-
2
-
-
0038353641
-
Mechanisms of the age-associated deterioration in glucose tolerance: contribution of alterations in insulin secretion, action, and clearance
-
Basu R, Breda E, Oberg AL, Powell CC et al. Mechanisms of the age-associated deterioration in glucose tolerance: contribution of alterations in insulin secretion, action, and clearance. Diabetes 2003; 52: 1738-1748.
-
(2003)
Diabetes
, vol.52
, pp. 1738-1748
-
-
Basu, R.1
Breda, E.2
Oberg, A.L.3
Powell, C.C.4
-
3
-
-
79955973916
-
Inflammatory markers in population studies of aging
-
Singh T, Newman AB. Inflammatory markers in population studies of aging. Ageing Res Rev 2011; 10: 319-329.
-
(2011)
Ageing Res Rev
, vol.10
, pp. 319-329
-
-
Singh, T.1
Newman, A.B.2
-
4
-
-
33644747390
-
Mechanisms of beta-cell death in type 2 diabetes
-
Donath MY, Ehses JA, Maedler K et al. Mechanisms of beta-cell death in type 2 diabetes. Diabetes 2005; 54(Suppl. 2): S108-113.
-
(2005)
Diabetes
, vol.54
, Issue.SUPPL. 2
-
-
Donath, M.Y.1
Ehses, J.A.2
Maedler, K.3
-
5
-
-
84870058819
-
Adaptive immunity in obesity and insulin resistance
-
Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin resistance. Nat Rev Endocrinol 2012; 8: 709-716.
-
(2012)
Nat Rev Endocrinol
, vol.8
, pp. 709-716
-
-
Sell, H.1
Habich, C.2
Eckel, J.3
-
6
-
-
77949887506
-
Mammalian sirtuins: biological insights and disease relevance
-
Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 2010; 5: 253-295.
-
(2010)
Annu Rev Pathol
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
7
-
-
80054771657
-
The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity
-
Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol 2011; 206: 125-162.
-
(2011)
Handb Exp Pharmacol
, vol.206
, pp. 125-162
-
-
Satoh, A.1
Stein, L.2
Imai, S.3
-
8
-
-
77952547233
-
Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases
-
Imai S, Guarente L. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 2010; 31: 212-220.
-
(2010)
Trends Pharmacol Sci
, vol.31
, pp. 212-220
-
-
Imai, S.1
Guarente, L.2
-
9
-
-
62149148872
-
Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases
-
Imai S. Nicotinamide phosphoribosyltransferase (Nampt): a link between NAD biology, metabolism, and diseases. Curr Pharm Des 2009; 15: 20-28.
-
(2009)
Curr Pharm Des
, vol.15
, pp. 20-28
-
-
Imai, S.1
-
10
-
-
0033214237
-
The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
-
Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999; 13: 2570-2580.
-
(1999)
Genes Dev
, vol.13
, pp. 2570-2580
-
-
Kaeberlein, M.1
McVey, M.2
Guarente, L.3
-
11
-
-
8644224064
-
Sir2 mediates longevity in the fly through a pathway related to calorie restriction
-
Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 2004; 101: 15998-16003.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 15998-16003
-
-
Rogina, B.1
Helfand, S.L.2
-
12
-
-
0035826271
-
Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
-
Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 2001; 410: 227-230.
-
(2001)
Nature
, vol.410
, pp. 227-230
-
-
Tissenbaum, H.A.1
Guarente, L.2
-
13
-
-
80053168829
-
Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila
-
Burnett C, Valentini S, Cabreiro F et al. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 2011; 477: 482-485.
-
(2011)
Nature
, vol.477
, pp. 482-485
-
-
Burnett, C.1
Valentini, S.2
Cabreiro, F.3
-
14
-
-
84871695502
-
dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner
-
Banerjee KK, Ayyub C, Ali SZ, Mandot V, Prasad NG, Kolthur-Seetharam U. dSir2 in the adult fat body, but not in muscles, regulates life span in a diet-dependent manner. Cell Rep 2012; 2: 1485-1491.
