메뉴 건너뛰기




Volumn 16, Issue 5, 2014, Pages

Noncoding RNAs and atherosclerosis

Author keywords

Atherosclerosis; Lipid metabolism; Long noncoding RNA; MicroRNA

Indexed keywords

LONG UNTRANSLATED RNA; MICRORNA; SMALL UNTRANSLATED RNA; UNTRANSLATED RNA;

EID: 84895775615     PISSN: 15233804     EISSN: 15346242     Source Type: Journal    
DOI: 10.1007/s11883-014-0407-3     Document Type: Article
Times cited : (88)

References (115)
  • 1
    • 24644519490 scopus 로고    scopus 로고
    • The transcriptional landscape of the mammalian genome
    • Carninci P et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559.
    • (2005) Science , vol.309 , pp. 1559
    • Carninci, P.1
  • 2
    • 34250305146 scopus 로고    scopus 로고
    • Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project
    • Birney E et al. Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature. 2007;447:799.
    • (2007) Nature , vol.447 , pp. 799
    • Birney, E.1
  • 4
    • 81355142141 scopus 로고    scopus 로고
    • Non-coding RNAs in human disease
    • Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861.
    • (2011) Nat Rev Genet , vol.12 , pp. 861
    • Esteller, M.1
  • 5
    • 84885361567 scopus 로고    scopus 로고
    • Non-coding RNAs: The "dark matter" of cardiovascular pathophysiology
    • Iaconetti C, Gareri C, Polimeni A, Indolfi C. Non-coding RNAs: the "dark matter" of cardiovascular pathophysiology. Int J Mol Sci. 2013;14:19987.
    • (2013) Int J Mol Sci , vol.14 , pp. 19987
    • Iaconetti, C.1    Gareri, C.2    Polimeni, A.3    Indolfi, C.4
  • 6
    • 0032545933 scopus 로고    scopus 로고
    • Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans
    • Fire A et al. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature. 1998;391:806.
    • (1998) Nature , vol.391 , pp. 806
    • Fire, A.1
  • 8
    • 79960104144 scopus 로고    scopus 로고
    • MicroRNAs in development and disease
    • Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91:827.
    • (2011) Physiol Rev , vol.91 , pp. 827
    • Sayed, D.1    Abdellatif, M.2
  • 10
    • 84872091789 scopus 로고    scopus 로고
    • Heart disease and stroke statistics - 2014 update: A report from the American Heart Association
    • doi:10.1161/01.cir.0000441139.02102.80
    • Go AS et al. Heart disease and stroke statistics - 2014 update: a report from the American Heart Association. Circulation. 2013. doi:10.1161/01.cir. 0000441139.02102.80.
    • (2013) Circulation
    • Go, A.S.1
  • 11
    • 0035936802 scopus 로고    scopus 로고
    • Atherosclerosis. The road ahead
    • Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell. 2001;104:503.
    • (2001) Cell , vol.104 , pp. 503
    • Glass, C.K.1    Witztum, J.L.2
  • 12
    • 67649671961 scopus 로고    scopus 로고
    • Long noncoding RNAs: Functional surprises from the RNA world
    • Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23:1494.
    • (2009) Genes Dev , vol.23 , pp. 1494
    • Wilusz, J.E.1    Sunwoo, H.2    Spector, D.L.3
  • 13
    • 84865757142 scopus 로고    scopus 로고
    • Landscape of transcription in human cells
    • Djebali S et al. Landscape of transcription in human cells. Nature. 2012;489:101.
    • (2012) Nature , vol.489 , pp. 101
    • Djebali, S.1
  • 14
    • 3042767202 scopus 로고    scopus 로고
    • MicroRNAs: Small RNAs with a big role in gene regulation
    • He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522.
    • (2004) Nat Rev Genet , vol.5 , pp. 522
    • He, L.1    Hannon, G.J.2
  • 15
    • 25444457833 scopus 로고    scopus 로고
    • MicroRNAs: Critical regulators of development, cellular physiology and malignancy
    • Mendell JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 2005;4:1179.
