메뉴 건너뛰기




Volumn 45, Issue 11, 2013, Pages 953-962

MiR-9 reduces human acyl-coenzyme A: Cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation

Author keywords

ACAT1; Atherosclerosis; Cholesteryl ester; Foam cell; MicroRNA

Indexed keywords

CHOLESTEROL ACYLTRANSFERASE; CHOLESTEROL ESTER; MESSENGER RNA; MICRORNA; MIRN9 MICRORNA, HUMAN; PRIMER DNA;

EID: 84888336718     PISSN: 16729145     EISSN: 17457270     Source Type: Journal    
DOI: 10.1093/abbs/gmt096     Document Type: Article
Times cited : (41)

References (39)
  • 1
    • 0030943621 scopus 로고    scopus 로고
    • Acyl-coenzyme A: Cholesterol acyltransferase
    • DOI 10.1146/annurev.biochem.66.1.613
    • Chang TY, Chang CC and Cheng D. Acyl-coenzyme A:cholesterol acyltransferase. Annu Rev Biochem 1997, 66: 613-638. (Pubitemid 27274669)
    • (1997) Annual Review of Biochemistry , vol.66 , pp. 613-638
    • Chang, T.Y.1    Chang, C.C.Y.2    Cheng, D.3
  • 3
    • 0027527733 scopus 로고
    • Molecular cloning and functional expression of human acyl-coenzyme A: Cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells
    • Chang CC, Huh HY, Cadigan KM and Chang TY. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J Biol Chem 1993, 268: 20747-20755. (Pubitemid 23292243)
    • (1993) Journal of Biological Chemistry , vol.268 , Issue.28 , pp. 20747-20755
    • Chang, C.C.Y.1    Ho Young Huh2    Cadigan, K.M.3    Ta Yuan Chang4
  • 4
    • 0033574524 scopus 로고    scopus 로고
    • Human acyl-CoA: Cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes
    • Li BL, Li XL, Duan ZJ, Lee O, Lin S, Ma ZM and Chang CC, et al. Human acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes. J Biol Chem 1999, 274: 11060-11071.
    • (1999) J Biol Chem , vol.274 , pp. 11060-11071
    • Li, B.L.1    Li, X.L.2    Duan, Z.J.3    Lee, O.4    Lin, S.5    Ma, Z.M.6    Chang, C.C.7
  • 6
    • 51049122579 scopus 로고    scopus 로고
    • RNA secondary structures located in the interchromosomal region of human ACAT1 chimeric mRNA are required to produce the 56 kDa isoform
    • Chen J, Zhao XN, Yang L, Hu GJ, Lu M, Xiong Y and Yang XY, et al. RNA secondary structures located in the interchromosomal region of human ACAT1 chimeric mRNA are required to produce the 56 kDa isoform. Cell Res 2008, 18: 921-936.
    • (2008) Cell Res , vol.18 , pp. 921-936
    • Chen, J.1    Zhao, X.N.2    Yang, L.3    Hu, G.J.4    Lu, M.5    Xiong, Y.6    Yang, X.Y.7
  • 7
    • 4243134913 scopus 로고    scopus 로고
    • A Stable upstream stem-loop structure enhances selection of the first 5'-ORF-AUG as a main start codon for translation initiation of human ACAT1 mRNA
    • Yang L, Chen J, Chang CC, Yang XY, Wang ZZ, Chang TY and Li BL. A stable upstream stem-loop structure enhances selection of the first 50-ORF-AUG as a main start codon for translation initiation of human ACAT1 mRNA. Acta Biochim Biophys Sin 2004, 36: 259-268. (Pubitemid 39107291)
    • (2004) Acta Biochimica et Biophysica Sinica , vol.36 , Issue.4 , pp. 259-268
    • Yang, L.1    Chen, J.2    Chang, C.C.Y.3    Yang, X.-Y.4    Wang, Z.-Z.5    Chang, T.-Y.6    Li, B.-L.7
  • 8
    • 64049106758 scopus 로고    scopus 로고
    • The optional long 50-untranslated region of human ACAT1 mRNAs impairs the production of ACAT1 protein by promoting its mRNA decay
    • Zhao X, Chen J, Lei L, Hu G, Xiong Y, Xu J and Li Q, et al. The optional long 50-untranslated region of human ACAT1 mRNAs impairs the production of ACAT1 protein by promoting its mRNA decay. Acta Biochim Biophys Sin 2009, 41: 30-41.
    • (2009) Acta Biochim Biophys Sin , vol.41 , pp. 30-41
    • Zhao, X.1    Chen, J.2    Lei, L.3    Hu, G.4    Xiong, Y.5    Xu, J.6    Li, Q.7
  • 10
    • 0034648768 scopus 로고    scopus 로고
    • Atherosclerosis
    • Lusis AJ. Atherosclerosis. Nature 2000, 407: 233-241.
    • (2000) Nature , vol.407 , pp. 233-241
    • Lusis, A.J.1
  • 11
    • 0037180771 scopus 로고    scopus 로고
    • Inflammation in atherosclerosis
    • DOI 10.1038/nature01323
    • Libby P. Inflammation in atherosclerosis. Nature 2002, 420: 868-874. (Pubitemid 36019640)
    • (2002) Nature , vol.420 , Issue.6917 , pp. 868-874
    • Libby, P.1
