메뉴 건너뛰기




Volumn 53, Issue 4, 2009, Pages 1483-1494

Improving malware detection by applying multi-inducer ensemble

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFIERS; DECISION THEORY; DECISION TREES; LEARNING SYSTEMS;

EID: 58549090885     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2008.10.015     Document Type: Article
Times cited : (122)

References (35)
  • 1
    • 18844362133 scopus 로고    scopus 로고
    • Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R., 2004. N-gram based detection of new malicious code. In: Proc. of the Annual International Computer Software and Applications Conference, COMPSAC'04
    • Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidan, R., 2004. N-gram based detection of new malicious code. In: Proc. of the Annual International Computer Software and Applications Conference, COMPSAC'04
  • 2
    • 58549114108 scopus 로고    scopus 로고
    • Buntine, W., 1990. A theory of learning classification rules. Doctoral Dissertation. School of Computing Science, University of Technology, Sydney
    • Buntine, W., 1990. A theory of learning classification rules. Doctoral Dissertation. School of Computing Science, University of Technology, Sydney
  • 3
    • 33846600066 scopus 로고    scopus 로고
    • Comparison of feature selection and classification algorithms in identifying malicious executables
    • Caia D.M., Gokhaleb M., and Theilerc J. Comparison of feature selection and classification algorithms in identifying malicious executables. Computational Statistics and Data Analysis 51 (2007) 3156-3172
    • (2007) Computational Statistics and Data Analysis , vol.51 , pp. 3156-3172
    • Caia, D.M.1    Gokhaleb, M.2    Theilerc, J.3
  • 4
    • 85015191605 scopus 로고    scopus 로고
    • Clark, P., Boswell, R., 1991. Rule induction with CN2: Some recent improvements. In: Proc. of the European Working Session on Learning, pp. 151-163
    • Clark, P., Boswell, R., 1991. Rule induction with CN2: Some recent improvements. In: Proc. of the European Working Session on Learning, pp. 151-163
  • 5
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 6
    • 58549085517 scopus 로고    scopus 로고
    • Dikinson, J., 2005. The new anti-virus formula. http://www.solunet.com/wp/security/How-to-use-multrd-security.pdf
    • Dikinson, J., 2005. The new anti-virus formula. http://www.solunet.com/wp/security/How-to-use-multrd-security.pdf
  • 7
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Machine Learning 54 3 (2004) 255-273
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 8
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub T., et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1
  • 9
    • 58549087275 scopus 로고    scopus 로고
    • Guvenir, G.D., 1997. Classification by voting feature intervals. In: Proc. of the European Conference on Machine Learning, pp. 85-92
    • Guvenir, G.D., 1997. Classification by voting feature intervals. In: Proc. of the European Conference on Machine Learning, pp. 85-92
  • 10
    • 58549097775 scopus 로고    scopus 로고
    • Heidari, M., 2004. Malicious codes in depth. http://www.securitydocs.com/pdf/2742.pdf
    • Heidari, M., 2004. Malicious codes in depth. http://www.securitydocs.com/pdf/2742.pdf
  • 11
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte R. Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 (1993) 63-91
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.1
  • 12
    • 58549098368 scopus 로고    scopus 로고
    • John, G.H., Langley, P., 1995. Estimating continuous distributions in Bayesian classifiers. In: Proc. of the Conference on Uncertainty in Artificial Intelligence, San Mateo, pp. 338-345
    • John, G.H., Langley, P., 1995. Estimating continuous distributions in Bayesian classifiers. In: Proc. of the Conference on Uncertainty in Artificial Intelligence, San Mateo, pp. 338-345
  • 14
    • 58549111316 scopus 로고    scopus 로고
    • Kelly, C., Spears, D., Karlsson, C., Polyakov, P., 2006. An ensemble of anomaly classifiers for identifying cyber attacks. In: Proc. of the International SIAM Workshop on Feature Selection for Data Mining
    • Kelly, C., Spears, D., Karlsson, C., Polyakov, P., 2006. An ensemble of anomaly classifiers for identifying cyber attacks. In: Proc. of the International SIAM Workshop on Feature Selection for Data Mining
  • 15