-
(2012)
Cell Rep
, vol.2
, pp. 1485-1491
-
-
Banerjee, K.K.1
Ayyub, C.2
Ali, S.Z.3
Mandot, V.4
Prasad, N.G.5
Kolthur-Seetharam, U.6
-
15
-
-
84858000209
-
The sirtuin SIRT6 regulates lifespan in male mice
-
Kanfi Y, Naiman S, Amir G et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 2012; 483: 218-221.
-
(2012)
Nature
, vol.483
, pp. 218-221
-
-
Kanfi, Y.1
Naiman, S.2
Amir, G.3
-
16
-
-
84867190452
-
Natural genetic variation in yeast longevity
-
Stumpferl SW, Brand SE, Jiang JC et al. Natural genetic variation in yeast longevity. Genome Res 2012; 22: 1963-1973.
-
(2012)
Genome Res
, vol.22
, pp. 1963-1973
-
-
Stumpferl, S.W.1
Brand, S.E.2
Jiang, J.C.3
-
17
-
-
28844469898
-
Increase in activity during calorie restriction requires Sirt1
-
Chen D, Steele AD, Lindquist S, Guarente L. Increase in activity during calorie restriction requires Sirt1. Science 2005; 310: 1641.
-
(2005)
Science
, vol.310
, pp. 1641
-
-
Chen, D.1
Steele, A.D.2
Lindquist, S.3
Guarente, L.4
-
18
-
-
72849130743
-
Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction
-
Cohen DE, Supinski AM, Bonkowski MS, Donmez G, Guarente LP. Neuronal SIRT1 regulates endocrine and behavioral responses to calorie restriction. Genes Dev 2009; 23: 2812-2817.
-
(2009)
Genes Dev
, vol.23
, pp. 2812-2817
-
-
Cohen, D.E.1
Supinski, A.M.2
Bonkowski, M.S.3
Donmez, G.4
Guarente, L.P.5
-
19
-
-
77955344258
-
SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus
-
Satoh A, Brace CS, Ben-Josef G et al. SIRT1 promotes the central adaptive response to diet restriction through activation of the dorsomedial and lateral nuclei of the hypothalamus. J Neurosci 2010; 30: 10220-10232.
-
(2010)
J Neurosci
, vol.30
, pp. 10220-10232
-
-
Satoh, A.1
Brace, C.S.2
Ben-Josef, G.3
-
20
-
-
36248975293
-
SIRT1 transgenic mice show phenotypes resembling calorie restriction
-
Bordone L, Cohen D, Robinson A et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 2007; 6: 759-767.
-
(2007)
Aging Cell
, vol.6
, pp. 759-767
-
-
Bordone, L.1
Cohen, D.2
Robinson, A.3
-
21
-
-
52749091816
-
SirT1 gain of function increases energy efficiency and prevents diabetes in mice
-
Banks AS, Kon N, Knight C et al. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 2008; 8: 333-341.
-
(2008)
Cell Metab
, vol.8
, pp. 333-341
-
-
Banks, A.S.1
Kon, N.2
Knight, C.3
-
22
-
-
47749128879
-
Sirt1 protects against high-fat diet-induced metabolic damage
-
Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschöp MH. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci USA 2008; 105: 9793-9798.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 9793-9798
-
-
Pfluger, P.T.1
Herranz, D.2
Velasco-Miguel, S.3
Serrano, M.4
Tschöp, M.H.5
-
23
-
-
78650758398
-
Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
-
Herranz D, Munoz-Martin M, Canamero M et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 2010; 1: 3.
-
(2010)
Nat Commun
, vol.1
, pp. 3
-
-
Herranz, D.1
Munoz-Martin, M.2
Canamero, M.3
-
24
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009; 9: 327-338.
-
(2009)
Cell Metab
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
25
-
-
80555146753
-
Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance
-
Wang RH, Kim HS, Xiao C, Xu X, Gavrilova O, Deng CX. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest 2011; 121: 4477-4490.
