-
1
-
-
0030943621
-
Acyl-coenzyme A: Cholesterol acyltransferase
-
DOI 10.1146/annurev.biochem.66.1.613
-
Chang TY, Chang CC and Cheng D. Acyl-coenzyme A:cholesterol acyltransferase. Annu Rev Biochem 1997, 66: 613-638. (Pubitemid 27274669)
-
(1997)
Annual Review of Biochemistry
, vol.66
, pp. 613-638
-
-
Chang, T.Y.1
Chang, C.C.Y.2
Cheng, D.3
-
3
-
-
0027527733
-
Molecular cloning and functional expression of human acyl-coenzyme A: Cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells
-
Chang CC, Huh HY, Cadigan KM and Chang TY. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. J Biol Chem 1993, 268: 20747-20755. (Pubitemid 23292243)
-
(1993)
Journal of Biological Chemistry
, vol.268
, Issue.28
, pp. 20747-20755
-
-
Chang, C.C.Y.1
Ho Young Huh2
Cadigan, K.M.3
Ta Yuan Chang4
-
4
-
-
0033574524
-
Human acyl-CoA: Cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes
-
Li BL, Li XL, Duan ZJ, Lee O, Lin S, Ma ZM and Chang CC, et al. Human acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes. J Biol Chem 1999, 274: 11060-11071.
-
(1999)
J Biol Chem
, vol.274
, pp. 11060-11071
-
-
Li, B.L.1
Li, X.L.2
Duan, Z.J.3
Lee, O.4
Lin, S.5
Ma, Z.M.6
Chang, C.C.7
-
5
-
-
8544229970
-
Human acyl-coenzyme A: Cholesterol acyltransferase 1 (acat1) sequences located in two different chromosomes (7 and 1) are required to produce a novel ACAT1 isoenzyme with additional sequence at the N terminus
-
DOI 10.1074/jbc.M408155200
-
Yang L, Lee O, Chen J, Chen J, Chang CC, Zhou P and Wang ZZ, et al. Human acyl-coenzyme A:cholesterol acyltransferase 1 (acat1) sequences located in two different chromosomes (7 and 1) are required to produce a novel ACAT1 isoenzyme with additional sequence at the N terminus. J Biol Chem 2004, 279: 46253-46262. (Pubitemid 39491620)
-
(2004)
Journal of Biological Chemistry
, vol.279
, Issue.44
, pp. 46253-46262
-
-
Yang, L.1
Lee, O.2
Chen, J.3
Chen, J.4
Chang, C.C.Y.5
Zhou, P.6
Wang, Z.-Z.7
Ma, H.-H.8
Sha, H.-F.9
Feng, J.-X.10
Wang, Y.11
Yang, X.-Y.12
Wang, L.13
Dong, R.14
Ornvold, K.15
Li, B.-L.16
Chang, T.-Y.17
-
6
-
-
51049122579
-
RNA secondary structures located in the interchromosomal region of human ACAT1 chimeric mRNA are required to produce the 56 kDa isoform
-
Chen J, Zhao XN, Yang L, Hu GJ, Lu M, Xiong Y and Yang XY, et al. RNA secondary structures located in the interchromosomal region of human ACAT1 chimeric mRNA are required to produce the 56 kDa isoform. Cell Res 2008, 18: 921-936.
-
(2008)
Cell Res
, vol.18
, pp. 921-936
-
-
Chen, J.1
Zhao, X.N.2
Yang, L.3
Hu, G.J.4
Lu, M.5
Xiong, Y.6
Yang, X.Y.7
-
7
-
-
4243134913
-
A Stable upstream stem-loop structure enhances selection of the first 5'-ORF-AUG as a main start codon for translation initiation of human ACAT1 mRNA
-
Yang L, Chen J, Chang CC, Yang XY, Wang ZZ, Chang TY and Li BL. A stable upstream stem-loop structure enhances selection of the first 50-ORF-AUG as a main start codon for translation initiation of human ACAT1 mRNA. Acta Biochim Biophys Sin 2004, 36: 259-268. (Pubitemid 39107291)
-
(2004)
Acta Biochimica et Biophysica Sinica
, vol.36
, Issue.4
, pp. 259-268
-
-
Yang, L.1
Chen, J.2
Chang, C.C.Y.3
Yang, X.-Y.4
Wang, Z.-Z.5
Chang, T.-Y.6
Li, B.-L.7
-
8
-
-
64049106758
-
The optional long 50-untranslated region of human ACAT1 mRNAs impairs the production of ACAT1 protein by promoting its mRNA decay
-
Zhao X, Chen J, Lei L, Hu G, Xiong Y, Xu J and Li Q, et al. The optional long 50-untranslated region of human ACAT1 mRNAs impairs the production of ACAT1 protein by promoting its mRNA decay. Acta Biochim Biophys Sin 2009, 41: 30-41.
