메뉴 건너뛰기




Volumn 41, Issue 5, 2008, Pages 1676-1700

Genetic algorithm-based feature set partitioning for classification problems

Author keywords

Ensemble learning; Feature selection; Feature set partitioning; Genetic algorithm

Indexed keywords

FEATURE EXTRACTION; GENETIC ALGORITHMS; IMAGE CODING; LEARNING SYSTEMS; PROBLEM SOLVING; SET THEORY;

EID: 38349121661     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.10.013     Document Type: Article
Times cited : (80)

References (58)
  • 1
    • 0031997059 scopus 로고    scopus 로고
    • Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data
    • Jimenez L.O., and Landgrebe D.A. Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 28 (1998) 39-54
    • (1998) IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. , vol.28 , pp. 39-54
    • Jimenez, L.O.1    Landgrebe, D.A.2
  • 3
    • 0028516150 scopus 로고
    • Nonparametric multivariate density estimation: a comparative study
    • Hwang J., Lay S., and Lippman A. Nonparametric multivariate density estimation: a comparative study. IEEE Trans. Signal Process. 42 (1994) 2795-2810
    • (1994) IEEE Trans. Signal Process. , vol.42 , pp. 2795-2810
    • Hwang, J.1    Lay, S.2    Lippman, A.3
  • 6
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: an empirical study
    • Opitz D., and Maclin R. Popular ensemble methods: an empirical study. J. Artif. Res. 11 (1999) 169-198
    • (1999) J. Artif. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 7
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman S., Bienenstock E., and Doursat R. Neural networks and the bias/variance dilemma. Neural Comput. 4 (1995) 1-58
    • (1995) Neural Comput. , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 8
    • 0001562581 scopus 로고    scopus 로고
    • Linear and order statistics combiners for pattern classification
    • Sharkey A. (Ed), Springer, Berlin
    • Tumer K., and Ghosh J. Linear and order statistics combiners for pattern classification. In: Sharkey A. (Ed). Combining Artificial Neural Nets (1999), Springer, Berlin 127-162
    • (1999) Combining Artificial Neural Nets , pp. 127-162
    • Tumer, K.1    Ghosh, J.2
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach. Learn. 24 (1996) 123-140
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm. Machine Learning
    • Morgan Kaufmann, San Francisco
    • Freund Y., and Schapire R. Experiments with a new boosting algorithm. Machine Learning. Proceedings of the 13th International Conference (1996), Morgan Kaufmann, San Francisco 148-156
    • (1996) Proceedings of the 13th International Conference , pp. 148-156
    • Freund, Y.1    Schapire, R.2
  • 11
  • 12
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets
    • Bryll R., Gutierrez-Osuna R., and Quek F. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 36 (2003) 1291-1302
    • (2003) Pattern Recognition , vol.36 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 13
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998) 832-844
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , pp. 832-844
    • Ho, T.K.1
  • 14
    • 33744958288 scopus 로고    scopus 로고
    • Nearest neighbor classification from multiple feature subsets
    • Bay S. Nearest neighbor classification from multiple feature subsets. Intelligent Data Anal. 3 (1999) 191-209
    • (1999) Intelligent Data Anal. , vol.3 , pp. 191-209
    • Bay, S.1
  • 19
    • 84974722422 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • de Mántaras R.L., and Plaza E. (Eds), Springer, Berlin
    • Cunningham P., and Carney J. Diversity versus quality in classification ensembles based on feature selection. In: de Mántaras R.L., and Plaza E. (Eds). Proceedings of the ECML 2000, Barcelona, Spain, Lecture Notes in Computer Science vol. 1810 (2000), Springer, Berlin 109-116