-
(2011)
J Clin Invest
, vol.121
, pp. 4477-4490
-
-
Wang, R.H.1
Kim, H.S.2
Xiao, C.3
Xu, X.4
Gavrilova, O.5
Deng, C.X.6
-
26
-
-
84864678390
-
High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction
-
Chalkiadaki A, Guarente L. High-fat diet triggers inflammation-induced cleavage of SIRT1 in adipose tissue to promote metabolic dysfunction. Cell Metab 2012; 16: 180-188.
-
(2012)
Cell Metab
, vol.16
, pp. 180-188
-
-
Chalkiadaki, A.1
Guarente, L.2
-
27
-
-
84864615516
-
Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma
-
Qiang L, Wang L, Kon N et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell 2012; 150: 620-632.
-
(2012)
Cell
, vol.150
, pp. 620-632
-
-
Qiang, L.1
Wang, L.2
Kon, N.3
-
28
-
-
80555142897
-
Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction
-
Schenk S, McCurdy CE, Philp A et al. Sirt1 enhances skeletal muscle insulin sensitivity in mice during caloric restriction. J Clin Invest 2011; 121: 4281-4288.
-
(2011)
J Clin Invest
, vol.121
, pp. 4281-4288
-
-
Schenk, S.1
McCurdy, C.E.2
Philp, A.3
-
29
-
-
25144454432
-
Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice
-
Moynihan KA, Grimm AA, Plueger MM et al. Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab 2005; 2: 105-117.
-
(2005)
Cell Metab
, vol.2
, pp. 105-117
-
-
Moynihan, K.A.1
Grimm, A.A.2
Plueger, M.M.3
-
30
-
-
3342907109
-
The role of insulin and insulin-like growth factor-I in mammalian ageing
-
Richardson A, Liu F, Adamo ML, Van Remmen H, Nelson JF. The role of insulin and insulin-like growth factor-I in mammalian ageing. Best Pract Res Clin Endocrinol Metab 2004; 18: 393-406.
-
(2004)
Best Pract Res Clin Endocrinol Metab
, vol.18
, pp. 393-406
-
-
Richardson, A.1
Liu, F.2
Adamo, M.L.3
Van Remmen, H.4
Nelson, J.F.5
-
31
-
-
33244486764
-
Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells
-
Bordone L, Motta MC, Picard F et al. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 2006; 4: e31.
-
(2006)
PLoS Biol
, vol.4
-
-
Bordone, L.1
Motta, M.C.2
Picard, F.3
-
32
-
-
38349112898
-
Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in β cell-specific Sirt1-overexpressing (BESTO) mice
-
Ramsey KM, Mills KF, Satoh A, Imai S. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in β cell-specific Sirt1-overexpressing (BESTO) mice. Aging Cell 2008; 7: 78-88.
-
(2008)
Aging Cell
, vol.7
, pp. 78-88
-
-
Ramsey, K.M.1
Mills, K.F.2
Satoh, A.3
Imai, S.4
-
33
-
-
27744518040
-
FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction
-
Kitamura YI, Kitamura T, Kruse JP et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab 2005; 2: 153-163.
-
(2005)
Cell Metab
, vol.2
, pp. 153-163
-
-
Kitamura, Y.I.1
Kitamura, T.2
Kruse, J.P.3
-
34
-
-
63249112836
-
Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway
-
Lee JH, Song MY, Song EK et al. Overexpression of SIRT1 protects pancreatic beta-cells against cytokine toxicity by suppressing the nuclear factor-kappaB signaling pathway. Diabetes 2009; 58: 344-351.
-
(2009)
Diabetes
, vol.58
, pp. 344-351
-
-
Lee, J.H.1
Song, M.Y.2
Song, E.K.3
-
35
-
-
77955046461
-
SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10
-
Donmez G, Wang D, Cohen DE, Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010; 142: 320-332.
-
(2010)
Cell
, vol.142
, pp. 320-332
-
-
Donmez, G.1
Wang, D.2
Cohen, D.E.3
Guarente, L.4
-
36
-
-
77957001697
-
Acetylation of tau inhibits its degradation and contributes to tauopathy
-
Min SW, Cho SH, Zhou Y et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 2010; 67: 953-966.