    • (2005) Cell Cycle , vol.4 , pp. 1179
    • Mendell, J.T.1
  • 16
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15.
    • (2005) Cell , vol.120 , pp. 15
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 17
    • 22144432980 scopus 로고    scopus 로고
    • RNAi and the P-body connection
    • Rossi JJ. RNAi and the P-body connection. Nat Cell Biol. 2005;7:643.
    • (2005) Nat Cell Biol , vol.7 , pp. 643
    • Rossi, J.J.1
  • 18
    • 77955056301 scopus 로고    scopus 로고
    • Argonaute MID domain takes centre stage
    • Faehnle CR, Joshua-Tor L. Argonaute MID domain takes centre stage. EMBO Rep. 2010;11:564.
    • (2010) EMBO Rep , vol.11 , pp. 564
    • Faehnle, C.R.1    Joshua-Tor, L.2
  • 19
    • 77955902024 scopus 로고    scopus 로고
    • The widespread regulation of microRNA biogenesis, function and decay
    • Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597.
    • (2010) Nat Rev Genet , vol.11 , pp. 597
    • Krol, J.1    Loedige, I.2    Filipowicz, W.3
  • 20
    • 84875590101 scopus 로고    scopus 로고
    • Long noncoding RNAs: Past, present, and future
    • Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193:651.
    • (2013) Genetics , vol.193 , pp. 651
    • Kung, J.T.1    Colognori, D.2    Lee, J.T.3
  • 21
    • 84894532371 scopus 로고    scopus 로고
    • On the classification of long noncoding RNAs
    • Ma L, Bajic VB, Zhang Z. On the classification of long noncoding RNAs. RNA Biol. 2013;10:925.
    • (2013) RNA Biol , vol.10 , pp. 925
    • Ma, L.1    Bajic, V.B.2    Zhang, Z.3
  • 23
    • 84875183056 scopus 로고    scopus 로고
    • Structure and function of long noncoding RNAs in epigenetic regulation
    • Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 300
    • Mercer, T.R.1    Mattick, J.S.2
  • 24
    • 84255160602 scopus 로고    scopus 로고
    • Long noncoding RNAmediated anti-apoptotic activity in murine erythroid terminal differentiation
    • Hu W, Yuan B, Flygare J, Lodish HF. Long noncoding RNAmediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 2011;25:2573.
    • (2011) Genes Dev , vol.25 , pp. 2573
    • Hu, W.1    Yuan, B.2    Flygare, J.3    Lodish, H.F.4
  • 25
    • 84880792943 scopus 로고    scopus 로고
    • Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells
    • Leung A et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013;113:266.
    • (2013) Circ Res , vol.113 , pp. 266
    • Leung, A.1
  • 26
    • 84873829893 scopus 로고    scopus 로고
    • The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse
    • Grote P et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24:206.
    • (2013) Dev Cell , vol.24 , pp. 206
    • Grote, P.1
  • 27
    • 80053045739 scopus 로고    scopus 로고
    • Molecular mechanisms of long noncoding RNAs
    • Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904.
    • (2011) Mol Cell , vol.43 , pp. 904
    • Wang, K.C.1    Chang, H.Y.2
  • 28
    • 80052076283 scopus 로고    scopus 로고
    • Characterization of Fpr-rs8, an atypical member of the mouse formyl peptide receptor gene family
    • Tiffany HL, Gao JL, Roffe E, Sechler JM, Murphy PM. Characterization of Fpr-rs8, an atypical member of the mouse formyl peptide receptor gene family. J Innate Immun. 2011;3:519.
    • (2011) J Innate Immun , vol.3 , pp. 519
    • Tiffany, H.L.1    Gao, J.L.2    Roffe, E.3    Sechler, J.M.4    Murphy, P.M.5
  • 29
    • 77954572735 scopus 로고    scopus 로고
    • Long noncoding RNA as modular scaffold of histone modification complexes
    • Tsai MC et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689.
