-
1
-
-
0036710886
-
Mechanisms of aging: an appraisal of the oxidative stress hypothesis
-
Sohal RS, Mockett RJ, Orr WC, (2002) Mechanisms of aging: an appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33: 575-586.
-
(2002)
Free Radic Biol Med
, vol.33
, pp. 575-586
-
-
Sohal, R.S.1
Mockett, R.J.2
Orr, W.C.3
-
2
-
-
33646793360
-
Accumulation of altered proteins and ageing: causes and effects
-
Hipkiss AR, (2006) Accumulation of altered proteins and ageing: causes and effects. Exp Gerontol 41: 464-473.
-
(2006)
Exp Gerontol
, vol.41
, pp. 464-473
-
-
Hipkiss, A.R.1
-
3
-
-
21344466287
-
Understanding and modulating ageing
-
Rattan SI, Clark BF, (2005) Understanding and modulating ageing. IUBMB Life 57: 297-304.
-
(2005)
IUBMB Life
, vol.57
, pp. 297-304
-
-
Rattan, S.I.1
Clark, B.F.2
-
4
-
-
67650410543
-
Biological and chemical approaches to diseases of proteostasis deficiency
-
Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE, (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78: 959-991.
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 959-991
-
-
Powers, E.T.1
Morimoto, R.I.2
Dillin, A.3
Kelly, J.W.4
Balch, W.E.5
-
5
-
-
56349168452
-
Autophagy and aging: keeping that old broom working
-
Cuervo AM, (2008) Autophagy and aging: keeping that old broom working. Trends Genet 24: 604-612.
-
(2008)
Trends Genet
, vol.24
, pp. 604-612
-
-
Cuervo, A.M.1
-
6
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D, (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78: 477-513.
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
7
-
-
0033176770
-
The base of the proteasome regulatory particle exhibits chaperone-like activity
-
Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, et al. (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1: 221-226.
-
(1999)
Nat Cell Biol
, vol.1
, pp. 221-226
-
-
Braun, B.C.1
Glickman, M.2
Kraft, R.3
Dahlmann, B.4
Kloetzel, P.M.5
-
9
-
-
0036830343
-
Impairment of proteasome structure and function in aging
-
Carrard G, Bulteau AL, Petropoulos I, Friguet B, (2002) Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 34: 1461-1474.
-
(2002)
Int J Biochem Cell Biol
, vol.34
, pp. 1461-1474
-
-
Carrard, G.1
Bulteau, A.L.2
Petropoulos, I.3
Friguet, B.4
-
10
-
-
0033610079
-
Gene expression profile of aging and its retardation by caloric restriction
-
Lee CK, Klopp RG, Weindruch R, Prolla TA, (1999) Gene expression profile of aging and its retardation by caloric restriction. Science 285: 1390-1393.
-
(1999)
Science
, vol.285
, pp. 1390-1393
-
-
Lee, C.K.1
Klopp, R.G.2
Weindruch, R.3
Prolla, T.A.4
-
11
-
-
34548479261
-
Aging perturbs 26S proteasome assembly in Drosophila melanogaster
-
Vernace VA, Arnaud L, Schmidt-Glenewinkel T, Figueiredo-Pereira ME, (2007) Aging perturbs 26S proteasome assembly in Drosophila melanogaster. Faseb J 21: 2672-2682.
-
(2007)
Faseb J
, vol.21
, pp. 2672-2682
-
-
Vernace, V.A.1
Arnaud, L.2
Schmidt-Glenewinkel, T.3
Figueiredo-Pereira, M.E.4
-
12
-
-
71849084532
-
Aging and dietary restriction alter proteasome biogenesis and composition in the brain and liver
-
Dasuri K, Dasuri K, Zhang L, Ebenezer P, Liu Y, et al. (2009) Aging and dietary restriction alter proteasome biogenesis and composition in the brain and liver. Mech Ageing Dev 130: 777-783.
-
(2009)
Mech Ageing Dev
, vol.130
, pp. 777-783
-
-
Dasuri, K.1
Dasuri, K.2
Zhang, L.3
Ebenezer, P.4
Liu, Y.5
-
13
-
-
0033792614
-
Fibroblast cultures from healthy centenarians have an active proteasome
-
Chondrogianni N, Petropoulos I, Franceschi C, Friguet B, Gonos ES, (2000) Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol 35: 721-728.