-
(2010)
Neuron
, vol.67
, pp. 953-966
-
-
Min, S.W.1
Cho, S.H.2
Zhou, Y.3
-
37
-
-
77956185062
-
A novel pathway regulates memory and plasticity via SIRT1 and miR-134
-
Gao J, Wang WY, Mao YW et al. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 2010; 466: 1105-1109.
-
(2010)
Nature
, vol.466
, pp. 1105-1109
-
-
Gao, J.1
Wang, W.Y.2
Mao, Y.W.3
-
38
-
-
80052291180
-
Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
-
Jing E, Emanuelli B, Hirschey MD et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA 2011; 108: 14608-14613.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 14608-14613
-
-
Jing, E.1
Emanuelli, B.2
Hirschey, M.D.3
-
39
-
-
82455212901
-
SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
-
Hirschey MD, Shimazu T, Jing E et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 2011; 44: 177-190.
-
(2011)
Mol Cell
, vol.44
, pp. 177-190
-
-
Hirschey, M.D.1
Shimazu, T.2
Jing, E.3
-
40
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
-
Haigis MC, Mostoslavsky R, Haigis KM et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006; 126: 941-954.
-
(2006)
Cell
, vol.126
, pp. 941-954
-
-
Haigis, M.C.1
Mostoslavsky, R.2
Haigis, K.M.3
-
41
-
-
77953244349
-
SIRT6 protects against pathological damage caused by diet-induced obesity
-
Kanfi Y, Peshti V, Gil R et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell 2010; 9: 162-173.
-
(2010)
Aging Cell
, vol.9
, pp. 162-173
-
-
Kanfi, Y.1
Peshti, V.2
Gil, R.3
-
42
-
-
84871676013
-
The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
-
Dominy JE Jr, Lee Y, Jedrychowski MP et al. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis. Mol Cell 2012; 48: 900-913.
-
(2012)
Mol Cell
, vol.48
, pp. 900-913
-
-
Dominy Jr, J.E.1
Lee, Y.2
Jedrychowski, M.P.3
-
43
-
-
79952501323
-
SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
-
Finley LW, Carracedo A, Lee J et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 2011; 19: 416-428.
-
(2011)
Cancer Cell
, vol.19
, pp. 416-428
-
-
Finley, L.W.1
Carracedo, A.2
Lee, J.3
-
44
-
-
84870874690
-
The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
-
Sebastian C, Zwaans BM, Silberman DM et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 2012; 151: 1185-1199.
-
(2012)
Cell
, vol.151
, pp. 1185-1199
-
-
Sebastian, C.1
Zwaans, B.M.2
Silberman, D.M.3
-
45
-
-
84865411082
-
The dynamic regulation of NAD metabolism in mitochondria
-
Stein LR, Imai S. The dynamic regulation of NAD metabolism in mitochondria. Trends Endocrinol Metab 2012; 23: 420-428.
-
(2012)
Trends Endocrinol Metab
, vol.23
, pp. 420-428
-
-
Stein, L.R.1
Imai, S.2
-
46
-
-
33846693322
-
The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals
-
Revollo JR, Grimm AA, Imai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr Opin Gastroenterol 2007; 23: 164-170.
-
(2007)
Curr Opin Gastroenterol
, vol.23
, pp. 164-170
-
-
Revollo, J.R.1
Grimm, A.A.2
Imai, S.3
-
47
-
-
10944270187
-
The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells
-
Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 2004; 279: 50754-50763.