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Kibler D.A. Instance-based learning algorithms. Machine Learning (1991) 37-66
    • (1991) Machine Learning , pp. 37-66
    • Kibler, D.A.1
  • 16
    • 58549099987 scopus 로고    scopus 로고
    • Kienzle, D.M., Elder, M.C., 2003. Internet WORMS: Past, present, and future: Recent worms: A survey and trends. In: ACM Workshop on Rapid Malcode (WORM03)
    • Kienzle, D.M., Elder, M.C., 2003. Internet WORMS: Past, present, and future: Recent worms: A survey and trends. In: ACM Workshop on Rapid Malcode (WORM03)
  • 18
    • 33845768389 scopus 로고    scopus 로고
    • Learning to detect and classify malicious executables in the wild
    • Kolter J., and Maloof M. Learning to detect and classify malicious executables in the wild. Journal of Machine Learning Research 7 (2006) 2721-2744
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2721-2744
    • Kolter, J.1    Maloof, M.2
  • 19
    • 24144490154 scopus 로고    scopus 로고
    • Diversity in multiple classifier systems (editorial)
    • Kuncheva L.I. Diversity in multiple classifier systems (editorial). Information Fusion 6 1 (2005) 3-4
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 3-4
    • Kuncheva, L.I.1
  • 20
    • 58549113482 scopus 로고    scopus 로고
    • Mahoney, M.V., 2003. A machine learning approach to detecting attacks by identifying anomalies in network traffic. Ph.D. Dissertation, Florida Tech.
    • Mahoney, M.V., 2003. A machine learning approach to detecting attacks by identifying anomalies in network traffic. Ph.D. Dissertation, Florida Tech.
  • 21
    • 58549094822 scopus 로고    scopus 로고
    • Menahem, E., 2008. Troika - An improved stacking schema for classification tasks. M.Sc. Thesis in Information System Engineering dep., Ben-Gurion University of the Negev, Israel
    • Menahem, E., 2008. Troika - An improved stacking schema for classification tasks. M.Sc. Thesis in Information System Engineering dep., Ben-Gurion University of the Negev, Israel
  • 23
    • 42749086128 scopus 로고    scopus 로고
    • Detection of unknown computer worms based on behavioral classification of the host
    • Moskovitch R., Elovici Y., and Rokach L. Detection of unknown computer worms based on behavioral classification of the host. Computational Statistics and Data Analysis 52 9 (2008) 4544-4566
    • (2008) Computational Statistics and Data Analysis , vol.52 , Issue.9 , pp. 4544-4566
    • Moskovitch, R.1    Elovici, Y.2    Rokach, L.3
  • 27
    • 0034838197 scopus 로고    scopus 로고
    • Schultz, M., Eskin, E., Zadok, E., Stolfo, S., 2001. Data mining methods for detection of new malicious executables. In: Proc. of the IEEE Symposium on Security and Privacy, pp. 178-184
    • Schultz, M., Eskin, E., Zadok, E., Stolfo, S., 2001. Data mining methods for detection of new malicious executables. In: Proc. of the IEEE Symposium on Security and Privacy, pp. 178-184
  • 28
    • 58549115191 scopus 로고    scopus 로고
    • Seewald, A.K., 2003. Towards understanding stacking - Studies of a general ensemble learning scheme. Ph.D. Thesis, TU Wien
    • Seewald, A.K., 2003. Towards understanding stacking - Studies of a general ensemble learning scheme. Ph.D. Thesis, TU Wien
  • 29
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • Tumer K., and Ghosh J. Error correlation and error reduction in ensemble classifiers. Connection Science 8 (1996) 385-404
    • (1996) Connection Science , vol.8 , pp. 385-404
    • Tumer, K.1    Ghosh, J.2
  • 30
    • 58549110548 scopus 로고    scopus 로고
    • Wang, K., Stolfo, S.J., 2004. Anomalous payload-based network intrusion detection. In: Proc. of International Symposium on Recent Advances in Intrusion Detection, RAID, pp. 1-12
    • Wang, K., Stolfo, S.J., 2004. Anomalous payload-based network intrusion detection. In: Proc. of International Symposium on Recent Advances in Intrusion Detection, RAID, pp. 1-12
  • 31
    • 58549113283 scopus 로고    scopus 로고
    • White, S., 1998. Open problems in computer virus research. IBM Research Center
    • White, S., 1998. Open problems in computer virus research. IBM Research Center
  • 32
    • 58549109536 scopus 로고    scopus 로고
    • White, S., 1999. Anatomy of a commercial-grade immune system. IBM Research Center
    • White, S., 1999. Anatomy of a commercial-grade immune system. IBM Research Center
  • 34
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.