-
(2000)
Exp Gerontol
, vol.35
, pp. 721-728
-
-
Chondrogianni, N.1
Petropoulos, I.2
Franceschi, C.3
Friguet, B.4
Gonos, E.S.5
-
14
-
-
62549088648
-
Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat
-
Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, et al. (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci U S A 106: 3059-3064.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 3059-3064
-
-
Perez, V.I.1
Buffenstein, R.2
Masamsetti, V.3
Leonard, S.4
Salmon, A.B.5
-
15
-
-
77649243261
-
Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast
-
Takeda K, Yoshida T, Kikuchi S, Nagao K, Kokubu A, et al. (2010) Synergistic roles of the proteasome and autophagy for mitochondrial maintenance and chronological lifespan in fission yeast. Proc Natl Acad Sci U S A 107: 3540-3545.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 3540-3545
-
-
Takeda, K.1
Yoshida, T.2
Kikuchi, S.3
Nagao, K.4
Kokubu, A.5
-
16
-
-
34250882745
-
Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex
-
Ghazi A, Henis-Korenblit S, Kenyon C, (2007) Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc Natl Acad Sci U S A 104: 5947-5952.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 5947-5952
-
-
Ghazi, A.1
Henis-Korenblit, S.2
Kenyon, C.3
-
17
-
-
28744438867
-
Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome?
-
Chen Q, Thorpe J, Dohmen JR, Li F, Keller JN, (2006) Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome? Free Radic Biol Med 40: 120-126.
-
(2006)
Free Radic Biol Med
, vol.40
, pp. 120-126
-
-
Chen, Q.1
Thorpe, J.2
Dohmen, J.R.3
Li, F.4
Keller, J.N.5
-
18
-
-
59449095881
-
Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process
-
Tonoki A, Kuranaga E, Tomioka T, Hamazaki J, Murata S, et al. (2009) Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol Cell Biol 29: 1095-1106.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 1095-1106
-
-
Tonoki, A.1
Kuranaga, E.2
Tomioka, T.3
Hamazaki, J.4
Murata, S.5
-
19
-
-
3142723187
-
Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain
-
Rinaldi T, Pick E, Gambadoro A, Zilli S, Maytal-Kivity V, et al. (2004) Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain. Biochem J 381: 275-285.
-
(2004)
Biochem J
, vol.381
, pp. 275-285
-
-
Rinaldi, T.1
Pick, E.2
Gambadoro, A.3
Zilli, S.4
Maytal-Kivity, V.5
-
20
-
-
35548937755
-
Biting the hand that feeds: Rpn4-dependent feedback regulation of proteasome function
-
Dohmen RJ, Willers I, Marques AJ, (2007) Biting the hand that feeds: Rpn4-dependent feedback regulation of proteasome function. Biochim Biophys Acta 1773: 1599-1604.
-
(2007)
Biochim Biophys Acta
, vol.1773
, pp. 1599-1604
-
-
Dohmen, R.J.1
Willers, I.2
Marques, A.J.3
-
21
-
-
3543037588
-
Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit
-
Ju D, Wang L, Mao X, Xie Y, (2004) Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit. Biochem Biophys Res Commun 321: 51-57.
-
(2004)
Biochem Biophys Res Commun
, vol.321
, pp. 51-57
-
-
Ju, D.1
Wang, L.2
Mao, X.3
Xie, Y.4
-
22
-
-
11244343965
-
Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase
-
Wang L, Mao X, Ju D, Xie Y, (2004) Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. J Biol Chem 279: 55218-55223.
-
(2004)
J Biol Chem
, vol.279
, pp. 55218-55223
-
-
Wang, L.1
Mao, X.2
Ju, D.3
Xie, Y.4
-
23
-
-
0032168508
-
Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome
-
Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D, (1998) Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 17: 4909-4919.
-
(1998)
EMBO J
, vol.17
, pp. 4909-4919
-
-
Rubin, D.M.1
Glickman, M.H.2
Larsen, C.N.3
Dhruvakumar, S.4
Finley, D.5
-
24
-
-
0032548998
-
Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly
-
Ramos PC, Hockendorff J, Johnson ES, Varshavsky A, Dohmen RJ, (1998) Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell 92: 489-499.
-
(1998)
Cell
, vol.92
, pp. 489-499
-
-
Ramos, P.C.1
Hockendorff, J.2
Johnson, E.S.3
Varshavsky, A.4
Dohmen, R.J.5
-
25
-
-
1442264792
-
Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast
-
Velichutina I, Connerly PL, Arendt CS, Li X Hochstrasser M, (2004) Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. EMBO J 23: 500-510.