    • (2010) Science , vol.329 , pp. 689
    • Tsai, M.C.1
  • 30
    • 84858776574 scopus 로고    scopus 로고
    • MicroRNAs in metabolism and metabolic disorders
    • Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239.
    • (2012) Nat Rev Mol Cell Biol , vol.13 , pp. 239
    • Rottiers, V.1    Naar, A.M.2
  • 31
    • 33645075443 scopus 로고    scopus 로고
    • MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
    • Esau C et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87.
    • (2006) Cell Metab , vol.3 , pp. 87
    • Esau, C.1
  • 33
    • 77953787211 scopus 로고    scopus 로고
    • MiR-33 contributes to the regulation of cholesterol homeostasis
    • Rayner KJ et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570.
    • (2010) Science , vol.328 , pp. 1570
    • Rayner, K.J.1
  • 34
    • 80054900644 scopus 로고    scopus 로고
    • MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1
    • Ramirez CM et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2011;31:2707.
    • (2011) Arterioscler Thromb Vasc Biol , vol.31 , pp. 2707
    • Ramirez, C.M.1
  • 35
    • 84860377430 scopus 로고    scopus 로고
    • MiR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression
    • Kim J et al. miR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Exp Neurol. 2011;235:476.
    • (2011) Exp Neurol , vol.235 , pp. 476
    • Kim, J.1
  • 36
    • 84880031381 scopus 로고    scopus 로고
    • Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144
    • Ramirez CM et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112:1592.
    • (2013) Circ Res , vol.112 , pp. 1592
    • Ramirez, C.M.1
  • 39
    • 80054971110 scopus 로고    scopus 로고
    • Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides
    • Rayner KJ et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478:404.
    • (2011) Nature , vol.478 , pp. 404
    • Rayner, K.J.1
  • 40
    • 79960015327 scopus 로고    scopus 로고
    • Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis
    • Rayner KJ et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121:2921.
    • (2011) J Clin Invest , vol.121 , pp. 2921
    • Rayner, K.J.1
  • 41
    • 84880288761 scopus 로고    scopus 로고
    • MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion
    • Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med. 2013;19:892.
    • (2013) Nat Med , vol.19 , pp. 892
    • Soh, J.1    Iqbal, J.2    Queiroz, J.3    Fernandez-Hernando, C.4    Hussain, M.M.5
  • 43
    • 77449127999 scopus 로고    scopus 로고
    • Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection
    • Zernecke A et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2:ra81.
    • (2009) Sci Signal , vol.2
    • Zernecke, A.1
  • 44
    • 84880272931 scopus 로고    scopus 로고
    • Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: Role of shear stress
    • Zhou J et al. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res. 2013;113:40.
    • (2013) Circ Res , vol.113 , pp. 40
    • Zhou, J.1
  • 45
    • 73949113629 scopus 로고    scopus 로고
    • Cutting edge: TNFinduced microRNAs regulate TNF-induced expression of Eselectin and intercellular adhesion molecule-1 on human endothelial cells: Feedback control of inflammation
    • Suarez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNFinduced microRNAs regulate TNF-induced expression of Eselectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184:21.
    • (2010) J Immunol , vol.184 , pp. 21
    • Suarez, Y.1    Wang, C.2    Manes, T.D.3    Pober, J.S.4
  • 46
    • 80054973471 scopus 로고    scopus 로고
    • MiR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study
    • Raitoharju E et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011;219:211.
    • (2011) Atherosclerosis , vol.219 , pp. 211
    • Raitoharju, E.1
  • 47
    • 34250172419 scopus 로고    scopus 로고
    • MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation
    • Ji R et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579.