    • (2000) Proceedings of the ECML 2000, Barcelona, Spain, Lecture Notes in Computer Science , vol.1810 , pp. 109-116
    • Cunningham, P.1    Carney, J.2
  • 20
    • 84948152666 scopus 로고    scopus 로고
    • Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error
    • De Readt L., and Flach P. (Eds), Springer, Berlin
    • Zenobi G., and Cunningham P. Using diversity in preparing ensembles of classifiers based on different feature subsets to minimize generalization error. In: De Readt L., and Flach P. (Eds). Proceedings of the ECML 2001, Lecture Notes in Artificial Intelligence vol. 2167 (2001), Springer, Berlin 576-587
    • (2001) Proceedings of the ECML 2001, Lecture Notes in Artificial Intelligence , vol.2167 , pp. 576-587
    • Zenobi, G.1    Cunningham, P.2
  • 21
    • 10444238133 scopus 로고    scopus 로고
    • Diversity in search strategies for ensemble feature selection
    • Tsymbal A., Pechenizkiy M., and Cunningham P. Diversity in search strategies for ensemble feature selection. Inf. Fusion 6 (2005) 83-98
    • (2005) Inf. Fusion , vol.6 , pp. 83-98
    • Tsymbal, A.1    Pechenizkiy, M.2    Cunningham, P.3
  • 22
    • 23844545305 scopus 로고    scopus 로고
    • Feature selection algorithms for the generation of multiple classifier systems
    • Gunter S., and Bunke H. Feature selection algorithms for the generation of multiple classifier systems. Pattern Recognition Lett. 25 (2004) 1323-1336
    • (2004) Pattern Recognition Lett. , vol.25 , pp. 1323-1336
    • Gunter, S.1    Bunke, H.2
  • 23
    • 33749359793 scopus 로고    scopus 로고
    • Decomposition methodology for classification tasks-a meta decomposer framework
    • Rokach L. Decomposition methodology for classification tasks-a meta decomposer framework. Pattern Anal. Appl. 9 (2006) 257-271
    • (2006) Pattern Anal. Appl. , vol.9 , pp. 257-271
    • Rokach, L.1
  • 24
    • 0034290324 scopus 로고    scopus 로고
    • Decomposition in data mining: an industrial case study
    • Kusiak A. Decomposition in data mining: an industrial case study. IEEE Trans. Electron. Packag. Manuf. 23 (2000) 345-353
    • (2000) IEEE Trans. Electron. Packag. Manuf. , vol.23 , pp. 345-353
    • Kusiak, A.1
  • 25
    • 38349111578 scopus 로고    scopus 로고
    • F.J. Provost, V. Kolluri, A survey of methods for scaling up inductive learning algorithms, in: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, 1997.
  • 26
    • 0030372023 scopus 로고    scopus 로고
    • On combining artificial neural nets
    • Sharkey A. On combining artificial neural nets. Connection Sci. 8 (1996) 299-313
    • (1996) Connection Sci. , vol.8 , pp. 299-313
    • Sharkey, A.1
  • 27
    • 0030681095 scopus 로고    scopus 로고
    • On the accuracy of meta-learning for scalable data mining
    • Chan P.K., and Stolfo S.J. On the accuracy of meta-learning for scalable data mining. J. Intelligent Inf. Syst. 8 (1997) 5-28
    • (1997) J. Intelligent Inf. Syst. , vol.8 , pp. 5-28
    • Chan, P.K.1    Stolfo, S.J.2
  • 29
    • 0030365938 scopus 로고    scopus 로고
    • K. Tumer, J. Ghosh, Error correlation and error reduction in ensemble classifiers, connection science, Combining Artificial Neural Networks: Ensemble Approaches 8 (1996) 385-404 (special issue).
  • 31
    • 0000291808 scopus 로고    scopus 로고
    • Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification
    • Chen K., Wang L., and Chi H. Methods of combining multiple classifiers with different features and their applications to text-independent speaker identification. Int. J. Pattern Recognition Artif. Intell. 11 (1997) 417-445
    • (1997) Int. J. Pattern Recognition Artif. Intell. , vol.11 , pp. 417-445
    • Chen, K.1    Wang, L.2    Chi, H.3
  • 32
    • 84898990837 scopus 로고    scopus 로고
    • Constructing heterogeneous committees via input feature grouping