-
(2004)
J Biol Chem
, vol.279
, pp. 50754-50763
-
-
Revollo, J.R.1
Grimm, A.A.2
Imai, S.3
-
48
-
-
33745862384
-
Structure of Nampt/PBEF/visfatin, a mammalian NAD(+) biosynthetic enzyme
-
Wang T, Zhang X, Bheda P, Revollo JR, Imai S, Wolberger C. Structure of Nampt/PBEF/visfatin, a mammalian NAD(+) biosynthetic enzyme. Nat Struct Mol Biol 2006; 13: 661-662.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 661-662
-
-
Wang, T.1
Zhang, X.2
Bheda, P.3
Revollo, J.R.4
Imai, S.5
Wolberger, C.6
-
49
-
-
35549002189
-
Nampt/PBEF/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme
-
Revollo JR, Körner A, Mills KF et al. Nampt/PBEF/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab 2007; 6: 363-375.
-
(2007)
Cell Metab
, vol.6
, pp. 363-375
-
-
Revollo, J.R.1
Körner, A.2
Mills, K.F.3
-
50
-
-
79954576666
-
Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene
-
Tao R, Wei D, Gao H, Liu Y, DePinho RA, Dong XC. Hepatic FoxOs regulate lipid metabolism via modulation of expression of the nicotinamide phosphoribosyltransferase gene. J Biol Chem 2011; 286: 14681-14690.
-
(2011)
J Biol Chem
, vol.286
, pp. 14681-14690
-
-
Tao, R.1
Wei, D.2
Gao, H.3
Liu, Y.4
DePinho, R.A.5
Dong, X.C.6
-
51
-
-
77954502566
-
Intracellular nicotinamide phosphoribosyltransferase protects against hepatocyte apoptosis and is down-regulated in nonalcoholic fatty liver disease
-
Dahl TB, Haukeland JW, Yndestad A et al. Intracellular nicotinamide phosphoribosyltransferase protects against hepatocyte apoptosis and is down-regulated in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 2010; 95: 3039-3047.
-
(2010)
J Clin Endocrinol Metab
, vol.95
, pp. 3039-3047
-
-
Dahl, T.B.1
Haukeland, J.W.2
Yndestad, A.3
-
53
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
-
Fulco M, Cen Y, Zhao P et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 2008; 14: 661-673.
-
(2008)
Dev Cell
, vol.14
, pp. 661-673
-
-
Fulco, M.1
Cen, Y.2
Zhao, P.3
-
54
-
-
63549150420
-
Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment
-
Borradaile NM, Pickering JG. Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell 2009; 8: 100-112.
-
(2009)
Aging Cell
, vol.8
, pp. 100-112
-
-
Borradaile, N.M.1
Pickering, J.G.2
-
55
-
-
77957264848
-
"Clocks" in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging
-
Imai S. "Clocks" in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acta 1804; 2010: 1584-1590.
-
(1804)
Biochim Biophys Acta
, vol.2010
, pp. 1584-1590
-
-
Imai, S.1
-
56
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 2009; 324: 654-657.
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
Sahar, S.2
Astarita, G.3
Kaluzova, M.4
Sassone-Corsi, P.5
-
58
-
-
80053920774
-
Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice
-
Yoshino J, Mills KF, Yoon MJ, Imai S. Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 2011; 14: 528-536.
-
(2011)
Cell Metab
, vol.14
, pp. 528-536
-
-
Yoshino, J.1
Mills, K.F.2
Yoon, M.J.3
Imai, S.4
-
59
-
-
79954634068
-
Leucocytes are a major source of circulating nicotinamide phosphoribosyltransferase (NAMPT)/pre-B cell colony (PBEF)/visfatin linking obesity and inflammation in humans
-
Friebe D, Neef M, Kratzsch J et al. Leucocytes are a major source of circulating nicotinamide phosphoribosyltransferase (NAMPT)/pre-B cell colony (PBEF)/visfatin linking obesity and inflammation in humans. Diabetologia 2011; 54: 1200-1211.
-
(2011)
Diabetologia
, vol.54
, pp. 1200-1211
-
-
Friebe, D.1
Neef, M.2
Kratzsch, J.3
-
60
-
-
72949097428
-
Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is constitutively released from human hepatocytes
-
Garten A, Petzold S, Barnikol-Oettler A et al. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is constitutively released from human hepatocytes. Biochem Biophys Res Commun 2009; 391: 376-381.
