and Applications, Series Studies in Fuzziness and Soft Computing (2006), Physica-Verlag, Springer, Wurzburg, Berlin
-
(2006)
Feature Extraction, Foundations and Applications, Series Studies in Fuzziness and Soft Computing
-
-
Guyon, I.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.4
-
6
-
-
0000551189
-
Popular ensemble methods: an empirical study
-
Opitz D., and Maclin R. Popular ensemble methods: an empirical study. J. Artif. Res. 11 (1999) 169-198
-
(1999)
J. Artif. Res.
, vol.11
, pp. 169-198
-
-
Opitz, D.1
Maclin, R.2
-
8
-
-
0001562581
-
Linear and order statistics combiners for pattern classification
-
Sharkey A. (Ed), Springer, Berlin
-
Tumer K., and Ghosh J. Linear and order statistics combiners for pattern classification. In: Sharkey A. (Ed). Combining Artificial Neural Nets (1999), Springer, Berlin 127-162
-
(1999)
Combining Artificial Neural Nets
, pp. 127-162
-
-
Tumer, K.1
Ghosh, J.2
-
9
-
-
0030211964
-
Bagging predictors
-
Breiman L. Bagging predictors. Mach. Learn. 24 (1996) 123-140
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
10
-
-
0002978642
-
Experiments with a new boosting algorithm. Machine Learning
-
Morgan Kaufmann, San Francisco
-
Freund Y., and Schapire R. Experiments with a new boosting algorithm. Machine Learning. Proceedings of the 13th International Conference (1996), Morgan Kaufmann, San Francisco 148-156
-
(1996)
Proceedings of the 13th International Conference
, pp. 148-156
-
-
Freund, Y.1
Schapire, R.2
-
12
-
-
0242515926
-
Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
-
Bryll R., Gutierrez-Osuna R., and Quek F. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36 (2003) 1291-1302
-
(2003)
Pattern Recognition
, vol.36
, pp. 1291-1302
-
-
Bryll, R.1
Gutierrez-Osuna, R.2
Quek, F.3
-
13
-
-
0032139235
-
The random subspace method for constructing decision forests
-
Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 832-844
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, pp. 832-844
-
-
Ho, T.K.1
-
14
-
-
33744958288
-
Nearest neighbor classification from multiple feature subsets
-
Bay S. Nearest neighbor classification from multiple feature subsets. Intelligent Data Anal. 3 (1999) 191-209
-
(1999)
Intelligent Data Anal.
, vol.3
, pp. 191-209
-
-
Bay, S.1
-
15
-
-
0036064007
-
Ensemble feature selection with the simple Bayesian classification in medical diagnostics
-
IEEE Computer Soc. Press, Silver Spring, MD
-
Tsymbal A., and Puuronen S. Ensemble feature selection with the simple Bayesian classification in medical diagnostics. Proceedings of the 15th IEEE Symposium on Computer-Based Medical Systems CBMS'2002, Maribor, Slovenia (2002), IEEE Computer Soc. Press, Silver Spring, MD 225-230
-
(2002)
Proceedings of the 15th IEEE Symposium on Computer-Based Medical Systems CBMS'2002, Maribor, Slovenia
, pp. 225-230
-
-
Tsymbal, A.1
Puuronen, S.2
-
17
-
-
84871052245
-
Combining multiple K-nearest neighbor classifiers for text classification by reducts
-
Springer, Berlin
-
Bao Y., and Ishii N. Combining multiple K-nearest neighbor classifiers for text classification by reducts. Proceedings of the 5th International Conference on Discovery Science, Lecture Notes in Computer Science vol. 2534 (2002), Springer, Berlin 340-347
-
(2002)
Proceedings of the 5th International Conference on Discovery Science, Lecture Notes in Computer Science
, vol.2534
, pp. 340-347
-
-
Bao, Y.1
Ishii, N.2
-
18
-
-
33646005516
-
Constructing rough decision forests
-
Slezak D., et al. (Ed), Springer, Berlin
-
Hu Q.H., Yu D.R., and Wang M.Y. Constructing rough decision forests. In: Slezak D., et al. (Ed). RSFDGrC 2005, Lecture Notes in Artificial Intelligence vol. 3642 (2005), Springer, Berlin 147-156
-
(2005)
RSFDGrC 2005, Lecture Notes in Artificial Intelligence