    • (2007) Circ Res , vol.100 , pp. 1579
    • Ji, R.1
  • 48
    • 79959973595 scopus 로고    scopus 로고
    • MicroRNA-21 targets peroxisome proliferatorsactivated receptor-α in an autoregulatory loop to modulate flowinduced endothelial inflammation
    • Zhou J et al. MicroRNA-21 targets peroxisome proliferatorsactivated receptor-α in an autoregulatory loop to modulate flowinduced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108:10355.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 10355
    • Zhou, J.1
  • 49
    • 84893688897 scopus 로고    scopus 로고
    • Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor beta2 (TGF-β2) pathways
    • 10.1074/jbc.M113.495531
    • Di Bernardini E et al. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor beta2 (TGF-β2) pathways. J Biol Chem. 2013. 10.1074/jbc.M113.495531.
    • (2013) J Biol Chem
    • Di Bernardini, E.1
  • 50
    • 77955795714 scopus 로고    scopus 로고
    • MicroRNA-10a regulation of proinflammatory phenotype in atherosusceptible endothelium in vivo and in vitro
    • Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in atherosusceptible endothelium in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107:13450.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 13450
    • Fang, Y.1    Shi, C.2    Manduchi, E.3    Civelek, M.4    Davies, P.F.5
  • 51
    • 84861825526 scopus 로고    scopus 로고
    • MicroRNA-181b regulates NF-κB-mediated vascular inflammation
    • Sun X et al. MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J Clin Invest. 2012;122:1973.
    • (2012) J Clin Invest , vol.122 , pp. 1973
    • Sun, X.1
  • 52
    • 84892908098 scopus 로고    scopus 로고
    • Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice
    • Sun X et al. Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res. 2014;114:32.
    • (2014) Circ Res , vol.114 , pp. 32
    • Sun, X.1
  • 53
    • 84880044900 scopus 로고    scopus 로고
    • MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways
    • Cheng HS et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5:949.
    • (2013) EMBO Mol Med , vol.5 , pp. 949
    • Cheng, H.S.1
  • 54
    • 33751173635 scopus 로고    scopus 로고
    • MicroRNAs modulate the angiogenic properties of HUVECs
    • Poliseno L et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108:3068.
    • (2006) Blood , vol.108 , pp. 3068
    • Poliseno, L.1
  • 55
    • 34247554263 scopus 로고    scopus 로고
    • Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells
    • Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164.
    • (2007) Circ Res , vol.100 , pp. 1164
    • Suarez, Y.1    Fernandez-Hernando, C.2    Pober, J.S.3    Sessa, W.C.4
  • 56
    • 79953057954 scopus 로고    scopus 로고
    • Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration
    • Zhu N et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. 2011;215:286.
    • (2011) Atherosclerosis , vol.215 , pp. 286
    • Zhu, N.1
  • 57
    • 77955146248 scopus 로고    scopus 로고
    • MicroRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression
    • Dentelli P et al. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol. 2010;30:1562.
    • (2010) Arterioscler Thromb Vasc Biol , vol.30 , pp. 1562
    • Dentelli, P.1
  • 58
    • 84897112063 scopus 로고    scopus 로고
    • The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis
    • Son DJ et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013;4:3000.
    • (2013) Nat Commun , vol.4 , pp. 3000
    • Son, D.J.1
  • 59
    • 52949090784 scopus 로고    scopus 로고
    • Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis
    • Suarez Y et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A. 2008;105:14082.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 14082
    • Suarez, Y.1
  • 60
    • 84858701910 scopus 로고    scopus 로고
    • Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium
    • Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol. 2012;32:979.
    • (2012) Arterioscler Thromb Vasc Biol , vol.32 , pp. 979
    • Fang, Y.1    Davies, P.F.2
  • 61
    • 84894196759 scopus 로고    scopus 로고
    • Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice
    • doi:10. 1161/CIRCRESAHA.114.302213
    • Loyer X et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 2013. doi:10. 1161/CIRCRESAHA.114.302213.