-
(2004)
EMBO J
, vol.23
, pp. 500-510
-
-
Velichutina, I.1
Connerly, P.L.2
Arendt, C.S.3
Li X Hochstrasser, M.4
-
26
-
-
33749049581
-
Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation
-
Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, et al. (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127: 99-111.
-
(2006)
Cell
, vol.127
, pp. 99-111
-
-
Hanna, J.1
Hathaway, N.A.2
Tone, Y.3
Crosas, B.4
Elsasser, S.5
-
27
-
-
38949119689
-
Genome-wide analysis identifies MYND-domain protein Mub1 as an essential factor for Rpn4 ubiquitylation
-
Ju D, Wang X, Xu H, Xie Y, (2008) Genome-wide analysis identifies MYND-domain protein Mub1 as an essential factor for Rpn4 ubiquitylation. Mol Cell Biol 28: 1404-1412.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 1404-1412
-
-
Ju, D.1
Wang, X.2
Xu, H.3
Xie, Y.4
-
28
-
-
0032500682
-
TOM1p, a yeast hect-domain protein which mediates transcriptional regulation through the ADA/SAGA coactivator complexes
-
Saleh A, Collart M, Martens JA, Genereaux J, Allard S, et al. (1998) TOM1p, a yeast hect-domain protein which mediates transcriptional regulation through the ADA/SAGA coactivator complexes. J Mol Biol 282: 933-946.
-
(1998)
J Mol Biol
, vol.282
, pp. 933-946
-
-
Saleh, A.1
Collart, M.2
Martens, J.A.3
Genereaux, J.4
Allard, S.5
-
29
-
-
27744511769
-
Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients
-
Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, et al. (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310: 1193-6.
-
(2005)
Science
, vol.310
, pp. 1193-1196
-
-
Kaeberlein, M.1
Powers 3rd, R.W.2
Steffen, K.K.3
Westman, E.A.4
Hu, D.5
-
30
-
-
41949089130
-
Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4
-
Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, et al. (2008) Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133: 292-302.
-
(2008)
Cell
, vol.133
, pp. 292-302
-
-
Steffen, K.K.1
MacKay, V.L.2
Kerr, E.O.3
Tsuchiya, M.4
Hu, D.5
-
31
-
-
57049158206
-
Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity
-
doi: 10.1371/journal.pone.0003802
-
Managbanag JR, Witten TM, Bonchev D, Fox LA, Tsuchiya M, et al. (2008) Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PLoS ONE 3: e3802 doi:10.1371/journal.pone.0003802.
-
(2008)
PLoS ONE
, vol.3
-
-
Managbanag, J.R.1
Witten, T.M.2
Bonchev, D.3
Fox, L.A.4
Tsuchiya, M.5
-
32
-
-
0033004441
-
Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast
-
Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H, (1999) Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett 450: 27-34.
-
(1999)
FEBS Lett
, vol.450
, pp. 27-34
-
-
Mannhaupt, G.1
Schnall, R.2
Karpov, V.3
Vetter, I.4
Feldmann, H.5
-
34
-
-
49249094963
-
Structure and properties of transcriptional networks driving selenite stress response in yeasts
-
Salin H, Fardeau V, Piccini E, Lelandais G, Tanty V, et al. (2008) Structure and properties of transcriptional networks driving selenite stress response in yeasts. BMC Genomics 9: 333.
-
(2008)
BMC Genomics
, vol.9
, pp. 333
-
-
Salin, H.1
Fardeau, V.2
Piccini, E.3
Lelandais, G.4
Tanty, V.5
-
35
-
-
33745217864
-
Involvement of calcineurin-dependent degradation of Yap1p in Ca2+-induced G2 cell-cycle regulation in Saccharomyces cerevisiae
-
Yokoyama H, Mizunuma M, Okamoto M, Yamamoto J, Hirata D, Miyakawa T, (2006) Involvement of calcineurin-dependent degradation of Yap1p in Ca2+-induced G2 cell-cycle regulation in Saccharomyces cerevisiae. EMBO Rep 7: 519-524.
-
(2006)
EMBO Rep
, vol.7
, pp. 519-524
-
-
Yokoyama, H.1
Mizunuma, M.2
Okamoto, M.3
Yamamoto, J.4
Hirata, D.5
Miyakawa, T.6
-
36
-
-
0033112354
-
Regulated nuclear localization of transcription factors: nuclear export of yAP-1 is sensitive to oxidative stress
-
Kuge S, (1999) [Regulated nuclear localization of transcription factors: nuclear export of yAP-1 is sensitive to oxidative stress]. Tanpakushitsu Kakusan Koso 44: 668-675.