  • 13
    • 0035936802 scopus 로고    scopus 로고
    • Atherosclerosis: The road ahead
    • DOI 10.1016/S0092-8674(01)00238-0
    • Glass CK and Witztum JL. Atherosclerosis: the road ahead. Cell 2001, 104: 503-516. (Pubitemid 32201946)
    • (2001) Cell , vol.104 , Issue.4 , pp. 503-516
    • Glass, C.K.1    Witztum, J.L.2
  • 16
    • 67650555687 scopus 로고    scopus 로고
    • TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation
    • Lei L, Xiong Y, Chen J, Yang JB, Wang Y, Yang XY and Chang CC, et al. TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation. J Lipid Res 2009, 50: 1057-1067.
    • (2009) J Lipid Res , vol.50 , pp. 1057-1067
    • Lei, L.1    Xiong, Y.2    Chen, J.3    Yang, J.B.4    Wang, Y.5    Yang, X.Y.6    Chang, C.C.7
  • 17
    • 33646541653 scopus 로고    scopus 로고
    • Human ACAT1 gene expression and its involvement in the development of atherosclerosis
    • Li BL, Chang TY, Chen J, Chang CC and Zhao XN. Human ACAT1 gene expression and its involvement in the development of atherosclerosis. Future Cardiol 2006, 2: 93-99.
    • (2006) Future Cardiol , vol.2 , pp. 93-99
    • Li, B.L.1    Chang, T.Y.2    Chen, J.3    Chang, C.C.4    Zhao, X.N.5
  • 18
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: Genomics, biogenesis, mechanism, and function
    • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116: 281-297.
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 19
    • 4644309196 scopus 로고    scopus 로고
    • The functions of animal microRNAs
    • DOI 10.1038/nature02871
    • Ambros V. The functions of animal microRNAs. Nature 2004, 431: 350-355. (Pubitemid 39265675)
    • (2004) Nature , vol.431 , Issue.7006 , pp. 350-355
    • Ambros, V.1
  • 20
    • 22144489833 scopus 로고    scopus 로고
    • RNAi: The nuts and bolts of the RISC machine
    • DOI 10.1016/j.cell.2005.06.023, PII S0092867405006422
    • Filipowicz W. RNAi: the nuts and bolts of the RISC machine. Cell 2005, 122: 17-20. (Pubitemid 40977936)
    • (2005) Cell , vol.122 , Issue.1 , pp. 17-20
    • Filipowicz, W.1
  • 21
    • 34250653704 scopus 로고    scopus 로고
    • MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay
    • Behm-Ansmant I, Rehwinkel J and Izaurralde E. MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol 2006, 71: 523-530.
    • (2006) Cold Spring Harb Symp Quant Biol , vol.71 , pp. 523-530
    • Behm-Ansmant, I.1    Rehwinkel, J.2    Izaurralde, E.3
  • 22
    • 11844278458 scopus 로고    scopus 로고
    • Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
    • DOI 10.1016/j.cell.2004.12.035, PII S0092867404012607
    • Lewis BP, Burge CB and Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120: 15-20. (Pubitemid 40094598)
    • (2005) Cell , vol.120 , Issue.1 , pp. 15-20
    • Lewis, B.P.1    Burge, C.B.2    Bartel, D.P.3
  • 25
    • 49749150573 scopus 로고    scopus 로고
    • MicroRNAs and cancer: An overview
    • Medina PP and Slack FJ. MicroRNAs and cancer: an overview. Cell Cycle 2008, 7: 2485-2492.
    • (2008) Cell Cycle , vol.7 , pp. 2485-2492
    • Medina, P.P.1    Slack, F.J.2
  • 26
    • 33846188098 scopus 로고    scopus 로고
    • MicroRNAs as oncogenes and tumor suppressors
    • DOI 10.1016/j.ydbio.2006.08.028, PII S0012160606010967
    • Zhang B, Pan X, Cobb GP and Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol 2007, 302: 1-12. (Pubitemid 46096921)
    • (2007) Developmental Biology , vol.302 , Issue.1 , pp. 1-12
    • Zhang, B.1    Pan, X.2    Cobb, G.P.3    Anderson, T.A.4
  • 27
    • 65949090276 scopus 로고    scopus 로고
    • MicroRNA gene networks in oncogenesis
    • Drakaki A and Iliopoulos D. MicroRNA gene networks in oncogenesis. Curr Genomics 2009, 10: 35-41.
    • (2009) Curr Genomics , vol.10 , pp. 35-41
    • Drakaki, A.1    Iliopoulos, D.2
  • 28
    • 77951245829 scopus 로고    scopus 로고
    • MiR-9 and NFATc3 regulate myocardin in cardiac hypertrophy
    • Wang K, Long B, Zhou J and Li PF. MiR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. J Biol Chem 2010, 285: 11903-11912.
    • (2010) J Biol Chem , vol.285 , pp. 11903-11912
    • Wang, K.1    Long, B.2    Zhou, J.3    Li, P.F.4
  • 29