    • (2013) Circ Res
    • Loyer, X.1
  • 63
    • 34447632218 scopus 로고    scopus 로고
    • Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis
    • Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101:59.
    • (2007) Circ Res , vol.101 , pp. 59
    • Kuehbacher, A.1    Urbich, C.2    Zeiher, A.M.3    Dimmeler, S.4
  • 64
    • 77951743715 scopus 로고    scopus 로고
    • MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes
    • Akhtar N et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 2010;62:1361.
    • (2010) Arthritis Rheum , vol.62 , pp. 1361
    • Akhtar, N.1
  • 65
    • 84856812740 scopus 로고    scopus 로고
    • MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A
    • Urbich C et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 2012;119:1607.
    • (2012) Blood , vol.119 , pp. 1607
    • Urbich, C.1
  • 67
    • 70350134022 scopus 로고    scopus 로고
    • MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1
    • Menghini R et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120:1524.
    • (2009) Circulation , vol.120 , pp. 1524
    • Menghini, R.1
  • 69
    • 79960686440 scopus 로고    scopus 로고
    • MiR-146a is modulated in human endothelial cell with aging
    • Vasa-Nicotera M et al. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis. 2011;217:326.
    • (2011) Atherosclerosis , vol.217 , pp. 326
    • Vasa-Nicotera, M.1
  • 70
    • 80052148252 scopus 로고    scopus 로고
    • MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities
    • Wang M et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol. 2011;31:2044.
    • (2011) Arterioscler Thromb Vasc Biol , vol.31 , pp. 2044
    • Wang, M.1
  • 71
    • 46449128469 scopus 로고    scopus 로고
    • SMAD proteins control DROSHA-mediated microRNA maturation
    • Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454:56.
    • (2008) Nature , vol.454 , pp. 56
    • Davis, B.N.1    Hilyard, A.C.2    Lagna, G.3    Hata, A.4
  • 72
    • 78649892620 scopus 로고    scopus 로고
    • MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration
    • Sarkar J et al. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol. 2010;299:L861.
    • (2010) Am J Physiol Lung Cell Mol Physiol , vol.299
    • Sarkar, J.1
  • 73
    • 70349213385 scopus 로고    scopus 로고
    • Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster
    • Boettger T et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 2009;119:2634.
    • (2009) J Clin Invest , vol.119 , pp. 2634
    • Boettger, T.1
  • 74
    • 68049083397 scopus 로고    scopus 로고
    • MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation
    • Cheng Y et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105:158.
    • (2009) Circ Res , vol.105 , pp. 158
    • Cheng, Y.1
  • 75
    • 68449097267 scopus 로고    scopus 로고
    • MiR-145 and miR-143 regulate smooth muscle cell fate and plasticity
    • Cordes KR et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705.
    • (2009) Nature , vol.460 , pp. 705
    • Cordes, K.R.1
  • 76
    • 70349125875 scopus 로고    scopus 로고
    • MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury
    • Xin M et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23:2166.
    • (2009) Genes Dev , vol.23 , pp. 2166
    • Xin, M.1
  • 77
    • 77950564432 scopus 로고    scopus 로고
    • MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro
    • Quintavalle M, Elia L, Condorelli G, Courtneidge SA. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol. 2010;189:13.
    • (2010) J Cell Biol , vol.189 , pp. 13
    • Quintavalle, M.1    Elia, L.2    Condorelli, G.3    Courtneidge, S.A.4
  • 78
    • 81455141293 scopus 로고    scopus 로고
    • The association between common genetic variant of microRNA-146a and cancer susceptibility
    • Qiu LX et al. The association between common genetic variant of microRNA-146a and cancer susceptibility. Cytokine. 2011;56:695.
    • (2011) Cytokine , vol.56 , pp. 695
    • Qiu, L.X.1
  • 79
    • 79551501872 scopus 로고    scopus 로고
    • Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation
    • Chen J et al. Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol. 2011;31:368.