-
(1999)
Tanpakushitsu Kakusan Koso
, vol.44
, pp. 668-675
-
-
Kuge, S.1
-
37
-
-
0033772765
-
Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes
-
Jelinsky SA, Estep P, Church GM, Samson LD, (2000) Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol Cell Biol 20: 8157-8167.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 8157-8167
-
-
Jelinsky, S.A.1
Estep, P.2
Church, G.M.3
Samson, L.D.4
-
38
-
-
77956320509
-
Inhibition of proteasomal degradation of rpn4 impairs nonhomologous end-joining repair of DNA double-strand breaks
-
doi: 10.1371/journal.pone.0009877
-
Ju D, Wang X, Ha SW, Fu J, Xie Y, Inhibition of proteasomal degradation of rpn4 impairs nonhomologous end-joining repair of DNA double-strand breaks. PLoS ONE 5: e9877 doi:10.1371/journal.pone.0009877.
-
PLoS ONE
, vol.5
-
-
Ju, D.1
Wang, X.2
Ha, S.W.3
Fu, J.4
Xie, Y.5
-
39
-
-
77954178073
-
A nucleus-based quality control mechanism for cytosolic proteins
-
Prasad R, Kawaguchi S, Ng DT, (2010) A nucleus-based quality control mechanism for cytosolic proteins. Mol Biol Cell 21: 2117-2127.
-
(2010)
Mol Biol Cell
, vol.21
, pp. 2117-2127
-
-
Prasad, R.1
Kawaguchi, S.2
Ng, D.T.3
-
40
-
-
57749116408
-
Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity
-
Duennwald ML, Lindquist S, (2008) Impaired ERAD and ER stress are early and specific events in polyglutamine toxicity. Genes Dev 22: 3308-3319.
-
(2008)
Genes Dev
, vol.22
, pp. 3308-3319
-
-
Duennwald, M.L.1
Lindquist, S.2
-
41
-
-
59649096550
-
Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery
-
Wang Y, Meriin AB, Zaarur N, Romanova NV, Chernoff YO, et al. (2009) Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. Faseb J 23: 451-463.
-
(2009)
Faseb J
, vol.23
, pp. 451-463
-
-
Wang, Y.1
Meriin, A.B.2
Zaarur, N.3
Romanova, N.V.4
Chernoff, Y.O.5
-
42
-
-
69949084209
-
The TOR pathway comes of age
-
Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK, (2009) The TOR pathway comes of age. Biochim Biophys Acta 1790: 1067-1074.
-
(2009)
Biochim Biophys Acta
, vol.1790
, pp. 1067-1074
-
-
Stanfel, M.N.1
Shamieh, L.S.2
Kaeberlein, M.3
Kennedy, B.K.4
-
43
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M, McVey M, Guarente L, (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13: 2570-2580.
-
(1999)
Genes Dev
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
44
-
-
43449138491
-
Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans
-
Steinkraus KA, Smith ED, Davis C, Carr D, Pendergrass WR, et al. (2008) Dietary restriction suppresses proteotoxicity and enhances longevity by an hsf-1-dependent mechanism in Caenorhabditis elegans. Aging Cell 7: 394-404.
-
(2008)
Aging Cell
, vol.7
, pp. 394-404
-
-
Steinkraus, K.A.1
Smith, E.D.2
Davis, C.3
Carr, D.4
Pendergrass, W.R.5
-
45
-
-
66049133683
-
Aging: central role for autophagy and the lysosomal degradative system
-
Rajawat YS, Hilioti Z, Bossis I, (2009) Aging: central role for autophagy and the lysosomal degradative system. Ageing Res Rev 8: 199-213.
-
(2009)
Ageing Res Rev
, vol.8
, pp. 199-213
-
-
Rajawat, Y.S.1
Hilioti, Z.2
Bossis, I.3
-
46
-
-
77950656808
-
Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol
-
Morselli E, Galluzzi L, Kepp O, Criollo A, Maiuri MC, et al. (2009) Autophagy mediates pharmacological lifespan extension by spermidine and resveratrol. Aging (Albany NY) 1: 961-970.
-
(2009)
Aging (Albany NY)
, vol.1
, pp. 961-970
-
-
Morselli, E.1
Galluzzi, L.2
Kepp, O.3
Criollo, A.4
Maiuri, M.C.5
-
47
-
-
51349095898
-
Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function
-
Zhang C, Cuervo AM, (2008) Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14: 959-965.
