메뉴 건너뛰기




Volumn 1115, Issue , 2007, Pages 73-89

Comparison of reverse-engineering methods using an in Silico network

Author keywords

Modeling; Reverse engineering; Simulation; Systems biology

Indexed keywords

ALGORITHM; BAYES THEOREM; BIOENGINEERING; COMPARATIVE STUDY; COMPUTER MODEL; CONFERENCE PAPER; GENETIC ENGINEERING; MULTIPLE REGRESSION; QUALITY CONTROL;

EID: 36248953897     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1196/annals.1407.006     Document Type: Conference Paper
Times cited : (38)

References (29)
  • 1
    • 0000122278 scopus 로고
    • Statistical construction of chemical reaction mechanisms from measured time-series
    • ARKIN, A. & J. ROSS. 1995. Statistical construction of chemical reaction mechanisms from measured time-series. J. Phys. Chem. 99: 970-979.
    • (1995) J. Phys. Chem , vol.99 , pp. 970-979
    • ARKIN, A.1    ROSS, J.2
  • 2
    • 12344321571 scopus 로고    scopus 로고
    • Discovery of meaningful associations in genomic data using partial correlation coefficients
    • DE LA FUENTE, A. et al. 2004. Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20: 3565-3574.
    • (2004) Bioinformatics , vol.20 , pp. 3565-3574
    • DE LA FUENTE, A.1
  • 3
    • 0034104824 scopus 로고    scopus 로고
    • Coarse-grained reverse engineering of genetic regulatory networks
    • WAHDE, M. & J. HERTZ. 2000. Coarse-grained reverse engineering of genetic regulatory networks. BioSystems 55: 129-136.
    • (2000) BioSystems , vol.55 , pp. 129-136
    • WAHDE, M.1    HERTZ, J.2
  • 4
    • 0036522639 scopus 로고    scopus 로고
    • Bayesian methods for elucidating genetic regulatory networks
    • HARTEMINK, A. et al. 2002. Bayesian methods for elucidating genetic regulatory networks. IEEE Intel. Syst. 17: 37-43.
    • (2002) IEEE Intel. Syst , vol.17 , pp. 37-43
    • HARTEMINK, A.1
  • 5
    • 14844307159 scopus 로고    scopus 로고
    • Inferring quantitative models of regulatory networks from expression data
    • NACHMAN, I., A. REGEV & N. FRIEDMAN. 2004. Inferring quantitative models of regulatory networks from expression data. Bioinformatics 20(Suppl 1): I248-I256.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1
    • NACHMAN, I.1    REGEV, A.2    FRIEDMAN, N.3
  • 6
    • 16844376909 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks in human B cells
    • BASSO, K. et al. 2005. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37: 382-390.
    • (2005) Nat. Genet , vol.37 , pp. 382-390
    • BASSO, K.1
  • 7
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • YEUNG, M.K., J. TEGNER & J.J. COLLINS. 2002. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA 99: 6163-6168.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 6163-6168
    • YEUNG, M.K.1    TEGNER, J.2    COLLINS, J.J.3
  • 8
    • 4444226267 scopus 로고    scopus 로고
    • Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data
    • SONTAG, E., A. KIYATKIN & B.N. KHOLODENKO. 2004. Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data. Bioinformatics 20: 1877-1886.
    • (2004) Bioinformatics , vol.20 , pp. 1877-1886
    • SONTAG, E.1    KIYATKIN, A.2    KHOLODENKO, B.N.3
  • 9
    • 0036040555 scopus 로고    scopus 로고
    • Modular interaction strengths in regulatory networks: An example
    • BRUGGEMAN, F.J. & B.N. KHOLODENKO. 2002. Modular interaction strengths in regulatory networks: an example. Mol. Biol. Rep. 29: 57-61.
    • (2002) Mol. Biol. Rep , vol.29 , pp. 57-61
    • BRUGGEMAN, F.J.1    KHOLODENKO, B.N.2
  • 10
    • 0036683181 scopus 로고    scopus 로고
    • Linking the genes: Inferring quantitative gene networks from microarray data
    • DE LA FUENTE, A., P. BRAZHNIK & P. MENDES. 2002. Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. 18: 395-398.
    • (2002) Trends Genet , vol.18 , pp. 395-398
    • DE LA FUENTE, A.1    BRAZHNIK, P.2    MENDES, P.3
  • 11
    • 0036041072 scopus 로고    scopus 로고
    • Quantifying gene networks with regulatory strengths
    • DE LA FUENTE, A. & P. MENDES. 2002. Quantifying gene networks with regulatory strengths. Mol. Biol. Rep. 29: 73-77.
    • (2002) Mol. Biol. Rep , vol.29 , pp. 73-77
    • DE LA FUENTE, A.1    MENDES, P.2
  • 12
    • 0036789922 scopus 로고    scopus 로고
    • Untangling the wires: A strategy to trace functional interactions in signaling and gene networks
    • KHOLODENKO, B.N. et al. 2002. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc. Natl. Acad. Sci. USA 99: 12841-12846.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 12841-12846
    • KHOLODENKO, B.N.1
  • 13
    • 3042799574 scopus 로고    scopus 로고
    • A computational algebra approach to the reverse engineering of gene regulatory networks
    • LAUBENBACHER, R. & B. STIGLER. 2004. A computational algebra approach to the reverse engineering of gene regulatory networks. J. Theor. Biol. 229: 523-537.