-
(2009)
Acta Biochim Biophys Sin
, vol.41
, pp. 30-41
-
-
Zhao, X.1
Chen, J.2
Lei, L.3
Hu, G.4
Xiong, Y.5
Xu, J.6
Li, Q.7
-
9
-
-
33846857559
-
Heart disease and stroke statistics - 2007 Update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
-
DOI 10.1161/CIRCULATIONAHA.106.179918, PII 0000301720070206000024
-
Rosamond W, Flegal K, Friday G, Furie K, Go A, Greenlund K and Haase N, et al. Heart disease and stroke statistics 2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2007, 115: e69-e171. (Pubitemid 46226160)
-
(2007)
Circulation
, vol.115
, Issue.5
-
-
Rosamond, W.1
Flegal, K.2
Friday, G.3
Furie, K.4
Go, A.5
Greenlund, K.6
Haase, N.7
Ho, M.8
Howard, V.9
Kissela, B.10
Kittner, S.11
Lloyd-Jones, D.12
McDermott, M.13
Meigs, J.14
Moy, C.15
Nichol, G.16
O'Donnell, C.J.17
Roger, V.18
Rumsfeld, J.19
Sorlie, P.20
Steinberger, J.21
Thom, T.22
Wasserthiel-Smoller, S.23
Hong, Y.24
more..
-
10
-
-
0034648768
-
Atherosclerosis
-
Lusis AJ. Atherosclerosis. Nature 2000, 407: 233-241.
-
(2000)
Nature
, vol.407
, pp. 233-241
-
-
Lusis, A.J.1
-
11
-
-
0037180771
-
Inflammation in atherosclerosis
-
DOI 10.1038/nature01323
-
Libby P. Inflammation in atherosclerosis. Nature 2002, 420: 868-874. (Pubitemid 36019640)
-
(2002)
Nature
, vol.420
, Issue.6917
, pp. 868-874
-
-
Libby, P.1
-
13
-
-
0035936802
-
Atherosclerosis: The road ahead
-
DOI 10.1016/S0092-8674(01)00238-0
-
Glass CK and Witztum JL. Atherosclerosis: the road ahead. Cell 2001, 104: 503-516. (Pubitemid 32201946)
-
(2001)
Cell
, vol.104
, Issue.4
, pp. 503-516
-
-
Glass, C.K.1
Witztum, J.L.2
-
14
-
-
0031668254
-
Expression of ACAT-1 protein in human atherosclerotic lesions and cultured human monocytes-macrophages
-
Miyazaki A, Sakashita N, Lee O, Takahashi K, Horiuchi S, Hakamata H and Morganelli PM, et al. Expression of ACAT-1 protein in human atherosclerotic lesions and cultured human monocytes-macrophages. Arterioscler Thromb Vasc Biol 1998, 18: 1568-1574. (Pubitemid 28465408)
-
(1998)
Arteriosclerosis, Thrombosis, and Vascular Biology
, vol.18
, Issue.10
, pp. 1568-1574
-
-
Miyazaki, A.1
Sakashita, N.2
Lee, O.3
Takahashi, K.4
Horiuchi, S.5
Hakamata, H.6
Morganelli, P.M.7
Chang, C.C.Y.8
Chang, T.-Y.9
-
15
-
-
16644369283
-
Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone
-
DOI 10.1038/sj.cr.7290231, PII 7290231
-
Yang L, Yang JB, Chen J, Yu GY, Zhou P, Lei L and Wang ZZ, et al. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone. Cell Res 2004, 14: 315-323. (Pubitemid 43231812)
-
(2004)
Cell Research
, vol.14
, Issue.4
, pp. 315-323
-
-
Yang, L.1
Yang, J.B.2
Chen, J.3
Yu, G.Y.4
Zhou, P.5
Lei, L.6
Wang, Z.Z.7
Chang, C.C.Y.8
Yang, X.9
Chang, T.Y.10
Li, B.L.11
-
16
-
-
67650555687
-
TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation
-
Lei L, Xiong Y, Chen J, Yang JB, Wang Y, Yang XY and Chang CC, et al. TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation. J Lipid Res 2009, 50: 1057-1067.