    • Solla S.A., Leen T.K., and Muller K.-R. (Eds), MIT Press, Cambridge, MA
    • Liao Y., and Moody J. Constructing heterogeneous committees via input feature grouping. In: Solla S.A., Leen T.K., and Muller K.-R. (Eds). Advances in Neural Information Processing Systems vol. 12 (2000), MIT Press, Cambridge, MA
    • (2000) Advances in Neural Information Processing Systems , vol.12
    • Liao, Y.1    Moody, J.2
  • 33
    • 38349127796 scopus 로고    scopus 로고
    • Feature set decomposition for decision trees
    • Rokach L., and Maimon O. Feature set decomposition for decision trees. J. Intelligent Data Anal. 9 (2005) 131-158
    • (2005) J. Intelligent Data Anal. , vol.9 , pp. 131-158
    • Rokach, L.1    Maimon, O.2
  • 34
    • 38349111002 scopus 로고    scopus 로고
    • Evolutionary algorithms for data mining
    • Maimon O., and Rokach L. (Eds), Springer, Berlin
    • Freitas A. Evolutionary algorithms for data mining. In: Maimon O., and Rokach L. (Eds). The Data Mining and Knowledge Discovery Handbook (2005), Springer, Berlin 435-467
    • (2005) The Data Mining and Knowledge Discovery Handbook , pp. 435-467
    • Freitas, A.1
  • 36
    • 0003191287 scopus 로고
    • Predicting convergence time for genetic algorithms
    • Whitley L.D. (Ed), Morgan Kaufmann, Los Altos, CA
    • Louis S.J., and Rawlins G.J.E. Predicting convergence time for genetic algorithms. In: Whitley L.D. (Ed). Foundations of Genetic Algorithms vol. 2 (1993), Morgan Kaufmann, Los Altos, CA 141-161
    • (1993) Foundations of Genetic Algorithms , vol.2 , pp. 141-161
    • Louis, S.J.1    Rawlins, G.J.E.2
  • 37
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand W.M. Objective criteria for the evaluation of clustering methods. J. Am. Statist. Assoc. 66 (1971) 846-850
    • (1971) J. Am. Statist. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 38
    • 0033226129 scopus 로고    scopus 로고
    • Efficient GA based techniques for classification
    • Sharpe P.K., and P Glover R. Efficient GA based techniques for classification. Appl. Intell. 11 (1999) 277-284
    • (1999) Appl. Intell. , vol.11 , pp. 277-284
    • Sharpe, P.K.1    P Glover, R.2
  • 39
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., and Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 (2000) 25-41
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 40
    • 2442705696 scopus 로고    scopus 로고
    • Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning
    • Hsu W.H. Genetic wrappers for feature selection in decision tree induction and variable ordering in Bayesian network structure learning. Inf. Sci. 163 (2004) 103-122
    • (2004) Inf. Sci. , vol.163 , pp. 103-122
    • Hsu, W.H.1
  • 41
    • 0030356238 scopus 로고    scopus 로고
    • Actively searching for an effective neural-network ensemble
    • Opitz D., and Shavlik J. Actively searching for an effective neural-network ensemble. Connection Sci. 8 (1996) 337-353
    • (1996) Connection Sci. , vol.8 , pp. 337-353
    • Opitz, D.1    Shavlik, J.2
  • 42
    • 38349109218 scopus 로고    scopus 로고
    • W.H. Hsu, M. Welge, J. Wu, T. Yang, Genetic algorithms for selection and partitioning of features in large-scale data mining problems, in: Proceedings of the Joint AAAI-GECCO Workshop on Data Mining with Evolutionary Algorithms, Orlando, FL, July 1999.
  • 43
    • 85128067285 scopus 로고
    • The relationship between PAC, the statistical physics framework, the Bayesian framework, and the VC framework
    • Wolpert D.H. (Ed), Addison-Wesley, Reading, MA
    • Wolpert D.H. The relationship between PAC, the statistical physics framework, the Bayesian framework, and the VC framework. In: Wolpert D.H. (Ed). The Mathematics of Generalization, The SFI Studies in the Sciences of Complexity (1995), Addison-Wesley, Reading, MA 117-214