    • (2011) Arterioscler Thromb Vasc Biol , vol.31 , pp. 368
    • Chen, J.1
  • 80
    • 78951495879 scopus 로고    scopus 로고
    • MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4
    • Xie C et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev. 2011;20:205.
    • (2011) Stem Cells Dev , vol.20 , pp. 205
    • Xie, C.1
  • 81
    • 80053574272 scopus 로고    scopus 로고
    • MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo
    • Torella D et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res. 2011;109:880.
    • (2011) Circ Res , vol.109 , pp. 880
    • Torella, D.1
  • 82
    • 37349042225 scopus 로고    scopus 로고
    • Emerging role of microRNAs in cardiovascular biology
    • Latronico MV, Catalucci D, Condorelli G. Emerging role of microRNAs in cardiovascular biology. Circ Res. 2007;101:1225.
    • (2007) Circ Res , vol.101 , pp. 1225
    • Latronico, M.V.1    Catalucci, D.2    Condorelli, G.3
  • 83
    • 84857558503 scopus 로고    scopus 로고
    • Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels - Brief report
    • Zhang P et al. Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels - brief report. Arterioscler Thromb Vasc Biol. 2012;32:756.
    • (2012) Arterioscler Thromb Vasc Biol , vol.32 , pp. 756
    • Zhang, P.1
  • 84
    • 61949252089 scopus 로고    scopus 로고
    • A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia
    • Liu X et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104:476.
    • (2009) Circ Res , vol.104 , pp. 476
    • Liu, X.1
  • 85
    • 63649147782 scopus 로고    scopus 로고
    • Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype
    • Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem. 2009;284:3728.
    • (2009) J Biol Chem , vol.284 , pp. 3728
    • Davis, B.N.1    Hilyard, A.C.2    Nguyen, P.H.3    Lagna, G.4    Hata, A.5
  • 86
    • 79960580410 scopus 로고    scopus 로고
    • Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21
    • Zhang Y et al. Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21. J Hypertens. 2011;29:1560.
    • (2011) J Hypertens , vol.29 , pp. 1560
    • Zhang, Y.1
  • 87
    • 84880412690 scopus 로고    scopus 로고
    • The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia
    • Choe N et al. The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis. 2013;229:348.
    • (2013) Atherosclerosis , vol.229 , pp. 348
    • Choe, N.1
  • 88
    • 79952338927 scopus 로고    scopus 로고
    • Vascular smooth muscle cell proliferation is influenced by let-7d microRNA and its interaction with KRAS
    • Yu ML et al. Vascular smooth muscle cell proliferation is influenced by let-7d microRNA and its interaction with KRAS. Circ J. 2011;75:703.
    • (2011) Circ J , vol.75 , pp. 703
    • Yu, M.L.1
  • 89
    • 84863157042 scopus 로고    scopus 로고
    • Negative feedback regulation between microRNA let-7 g and the oxLDL receptor LOX-1
    • Chen KC et al. Negative feedback regulation between microRNA let-7 g and the oxLDL receptor LOX-1. J Cell Sci. 2011;124:4115.
    • (2011) J Cell Sci , vol.124 , pp. 4115
    • Chen, K.C.1
  • 90
    • 84887985986 scopus 로고    scopus 로고
    • Hsa-let-7 g miRNA targets caspase-3 and inhibits the apoptosis induced by ox-LDL in endothelial cells
    • Zhang Y, Chen N, Zhang J, Tong Y. Hsa-let-7 g miRNA targets caspase-3 and inhibits the apoptosis induced by ox-LDL in endothelial cells. Int J Mol Sci. 2013;14:22708.
    • (2013) Int J Mol Sci , vol.14 , pp. 22708
    • Zhang, Y.1    Chen, N.2    Zhang, J.3    Tong, Y.4
  • 91
    • 84898990576 scopus 로고    scopus 로고
    • Let-7 g improves multiple endothelial functions through targeting TGF-β and SIRT-1 signaling
    • doi:10.1016/j.jacc.2013.09.069
    • Liao YC et al. Let-7 g improves multiple endothelial functions through targeting TGF-β and SIRT-1 signaling. J Am Coll Cardiol. 2013. doi:10.1016/j.jacc.2013.09.069.