-
(2009)
J Lipid Res
, vol.50
, pp. 1057-1067
-
-
Lei, L.1
Xiong, Y.2
Chen, J.3
Yang, J.B.4
Wang, Y.5
Yang, X.Y.6
Chang, C.C.7
-
17
-
-
33646541653
-
Human ACAT1 gene expression and its involvement in the development of atherosclerosis
-
Li BL, Chang TY, Chen J, Chang CC and Zhao XN. Human ACAT1 gene expression and its involvement in the development of atherosclerosis. Future Cardiol 2006, 2: 93-99.
-
(2006)
Future Cardiol
, vol.2
, pp. 93-99
-
-
Li, B.L.1
Chang, T.Y.2
Chen, J.3
Chang, C.C.4
Zhao, X.N.5
-
18
-
-
0347444723
-
MicroRNAs: Genomics, biogenesis, mechanism, and function
-
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116: 281-297.
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
19
-
-
4644309196
-
The functions of animal microRNAs
-
DOI 10.1038/nature02871
-
Ambros V. The functions of animal microRNAs. Nature 2004, 431: 350-355. (Pubitemid 39265675)
-
(2004)
Nature
, vol.431
, Issue.7006
, pp. 350-355
-
-
Ambros, V.1
-
20
-
-
22144489833
-
RNAi: The nuts and bolts of the RISC machine
-
DOI 10.1016/j.cell.2005.06.023, PII S0092867405006422
-
Filipowicz W. RNAi: the nuts and bolts of the RISC machine. Cell 2005, 122: 17-20. (Pubitemid 40977936)
-
(2005)
Cell
, vol.122
, Issue.1
, pp. 17-20
-
-
Filipowicz, W.1
-
21
-
-
34250653704
-
MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay
-
Behm-Ansmant I, Rehwinkel J and Izaurralde E. MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol 2006, 71: 523-530.
-
(2006)
Cold Spring Harb Symp Quant Biol
, vol.71
, pp. 523-530
-
-
Behm-Ansmant, I.1
Rehwinkel, J.2
Izaurralde, E.3
-
22
-
-
11844278458
-
Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets
-
DOI 10.1016/j.cell.2004.12.035, PII S0092867404012607
-
Lewis BP, Burge CB and Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005, 120: 15-20. (Pubitemid 40094598)
-
(2005)
Cell
, vol.120
, Issue.1
, pp. 15-20
-
-
Lewis, B.P.1
Burge, C.B.2
Bartel, D.P.3
-
23
-
-
77953780835
-
MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis
-
Najafi-Shoushtari SH, Kristo F, Li Y, Shioda T, Cohen DE, Gerszten RE and Naär AM. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 2010, 328: 1566-1569.
-
(2010)
Science
, vol.328
, pp. 1566-1569
-
-
Najafi-Shoushtari, S.H.1
Kristo, F.2
Li, Y.3
Shioda, T.4
Cohen, D.E.5
Gerszten, R.E.6
Naär, A.M.7
-
24
-
-
77953787211
-
MiR-33 contributes to the regulation of cholesterol homeostasis
-
Rayner KJ, Suárez Y, Dávalos A, Parathath S, Fitzgerald ML, Tamehiro N and Fisher EA, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 2010, 328: 1570-1573.
-
(2010)
Science
, vol.328
, pp. 1570-1573
-
-
Rayner, K.J.1
Suárez, Y.2
Dávalos, A.3
Parathath, S.4
Fitzgerald, M.L.5
Tamehiro, N.6
Fisher, E.A.7
-
25
-
-
49749150573
-
MicroRNAs and cancer: An overview
-
Medina PP and Slack FJ. MicroRNAs and cancer: an overview. Cell Cycle 2008, 7: 2485-2492.
-
(2008)
Cell Cycle
, vol.7
, pp. 2485-2492
-
-
Medina, P.P.1
Slack, F.J.2
-
26
-
-
33846188098
-
MicroRNAs as oncogenes and tumor suppressors
-
DOI 10.1016/j.ydbio.2006.08.028, PII S0012160606010967
-
Zhang B, Pan X, Cobb GP and Anderson TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol 2007, 302: 1-12. (Pubitemid 46096921)
-
(2007)
Developmental Biology
, vol.302
, Issue.1
, pp. 1-12
-
-
Zhang, B.1
Pan, X.2
Cobb, G.P.3
Anderson, T.A.4
-
27
-
-
65949090276
-
MicroRNA gene networks in oncogenesis
-
Drakaki A and Iliopoulos D. MicroRNA gene networks in oncogenesis. Curr Genomics 2009, 10: 35-41.