, vol.3642
, pp. 147-156
-
-
Hu, Q.H.1
Yu, D.R.2
Wang, M.Y.3
-
19
-
-
84974722422
-
Diversity versus quality in classification ensembles based on feature selection
-
de Mántaras R.L., and Plaza E. (Eds), Springer, Berlin
-
Cunningham P., and Carney J. Diversity versus quality in classification ensembles based on feature selection. In: de Mántaras R.L., and Plaza E. (Eds). Proceedings of the ECML 2000, Barcelona, Spain, Lecture Notes in Computer Science vol. 1810 (2000), Springer, Berlin 109-116
-
(2000)
Proceedings of the ECML 2000, Barcelona, Spain, Lecture Notes in Computer Science
, vol.1810
, pp. 109-116
-
-
Cunningham, P.1
Carney, J.2
-
20
-
-
84948152666
-
Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
-
De Readt L., and Flach P. (Eds), Springer, Berlin
-
Zenobi G., and Cunningham P. Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: De Readt L., and Flach P. (Eds). Proceedings of the ECML 2001, Lecture Notes in Artificial Intelligence vol. 2167 (2001), Springer, Berlin 576-587
-
(2001)
Proceedings of the ECML 2001, Lecture Notes in Artificial Intelligence
, vol.2167
, pp. 576-587
-
-
Zenobi, G.1
Cunningham, P.2
-
21
-
-
10444238133
-
Diversity in search strategies for ensemble feature selection
-
Tsymbal A., Pechenizkiy M., and Cunningham P. Diversity in search strategies for ensemble feature selection. Inf. Fusion 6 (2005) 83-98
-
(2005)
Inf. Fusion
, vol.6
, pp. 83-98
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
-
22
-
-
23844545305
-
Feature selection algorithms for the generation of multiple classifier systems
-
Gunter S., and Bunke H. Feature selection algorithms for the generation of multiple classifier systems. Pattern Recognition Lett. 25 (2004) 1323-1336
-
(2004)
Pattern Recognition Lett.
, vol.25
, pp. 1323-1336
-
-
Gunter, S.1
Bunke, H.2
-
23
-
-
33749359793
-
Decomposition methodology for classification tasks-a meta decomposer framework
-
Rokach L. Decomposition methodology for classification tasks-a meta decomposer framework. Pattern Anal. Appl. 9 (2006) 257-271
-
(2006)
Pattern Anal. Appl.
, vol.9
, pp. 257-271
-
-
Rokach, L.1
-
24
-
-
0034290324
-
Decomposition in data mining: an industrial case study
-
Kusiak A. Decomposition in data mining: an industrial case study. IEEE Trans. Electron. Packag. Manuf. 23 (2000) 345-353
-
(2000)
IEEE Trans. Electron. Packag. Manuf.
, vol.23
, pp. 345-353
-
-
Kusiak, A.1
-
25
-
-
38349111578
-
-
F.J. Provost, V. Kolluri, A survey of methods for scaling up inductive learning algorithms, in: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, 1997.
-
-
-
-
26
-
-
0030372023
-
On combining artificial neural nets
-
Sharkey A. On combining artificial neural nets. Connection Sci. 8 (1996) 299-313
-
(1996)
Connection Sci.
, vol.8
, pp. 299-313
-
-
Sharkey, A.1
-
27
-
-
0030681095
-
On the accuracy of meta-learning for scalable data mining
-
Chan P.K., and Stolfo S.J. On the accuracy of meta-learning for scalable data mining. J. Intelligent Inf. Syst. 8 (1997) 5-28
-
(1997)
J. Intelligent Inf. Syst.
, vol.8
, pp. 5-28
-
-
Chan, P.K.1
Stolfo, S.J.2
-
28
-
-
78650167300
-
A linear-Bayes classifier
-
Monard C. (Ed), Springer, Berlin
-
Gama J. A linear-Bayes classifier. In: Monard C. (Ed). Advances on Artificial Intelligence, Proceedings of the SBIA 2000, Lecture Notes in Artificial Intelligence vol. 1952 (2000), Springer, Berlin 269-279
-
(2000)
Advances on Artificial Intelligence, Proceedings of the SBIA 2000, Lecture Notes in Artificial Intelligence
, vol.1952
, pp. 269-279
-
-
Gama, J.1
-
29
-
-
0030365938
-
-
K. Tumer, J. Ghosh, Error correlation and error reduction in ensemble classifiers, connection science, Combining Artificial Neural Networks: Ensemble Approaches 8 (1996) 385-404 (special issue).