    • (2004) J. Theor. Biol , vol.229 , pp. 523-537
    • LAUBENBACHER, R.1    STIGLER, B.2
  • 14
    • 0033736476 scopus 로고    scopus 로고
    • Genetic network inference: From co-expression clustering to reverse engineering
    • D'HAESELEER, P., S. LIANG & R. SOMOGYI. 2000. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16: 707-726.
    • (2000) Bioinformatics , vol.16 , pp. 707-726
    • D'HAESELEER, P.1    LIANG, S.2    SOMOGYI, R.3
  • 15
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • DE JONG, H. 2002. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9: 67-103.
    • (2002) J. Comput. Biol , vol.9 , pp. 67-103
    • DE JONG, H.1
  • 16
    • 2942694772 scopus 로고    scopus 로고
    • Artificial gene networks for objective comparison of analysis algorithms
    • MENDES, P., W. SHA & K. YE. 2003. Artificial gene networks for objective comparison of analysis algorithms. Bioinformatics 19(Suppl 2): II122-II129.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • MENDES, P.1    SHA, W.2    YE, K.3
  • 17
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • GARDNER, T.S. et al. 2003. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301: 102-105.
    • (2003) Science , vol.301 , pp. 102-105
    • GARDNER, T.S.1
  • 18
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • YU, J. et al. 2004. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20: 3594-3603.
    • (2004) Bioinformatics , vol.20 , pp. 3594-3603
    • YU, J.1
  • 19
    • 0032879544 scopus 로고    scopus 로고
    • Genetic control of flower morphogenesis in Arabidopsis thaliana: A logical analysis
    • MENDOZA, L., D. THIEFFRY & E.R. ALVAREZ-BUYLLA. 1999. Genetic control of flower morphogenesis in Arabidopsis thaliana: a logical analysis. Bioinformatics 15: 593-606.
    • (1999) Bioinformatics , vol.15 , pp. 593-606
    • MENDOZA, L.1    THIEFFRY, D.2    ALVAREZ-BUYLLA, E.R.3
  • 20
    • 33947305781 scopus 로고    scopus 로고
    • ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
    • MARGOLIN, A.A. et al. 2006. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1): S7.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 1
    • MARGOLIN, A.A.1
  • 21
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • BERNARD, A. & A. HARTEMINK. 2005. Informative structure priors: joint learning of dynamic regulatory networks from multiple types of data. Pac. Symp. Biocomput. 459-470.
    • (2005) Pac. Symp. Biocomput , pp. 459-470
    • BERNARD, A.1    HARTEMINK, A.2
  • 22
    • 0001445915 scopus 로고
    • The method of path coefficients
    • WRIGHT, S. 1934. The method of path coefficients. Ann. Math. Stat. 5: 161-215.
    • (1934) Ann. Math. Stat , vol.5 , pp. 161-215
    • WRIGHT, S.1
  • 23
    • 19144369209 scopus 로고
    • Partial rank correlation
    • KENDALL, M.G. 1942. Partial rank correlation. Biometrika 32: 277-283.
    • (1942) Biometrika , vol.32 , pp. 277-283
    • KENDALL, M.G.1
  • 24
    • 0038281453 scopus 로고    scopus 로고
    • Observing and interpreting correlations in metabolomic networks
    • STEUER, R. et al. 2003. Observing and interpreting correlations in metabolomic networks. Bioinformatics 19: 1019-1026.
    • (2003) Bioinformatics , vol.19 , pp. 1019-1026
    • STEUER, R.1
  • 25
    • 36248998200 scopus 로고    scopus 로고
    • CAMACHO, D., A. DE LA FUENTE & P. MENDES. 2005. The origins of correlations in metabolomics data. Metabolomics 1: 53-63.
    • CAMACHO, D., A. DE LA FUENTE & P. MENDES. 2005. The origins of correlations in metabolomics data. Metabolomics 1: 53-63.
  • 26
    • 36249001108 scopus 로고    scopus 로고
    • FRIEDMAN, N., K. MURPHY & S. RUSSELL. 1998. Learning the structure of dynamic proabilist networks. In 14th Conference on Uncertainty in Artificial Intelligence.
    • FRIEDMAN, N., K. MURPHY & S. RUSSELL. 1998. Learning the structure of dynamic proabilist networks. In 14th Conference on Uncertainty in Artificial Intelligence.
  • 27
    • 33845368513 scopus 로고    scopus 로고
    • COPASI - a COmplex PAthway SImulator
    • HOOPS, S. et al. 2006. COPASI - a COmplex PAthway SImulator. Bioinformatics 22: 3067-3074.
    • (2006) Bioinformatics , vol.22 , pp. 3067-3074
    • HOOPS, S.1
  • 28
    • 10644224417 scopus 로고    scopus 로고
    • A systems biology study of two distinct phases of Saccharomyces cerevisae cultures
    • MARTINS, A.M. et al. 2004. A systems biology study of two distinct phases of Saccharomyces cerevisae cultures. Curr. Genomics 5: 649-663.
    • (2004) Curr. Genomics , vol.5 , pp. 649-663
    • MARTINS, A.M.1
  • 29
    • 33847055114 scopus 로고    scopus 로고
    • How to infer gene networks from expression profiles
    • BANSAL, M. et al. 2007. How to infer gene networks from expression profiles. Mol. Syst. Biol. 3: 78.
    • (2007) Mol. Syst. Biol , vol.3 , pp. 78
    • BANSAL, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.