    • (2013) J Am Coll Cardiol
    • Liao, Y.C.1
  • 92
    • 84883178976 scopus 로고    scopus 로고
    • MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells
    • Liao XB et al. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology. 2013;154:3344.
    • (2013) Endocrinology , vol.154 , pp. 3344
    • Liao, X.B.1
  • 93
    • 84876810629 scopus 로고    scopus 로고
    • MiR181a protects against angiotensin II-induced osteopontin expression in vascular smooth muscle cells
    • Remus EWet al. miR181a protects against angiotensin II-induced osteopontin expression in vascular smooth muscle cells. Atherosclerosis. 2013;228:168.
    • (2013) Atherosclerosis , vol.228 , pp. 168
    • Remus, E.W.1
  • 94
    • 84888336718 scopus 로고    scopus 로고
    • MiR-9 reduces human acyl-coenzyme A: Cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation
    • Xu J et al. MiR-9 reduces human acyl-coenzyme A:cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation. Acta Biochim Biophys Sin (Shanghai). 2013;45:953.
    • (2013) Acta Biochim Biophys Sin (Shanghai) , vol.45 , pp. 953
    • Xu, J.1
  • 95
    • 84876106818 scopus 로고    scopus 로고
    • MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor δ in human monocytes during the inflammatory response
    • Thulin P et al. MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor δ in human monocytes during the inflammatory response. Int J Mol Med. 2013;31:1003.
    • (2013) Int J Mol Med , vol.31 , pp. 1003
    • Thulin, P.1
  • 96
    • 67649349865 scopus 로고    scopus 로고
    • MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDLstimulated monocyte/macrophages
    • Chen T et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDLstimulated monocyte/macrophages. Cardiovasc Res. 2009;83:131.
    • (2009) Cardiovasc Res , vol.83 , pp. 131
    • Chen, T.1
  • 97
    • 78651517001 scopus 로고    scopus 로고
    • MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages
    • Huang RS, Hu GQ, Lin B, Lin ZY, Sun CC. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J Investig Med. 2010;58:961.
    • (2010) J Investig Med , vol.58 , pp. 961
    • Huang, R.S.1    Hu, G.Q.2    Lin, B.3    Lin, Z.Y.4    Sun, C.C.5
  • 98
    • 84868629301 scopus 로고    scopus 로고
    • MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages
    • Nazari-Jahantigh M et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest. 2012;122: 4190.
    • (2012) J Clin Invest , vol.122 , pp. 4190
    • Nazari-Jahantigh, M.1
  • 99
    • 84866184313 scopus 로고    scopus 로고
    • Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice
    • Donners MM et al. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS One. 2012;7:e35877.
    • (2012) PLoS One , vol.7
    • Donners, M.M.1
  • 100
    • 79952575527 scopus 로고    scopus 로고
    • MiR-146a inhibits oxidized low-density lipoproteininduced lipid accumulation and inflammatory response via targeting toll-like receptor 4
    • Yang K et al. MiR-146a inhibits oxidized low-density lipoproteininduced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 2011;585:854.
    • (2011) FEBS Lett , vol.585 , pp. 854
    • Yang, K.1
  • 101
    • 70349439320 scopus 로고    scopus 로고
    • MiR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses
    • Liu G et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA. 2009;106:15819.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 15819
    • Liu, G.1
  • 102
    • 33751277900 scopus 로고    scopus 로고
    • Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction
    • Ishii Net al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51: 1087.
    • (2006) J Hum Genet , vol.51 , pp. 1087
    • Ishii, N.1
  • 103
    • 34249996115 scopus 로고    scopus 로고
    • A common allele on chromosome 9 associated with coronary heart disease
    • McPherson R et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488.