-
-
-
-
30
-
-
0001920992
-
Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks
-
Chan P. (Ed), AAAI Press, Portland, OR
-
Cherkauer K.J. Human expert-level performance on a scientific image analysis task by a system using combined artificial neural networks. In: Chan P. (Ed). Working Notes, Integrating Multiple Learned Models for Improving and Scaling Machine Learning Algorithms Workshop, 13th National Conference on Artificial Intelligence (1996), AAAI Press, Portland, OR 15-21
-
(1996)
Working Notes, Integrating Multiple Learned Models for Improving and Scaling Machine Learning Algorithms Workshop, 13th National Conference on Artificial Intelligence
, pp. 15-21
-
-
Cherkauer, K.J.1
-
31
-
-
0000291808
-
Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification
-
Chen K., Wang L., and Chi H. Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification. Int. J. Pattern Recognition Artif. Intell. 11 (1997) 417-445
-
(1997)
Int. J. Pattern Recognition Artif. Intell.
, vol.11
, pp. 417-445
-
-
Chen, K.1
Wang, L.2
Chi, H.3
-
32
-
-
84898990837
-
Constructing heterogeneous committees via input feature grouping
-
Solla S.A., Leen T.K., and Muller K.-R. (Eds), MIT Press, Cambridge, MA
-
Liao Y., and Moody J. Constructing heterogeneous committees via input feature grouping. In: Solla S.A., Leen T.K., and Muller K.-R. (Eds). Advances in Neural Information Processing Systems vol. 12 (2000), MIT Press, Cambridge, MA
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
-
-
Liao, Y.1
Moody, J.2
-
33
-
-
38349127796
-
Feature set decomposition for decision trees
-
Rokach L., and Maimon O. Feature set decomposition for decision trees. J. Intelligent Data Anal. 9 (2005) 131-158
-
(2005)
J. Intelligent Data Anal.
, vol.9
, pp. 131-158
-
-
Rokach, L.1
Maimon, O.2
-
34
-
-
38349111002
-
Evolutionary algorithms for data mining
-
Maimon O., and Rokach L. (Eds), Springer, Berlin
-
Freitas A. Evolutionary algorithms for data mining. In: Maimon O., and Rokach L. (Eds). The Data Mining and Knowledge Discovery Handbook (2005), Springer, Berlin 435-467
-
(2005)
The Data Mining and Knowledge Discovery Handbook
, pp. 435-467
-
-
Freitas, A.1
-
36
-
-
0003191287
-
Predicting convergence time for genetic algorithms
-
Whitley L.D. (Ed), Morgan Kaufmann, Los Altos, CA
-
Louis S.J., and Rawlins G.J.E. Predicting convergence time for genetic algorithms. In: Whitley L.D. (Ed). Foundations of Genetic Algorithms vol. 2 (1993), Morgan Kaufmann, Los Altos, CA 141-161
-
(1993)
Foundations of Genetic Algorithms
, vol.2
, pp. 141-161
-
-
Louis, S.J.1
Rawlins, G.J.E.2
-
37
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
Rand W.M. Objective criteria for the evaluation of clustering methods. J. Am. Statist. Assoc. 66 (1971) 846-850
-
(1971)
J. Am. Statist. Assoc.
, vol.66
, pp. 846-850
-
-
Rand, W.M.1
-
38
-
-
0033226129
-
Efficient GA based techniques for classification
-
Sharpe P.K., and P Glover R. Efficient GA based techniques for classification. Appl. Intell. 11 (1999) 277-284
-
(1999)
Appl. Intell.
, vol.11
, pp. 277-284
-
-
Sharpe, P.K.1
P Glover, R.2
-
39
-
-
0033640901
-
Comparison of algorithms that select features for pattern classifiers
-
Kudo M., and Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 (2000) 25-41
-
(2000)
Pattern Recognition
, vol.33
, pp. 25-41
-
-
Kudo, M.1
Sklansky, J.2
-
40
-
-
2442705696
-
Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning
-
Hsu W.H. Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning. Inf. Sci. 163 (2004) 103-122
-
(2004)
Inf. Sci.
, vol.163
, pp. 103-122
-
-
Hsu, W.H.1
-
41
-
-
0030356238
-
Actively searching for an effective neural-network ensemble
-
Opitz D., and Shavlik J. Actively searching for an effective neural-network ensemble. Connection Sci. 8 (1996) 337-353
-
(1996)
Connection Sci.
, vol.8
, pp. 337-353
-
-
Opitz, D.1
Shavlik, J.2
-
42
-
-
38349109218
-
-
W.H. Hsu, M. Welge, J. Wu, T. Yang, Genetic algorithms for selection and partitioning of features in large-scale data mining problems, in: Proceedings of the Joint AAAI-GECCO Workshop on Data Mining with Evolutionary Algorithms, Orlando, FL, July 1999.