    • 67649349865 scopus 로고    scopus 로고
    • MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages
    • Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S and Wang C. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 2009, 83: 131-139.
    • (2009) Cardiovasc Res , vol.83 , pp. 131-139
    • Chen, T.1    Huang, Z.2    Wang, L.3    Wang, Y.4    Wu, F.5    Meng, S.6    Wang, C.7
  • 30
    • 77955456415 scopus 로고    scopus 로고
    • MiR-33 links SREBP-2 induction to repression of sterol transporters
    • Marquart TJ, Allen RM, Ory DS and Baldań A. MiR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 2010, 107: 12228-12232.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 12228-12232
    • Marquart, T.J.1    Allen, R.M.2    Ory, D.S.3    Baldań, A.4
  • 31
    • 77958553499 scopus 로고    scopus 로고
    • Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation
    • Gerin I, Clerbaux LA, Haumont O, Lanthier N, Das AK, Burant CF and Leclercq IA, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010, 285: 33652-33661.
    • (2010) J Biol Chem , vol.285 , pp. 33652-33661
    • Gerin, I.1    Clerbaux, L.A.2    Haumont, O.3    Lanthier, N.4    Das, A.K.5    Burant, C.F.6    Leclercq, I.A.7
  • 32
    • 78049295975 scopus 로고    scopus 로고
    • MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo
    • Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K and Kinoshita M, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci USA 2010, 107: 17321-17326.
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 17321-17326
    • Horie, T.1    Ono, K.2    Horiguchi, M.3    Nishi, H.4    Nakamura, T.5    Nagao, K.6    Kinoshita, M.7
  • 33
    • 84866166118 scopus 로고    scopus 로고
    • MicroRNA regulation of cholesterol metabolism
    • Epub 5 August 2012)
    • Rotllan N and Fernańdez-Hernando C. MicroRNA regulation of cholesterol metabolism. Cholesterol 2012; (Epub 5 August 2012).
    • (2012) Cholesterol
    • Rotllan, N.1    Fernańdez-Hernando, C.2
  • 34
    • 33645075443 scopus 로고    scopus 로고
    • MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
    • Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M and Watts L, et al. MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006, 3: 87-98.
    • (2006) Cell Metab , vol.3 , pp. 87-98
    • Esau, C.1    Davis, S.2    Murray, S.F.3    Yu, X.X.4    Pandey, S.K.5    Pear, M.6    Watts, L.7
  • 35
    • 78650861117 scopus 로고    scopus 로고
    • Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques
    • Tang JJ, Li JG, Qi W, Qiu WW, Li PS, Li BL and Song BL. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab 2011, 13: 44-56.
    • (2011) Cell Metab , vol.13 , pp. 44-56
    • Tang, J.J.1    Li, J.G.2    Qi, W.3    Qiu, W.W.4    Li, P.S.5    Li, B.L.6    Song, B.L.7
  • 36
    • 34047268145 scopus 로고    scopus 로고
    • Knockdown of ACAT-1 reduces amyloidogenic processing of APP
    • DOI 10.1016/j.febslet.2007.03.056, PII S0014579307003109
    • Huttunen HJ, Greco C and Kovacs DM. Knockdown of ACAT-1 reduces amyloidogenic processing of APP. FEBS Lett 2007, 581: 1688-1692. (Pubitemid 46546584)
    • (2007) FEBS Letters , vol.581 , Issue.8 , pp. 1688-1692
    • Huttunen, H.J.1    Greco, C.2    Kovacs, D.M.3
  • 38
    • 78649832226 scopus 로고    scopus 로고
    • A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation
    • Laneve P, Gioia U, Andriotto A, Moretti F, Bozzoni I and Caffarelli E. A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Res 2010, 38: 6895-6905.
    • (2010) Nucleic Acids Res , vol.38 , pp. 6895-6905
    • Laneve, P.1    Gioia, U.2    Andriotto, A.3    Moretti, F.4    Bozzoni, I.5    Caffarelli, E.6
  • 39
    • 76749170274 scopus 로고    scopus 로고
    • Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation
    • Forrest AR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y and de Hoon MJ, et al. Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 2010, 24: 460-466.
    • (2010) Leukemia , vol.24 , pp. 460-466
    • Forrest, A.R.1    Kanamori-Katayama, M.2    Tomaru, Y.3    Lassmann, T.4    Ninomiya, N.5    Takahashi, Y.6    De Hoon, M.J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.