-
(2008)
Nat Med
, vol.14
, pp. 959-965
-
-
Zhang, C.1
Cuervo, A.M.2
-
48
-
-
38949099761
-
Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila
-
Simonsen A, Cumming RC, Brech A, Isakson P, Schubert DR, Finley KD, (2008) Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4: 176-184.
-
(2008)
Autophagy
, vol.4
, pp. 176-184
-
-
Simonsen, A.1
Cumming, R.C.2
Brech, A.3
Isakson, P.4
Schubert, D.R.5
Finley, K.D.6
-
49
-
-
66749103175
-
Lifespan extension by suppression of autophagy genes in Caenorhabditis elegans
-
Hashimoto Y, Ookuma S, Nishida E, (2009) Lifespan extension by suppression of autophagy genes in Caenorhabditis elegans. Genes Cells 14: 717-726.
-
(2009)
Genes Cells
, vol.14
, pp. 717-726
-
-
Hashimoto, Y.1
Ookuma, S.2
Nishida, E.3
-
50
-
-
77950487987
-
Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems
-
Korolchuk VI, Menzies FM, Rubinsztein DC, (2010) Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 584: 1393-1398.
-
(2010)
FEBS Lett
, vol.584
, pp. 1393-1398
-
-
Korolchuk, V.I.1
Menzies, F.M.2
Rubinsztein, D.C.3
-
51
-
-
0032579440
-
Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
-
Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD, (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132.
-
(1998)
Yeast
, vol.14
, pp. 115-132
-
-
Brachmann, C.B.1
Davies, A.2
Cost, G.J.3
Caputo, E.4
Li, J.5
Hieter, P.6
Boeke, J.D.7
-
52
-
-
0031820288
-
Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
-
Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953-961.
-
(1998)
Yeast
, vol.14
, pp. 953-961
-
-
Longtine, M.S.1
McKenzie 3rd, A.2
Demarini, D.J.3
Shah, N.G.4
Wach, A.5
-
53
-
-
0032873415
-
Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae
-
Goldstein AL, McCusker JH, (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541-1553.
-
(1999)
Yeast
, vol.15
, pp. 1541-1553
-
-
Goldstein, A.L.1
McCusker, J.H.2
-
55
-
-
18744391955
-
The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle
-
Schmidt M, Haas W, Crosas B, Santamaria PG, Gygi SP, et al. (2005) The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol 12: 294-303.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 294-303
-
-
Schmidt, M.1
Haas, W.2
Crosas, B.3
Santamaria, P.G.4
Gygi, S.P.5
-
56
-
-
55249096894
-
Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast
-
de Godoy LMF, Olsen JV, Cox J, Nielsen ML, Hubner NC, et al. (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455: 1251-1254.
-
(2008)
Nature
, vol.455
, pp. 1251-1254
-
-
de Godoy, L.M.F.1
Olsen, J.V.2
Cox, J.3
Nielsen, M.L.4
Hubner, N.C.5
-
57
-
-
68749094119
-
Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics
-
Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R, (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138: 795-806.
-
(2009)
Cell
, vol.138
, pp. 795-806
-
-
Picotti, P.1
Bodenmiller, B.2
Mueller, L.N.3
Domon, B.4
Aebersold, R.5
-
58
-
-
57449099865
-
MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
-
Cox J, Mann M, (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26: 1367-1372.
-
(2008)
Nat Biotechnol
, vol.26
, pp. 1367-1372
-
-
Cox, J.1
Mann, M.2
-
59
-
-
0034733591
-
Rapid and reliable protein extraction from yeast
-
Kushnirov VV, (2000) Rapid and reliable protein extraction from yeast. Yeast 16: 857-860.
-
(2000)
Yeast
, vol.16
, pp. 857-860
-
-
Kushnirov, V.V.1
-
60
-
-
0033529707
-
Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
-
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901-906.
-
(1999)
Science
, vol.285
, pp. 901-906
-
-
Winzeler, E.A.1
Shoemaker, D.D.2
Astromoff, A.3
Liang, H.4
Anderson, K.5
-
61
-
-
19344374925
-
Sir2-independent life span extension by calorie restriction in yeast
-
doi: 10.1371/journal.pbio.0020296
-
Kaeberlein M, Kirkland KT, Fields S, Kennedy BK, (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2: e296 doi:10.1371/journal.pbio.0020296.
-
(2004)
PLoS Biol
, vol.2
-
-
Kaeberlein, M.1
Kirkland, K.T.2
Fields, S.3
Kennedy, B.K.4
|