    • (2007) Science , vol.316 , pp. 1488
    • McPherson, R.1
  • 104
    • 34250010480 scopus 로고    scopus 로고
    • A common variant on chromosome 9p21 affects the risk of myocardial infarction
    • Helgadottir A et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491.
    • (2007) Science , vol.316 , pp. 1491
    • Helgadottir, A.1
  • 105
    • 34547623750 scopus 로고    scopus 로고
    • Genomewide association analysis of coronary artery disease
    • Samani NJ et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443.
    • (2007) N Engl J Med , vol.357 , pp. 443
    • Samani, N.J.1
  • 106
    • 77953096072 scopus 로고    scopus 로고
    • Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a
    • Yap KL et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38:662.
    • (2010) Mol Cell , vol.38 , pp. 662
    • Yap, K.L.1
  • 107
    • 79955468280 scopus 로고    scopus 로고
    • Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene
    • Kotake Yet al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30:1956.
    • (2011) Oncogene , vol.30 , pp. 1956
    • Kotake, Y.1
  • 108
    • 84880799429 scopus 로고    scopus 로고
    • Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks
    • Holdt LM et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9: e1003588.
    • (2013) PLoS Genet , vol.9
    • Holdt, L.M.1
  • 109
    • 84887008398 scopus 로고    scopus 로고
    • The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10
    • Bochenek G et al. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet. 2013;22:4516.
    • (2013) Hum Mol Genet , vol.22 , pp. 4516
    • Bochenek, G.1
  • 110
    • 4444237596 scopus 로고    scopus 로고
    • Post-transcriptional regulation of endothelial nitricoxide synthase by an overlapping antisense mRNA transcript
    • Robb GB et al. Post-transcriptional regulation of endothelial nitricoxide synthase by an overlapping antisense mRNA transcript. J Biol Chem. 2004;279:37982.
    • (2004) J Biol Chem , vol.279 , pp. 37982
    • Robb, G.B.1
  • 111
    • 34447543034 scopus 로고    scopus 로고
    • Hypoxia-inducible expression of a natural cisantisense transcript inhibits endothelial nitric-oxide synthase
    • Fish JE et al. Hypoxia-inducible expression of a natural cisantisense transcript inhibits endothelial nitric-oxide synthase. J Biol Chem. 2007;282:15652.
    • (2007) J Biol Chem , vol.282 , pp. 15652
    • Fish, J.E.1
  • 112
    • 74949140605 scopus 로고    scopus 로고
    • A noncoding antisense RNA in tie-1 locus regulates tie-1 function in vivo
    • Li K et al. A noncoding antisense RNA in tie-1 locus regulates tie-1 function in vivo. Blood. 2010;115:133.
    • (2010) Blood , vol.115 , pp. 133
    • Li, K.1
  • 113
    • 84892529760 scopus 로고    scopus 로고
    • Regulation of the apolipoprotein gene cluster by a long noncoding RNA
    • Halley P et al. Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep. 2014;6:222.
    • (2014) Cell Rep , vol.6 , pp. 222
    • Halley, P.1
  • 114
    • 77952315637 scopus 로고    scopus 로고
    • High density lipoprotein structurefunction and role in reverse cholesterol transport
    • Lund-Katz S, Phillips MC. High density lipoprotein structurefunction and role in reverse cholesterol transport. Subcell Biochem. 2010;51:183.
    • (2010) Subcell Biochem , vol.51 , pp. 183
    • Lund-Katz, S.1    Phillips, M.C.2
  • 115
    • 84881478367 scopus 로고    scopus 로고
    • A long noncoding RNAmediates both activation and repression of immune response genes
    • Carpenter S et al.A long noncoding RNAmediates both activation and repression of immune response genes. Science. 2013;341:789.
    • (2013) Science , vol.341 , pp. 789
    • Carpenter, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.