-
-
-
-
43
-
-
85128067285
-
The relationship between PAC, the statistical physics framework, the Bayesian framework, and the VC framework
-
Wolpert D.H. (Ed), Addison-Wesley, Reading, MA
-
Wolpert D.H. The relationship between PAC, the statistical physics framework, the Bayesian framework, and the VC framework. In: Wolpert D.H. (Ed). The Mathematics of Generalization, The SFI Studies in the Sciences of Complexity (1995), Addison-Wesley, Reading, MA 117-214
-
(1995)
The Mathematics of Generalization, The SFI Studies in the Sciences of Complexity
, pp. 117-214
-
-
Wolpert, D.H.1
-
44
-
-
38349186055
-
-
Y. Mansour, D. McAllester, Generalization bounds for decision trees, in: Proceedings of the 13th Annual Conference on Computer Learning Theory, San Francisco, Morgan Kaufmann, Los Altos, CA, 2000, pp. 69-80.
-
-
-
-
45
-
-
33749863915
-
Feature selection for support vector machines using genetic algorithms
-
Fröhlich H., Chapelle O., and Schölkopf B. Feature selection for support vector machines using genetic algorithms. Int. J. Artif. Intell. Tools 13 (2004) 791-800
-
(2004)
Int. J. Artif. Intell. Tools
, vol.13
, pp. 791-800
-
-
Fröhlich, H.1
Chapelle, O.2
Schölkopf, B.3
-
48
-
-
0028496468
-
Learning Boolean concepts in the presence of many irrelevant features
-
Almuallim H., and Dietterichm T.G. Learning Boolean concepts in the presence of many irrelevant features. Artif. Intell. 69 (1994) 279-306
-
(1994)
Artif. Intell.
, vol.69
, pp. 279-306
-
-
Almuallim, H.1
Dietterichm, T.G.2
-
49
-
-
85152626023
-
Efficiently inducing determinations: a complete and systematic search algorithm that uses optimal pruning
-
Morgan Kaufmann, San Mateo, CA
-
Schlimmer J.C. Efficiently inducing determinations: a complete and systematic search algorithm that uses optimal pruning. Proceedings of the 1993 International Conference on Machine Learning (1993), Morgan Kaufmann, San Mateo, CA 284-290
-
(1993)
Proceedings of the 1993 International Conference on Machine Learning
, pp. 284-290
-
-
Schlimmer, J.C.1
-
51
-
-
1342324574
-
A compact and accurate model for classification
-
Last M., and Maimon M. A compact and accurate model for classification. IEEE Trans. Knowl. Data Eng. 16 (2004) 203-215
-
(2004)
IEEE Trans. Knowl. Data Eng.
, vol.16
, pp. 203-215
-
-
Last, M.1
Maimon, M.2
-
53
-
-
0003408496
-
-
Department of Information and Computer Science, University of California, Irvine, CA
-
Merz C.J., and Murphy P.M. UCI repository of Machine Learning Databases (1998), Department of Information and Computer Science, University of California, Irvine, CA
-
(1998)
UCI repository of Machine Learning Databases
-
-
Merz, C.J.1
Murphy, P.M.2
-
54
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006) 1-30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
55
-
-
0029410715
-
On the practical applicability of VC dimension bounds
-
Holden S.B., and Niranjan M. On the practical applicability of VC dimension bounds. Neural Comput. 7 (1995) 1265-1288
-
(1995)
Neural Comput.
, vol.7
, pp. 1265-1288
-
-
Holden, S.B.1
Niranjan, M.2
-
56
-
-
0028546286
-
Learning Boolean formulas
-
Kearns M., Li M., and Valiant L. Learning Boolean formulas. J. ACM 41 (1994) 1298-1328
-
(1994)
J. ACM
, vol.41
, pp. 1298-1328
-
-
Kearns, M.1
Li, M.2
Valiant, L.3
-
57
-
-
0001687975
-
MML inference of predictive trees, graphs and nets
-
Gammerman A. (Ed), Wiley, New York
-
Wallace C.S. MML inference of predictive trees, graphs and nets. In: Gammerman A. (Ed). Computational Learning and Probabilistic Reasoning (1996), Wiley, New York 43-66
-
(1996)
Computational Learning and Probabilistic Reasoning
, pp. 43-66
-
-
Wallace, C.S.1
-
58
-
-
0036482614
-
On the complexity of computing and learning with multiplicative neural networks
-
Schmitt M. On the complexity of computing and learning with multiplicative neural networks. Neural Comput. 14 (2002) 241-301
-
(2002)
Neural Comput.
, vol.14
, pp. 241-301
-
-
Schmitt, M.1
|