    • (1995) The Mathematics of Generalization, The SFI Studies in the Sciences of Complexity , pp. 117-214
    • Wolpert, D.H.1
  • 44
    • 38349186055 scopus 로고    scopus 로고
    • Y. Mansour, D. McAllester, Generalization bounds for decision trees, in: Proceedings of the 13th Annual Conference on Computer Learning Theory, San Francisco, Morgan Kaufmann, Los Altos, CA, 2000, pp. 69-80.
  • 45
    • 33749863915 scopus 로고    scopus 로고
    • Feature selection for support vector machines using genetic algorithms
    • Fröhlich H., Chapelle O., and Schölkopf B. Feature selection for support vector machines using genetic algorithms. Int. J. Artif. Intell. Tools 13 (2004) 791-800
    • (2004) Int. J. Artif. Intell. Tools , vol.13 , pp. 791-800
    • Fröhlich, H.1    Chapelle, O.2    Schölkopf, B.3
  • 48
    • 0028496468 scopus 로고
    • Learning Boolean concepts in the presence of many irrelevant features
    • Almuallim H., and Dietterichm T.G. Learning Boolean concepts in the presence of many irrelevant features. Artif. Intell. 69 (1994) 279-306
    • (1994) Artif. Intell. , vol.69 , pp. 279-306
    • Almuallim, H.1    Dietterichm, T.G.2
  • 49
    • 85152626023 scopus 로고
    • Efficiently inducing determinations: a complete and systematic search algorithm that uses optimal pruning
    • Morgan Kaufmann, San Mateo, CA
    • Schlimmer J.C. Efficiently inducing determinations: a complete and systematic search algorithm that uses optimal pruning. Proceedings of the 1993 International Conference on Machine Learning (1993), Morgan Kaufmann, San Mateo, CA 284-290
    • (1993) Proceedings of the 1993 International Conference on Machine Learning , pp. 284-290
    • Schlimmer, J.C.1
  • 51
    • 1342324574 scopus 로고    scopus 로고
    • A compact and accurate model for classification
    • Last M., and Maimon M. A compact and accurate model for classification. IEEE Trans. Knowl. Data Eng. 16 (2004) 203-215
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , pp. 203-215
    • Last, M.1    Maimon, M.2
  • 53
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • Merz C.J., and Murphy P.M. UCI repository of Machine Learning Databases (1998), Department of Information and Computer Science, University of California, Irvine, CA
    • (1998) UCI repository of Machine Learning Databases
    • Merz, C.J.1    Murphy, P.M.2
  • 54
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7 (2006) 1-30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 55
    • 0029410715 scopus 로고
    • On the practical applicability of VC dimension bounds
    • Holden S.B., and Niranjan M. On the practical applicability of VC dimension bounds. Neural Comput. 7 (1995) 1265-1288
    • (1995) Neural Comput. , vol.7 , pp. 1265-1288
    • Holden, S.B.1    Niranjan, M.2
  • 56
    • 0028546286 scopus 로고
    • Learning Boolean formulas
    • Kearns M., Li M., and Valiant L. Learning Boolean formulas. J. ACM 41 (1994) 1298-1328
    • (1994) J. ACM , vol.41 , pp. 1298-1328
    • Kearns, M.1    Li, M.2    Valiant, L.3
  • 57
    • 0001687975 scopus 로고    scopus 로고
    • MML inference of predictive trees, graphs and nets
    • Gammerman A. (Ed), Wiley, New York
    • Wallace C.S. MML inference of predictive trees, graphs and nets. In: Gammerman A. (Ed). Computational Learning and Probabilistic Reasoning (1996), Wiley, New York 43-66
    • (1996) Computational Learning and Probabilistic Reasoning , pp. 43-66
    • Wallace, C.S.1
  • 58
    • 0036482614 scopus 로고    scopus 로고
    • On the complexity of computing and learning with multiplicative neural networks
    • Schmitt M. On the complexity of computing and learning with multiplicative neural networks. Neural Comput. 14 (2002) 241-301
    • (2002) Neural Comput. , vol.14 , pp. 241-301
    • Schmitt, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.