-
(2009)
Curr Genomics
, vol.10
, pp. 35-41
-
-
Drakaki, A.1
Iliopoulos, D.2
-
28
-
-
77951245829
-
MiR-9 and NFATc3 regulate myocardin in cardiac hypertrophy
-
Wang K, Long B, Zhou J and Li PF. MiR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. J Biol Chem 2010, 285: 11903-11912.
-
(2010)
J Biol Chem
, vol.285
, pp. 11903-11912
-
-
Wang, K.1
Long, B.2
Zhou, J.3
Li, P.F.4
-
29
-
-
67649349865
-
MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages
-
Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S and Wang C. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 2009, 83: 131-139.
-
(2009)
Cardiovasc Res
, vol.83
, pp. 131-139
-
-
Chen, T.1
Huang, Z.2
Wang, L.3
Wang, Y.4
Wu, F.5
Meng, S.6
Wang, C.7
-
31
-
-
77958553499
-
Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation
-
Gerin I, Clerbaux LA, Haumont O, Lanthier N, Das AK, Burant CF and Leclercq IA, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. J Biol Chem 2010, 285: 33652-33661.
-
(2010)
J Biol Chem
, vol.285
, pp. 33652-33661
-
-
Gerin, I.1
Clerbaux, L.A.2
Haumont, O.3
Lanthier, N.4
Das, A.K.5
Burant, C.F.6
Leclercq, I.A.7
-
32
-
-
78049295975
-
MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo
-
Horie T, Ono K, Horiguchi M, Nishi H, Nakamura T, Nagao K and Kinoshita M, et al. MicroRNA-33 encoded by an intron of sterol regulatory element-binding protein 2 (Srebp2) regulates HDL in vivo. Proc Natl Acad Sci USA 2010, 107: 17321-17326.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 17321-17326
-
-
Horie, T.1
Ono, K.2
Horiguchi, M.3
Nishi, H.4
Nakamura, T.5
Nagao, K.6
Kinoshita, M.7
-
33
-
-
84866166118
-
MicroRNA regulation of cholesterol metabolism
-
Epub 5 August 2012)
-
Rotllan N and Fernańdez-Hernando C. MicroRNA regulation of cholesterol metabolism. Cholesterol 2012; (Epub 5 August 2012).
-
(2012)
Cholesterol
-
-
Rotllan, N.1
Fernańdez-Hernando, C.2
-
34
-
-
33645075443
-
MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting
-
Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M and Watts L, et al. MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 2006, 3: 87-98.
-
(2006)
Cell Metab
, vol.3
, pp. 87-98
-
-
Esau, C.1
Davis, S.2
Murray, S.F.3
Yu, X.X.4
Pandey, S.K.5
Pear, M.6
Watts, L.7
-
35
-
-
78650861117
-
Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques
-
Tang JJ, Li JG, Qi W, Qiu WW, Li PS, Li BL and Song BL. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab 2011, 13: 44-56.
-
(2011)
Cell Metab
, vol.13
, pp. 44-56
-
-
Tang, J.J.1
Li, J.G.2
Qi, W.3
Qiu, W.W.4
Li, P.S.5
Li, B.L.6
Song, B.L.7
-
36
-
-
34047268145
-
Knockdown of ACAT-1 reduces amyloidogenic processing of APP
-
DOI 10.1016/j.febslet.2007.03.056, PII S0014579307003109
-
Huttunen HJ, Greco C and Kovacs DM. Knockdown of ACAT-1 reduces amyloidogenic processing of APP. FEBS Lett 2007, 581: 1688-1692. (Pubitemid 46546584)
-
(2007)
FEBS Letters
, vol.581
, Issue.8
, pp. 1688-1692
-
-
Huttunen, H.J.1
Greco, C.2
Kovacs, D.M.3
-
38
-
-
78649832226
-
A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation
-
Laneve P, Gioia U, Andriotto A, Moretti F, Bozzoni I and Caffarelli E. A minicircuitry involving REST and CREB controls miR-9-2 expression during human neuronal differentiation. Nucleic Acids Res 2010, 38: 6895-6905.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 6895-6905
-
-
Laneve, P.1
Gioia, U.2
Andriotto, A.3
Moretti, F.4
Bozzoni, I.5
Caffarelli, E.6
-
39
-
-
76749170274
-
Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation
-
Forrest AR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y and de Hoon MJ, et al. Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 2010, 24: 460-466.
-
(2010)
Leukemia
, vol.24
, pp. 460-466
-
-
Forrest, A.R.1
Kanamori-Katayama, M.2
Tomaru, Y.3
Lassmann, T.4
Ninomiya, N.5
Takahashi, Y.6
De Hoon, M.J.7
|