-
(2009)
Biochem Biophys Res Commun
, vol.391
, pp. 376-381
-
-
Garten, A.1
Petzold, S.2
Barnikol-Oettler, A.3
-
61
-
-
84873293264
-
Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling
-
Pillai VB, Sundaresan NR, Kim G et al. Nampt secreted from cardiomyocytes promotes development of cardiac hypertrophy and adverse ventricular remodeling. Am J Physiol Heart Circ Physiol 2013; 304: H415-426.
-
(2013)
Am J Physiol Heart Circ Physiol
, vol.304
-
-
Pillai, V.B.1
Sundaresan, N.R.2
Kim, G.3
-
62
-
-
79961085079
-
Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma
-
Hara N, Yamada K, Shibata T, Osago H, Tsuchiya M. Nicotinamide phosphoribosyltransferase/visfatin does not catalyze nicotinamide mononucleotide formation in blood plasma. PLoS One 2011; 6: e22781.
-
(2011)
PLoS One
, vol.6
-
-
Hara, N.1
Yamada, K.2
Shibata, T.3
Osago, H.4
Tsuchiya, M.5
-
63
-
-
69949111619
-
From heterochromatin islands to the NAD World: a hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis
-
Imai S. From heterochromatin islands to the NAD World: a hierarchical view of aging through the functions of mammalian Sirt1 and systemic NAD biosynthesis. Biochim Biophys Acta 2009; 1790: 997-1004.
-
(2009)
Biochim Biophys Acta
, vol.1790
, pp. 997-1004
-
-
Imai, S.1
-
64
-
-
63149089930
-
World: a new systemic regulatory network for metabolism and aging - Sirt1, systemic NAD biosynthesis, and their importance
-
Imai S, The NAD. World: a new systemic regulatory network for metabolism and aging - Sirt1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys 2009; 53: 65-74.
-
(2009)
Cell Biochem Biophys
, vol.53
, pp. 65-74
-
-
Imai, S.1
The, N.A.D.2
-
65
-
-
79957557182
-
Dissecting systemic control of metabolism and aging in the NAD World: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis
-
Imai S. Dissecting systemic control of metabolism and aging in the NAD World: the importance of SIRT1 and NAMPT-mediated NAD biosynthesis. FEBS Lett 2011; 585: 1657-1662.
-
(2011)
FEBS Lett
, vol.585
, pp. 1657-1662
-
-
Imai, S.1
-
66
-
-
77952549055
-
A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis
-
Imai S. A possibility of nutriceuticals as an anti-aging intervention: activation of sirtuins by promoting mammalian NAD biosynthesis. Pharmacol Res 2010; 62: 42-47.
-
(2010)
Pharmacol Res
, vol.62
, pp. 42-47
-
-
Imai, S.1
-
67
-
-
79953752384
-
PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation
-
Bai P, Canto C, Oudart H et al. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 2011; 13: 461-468.
-
(2011)
Cell Metab
, vol.13
, pp. 461-468
-
-
Bai, P.1
Canto, C.2
Oudart, H.3
-
68
-
-
36049038217
-
The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity
-
Barbosa MT, Soares SM, Novak CM et al. The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity. FASEB J 2007; 21: 3629-3639.
-
(2007)
FASEB J
, vol.21
, pp. 3629-3639
-
-
Barbosa, M.T.1
Soares, S.M.2
Novak, C.M.3
-
69
-
-
82255183409
-
WldS enhances insulin transcription and secretion via a SIRT1-dependent pathway and improves glucose homeostasis
-
Wu J, Zhang F, Yan M et al. WldS enhances insulin transcription and secretion via a SIRT1-dependent pathway and improves glucose homeostasis. Diabetes 2011; 60: 3197-3207.
-
(2011)
Diabetes
, vol.60
, pp. 3197-3207
-
-
Wu, J.1
Zhang, F.2
Yan, M.3
-
70
-
-
84875431269
-
Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome
-
Escande C, Nin V, Price NL et al. Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 2013; 62: 1084-1093.
-
(2013)
Diabetes
, vol.62
, pp. 1084-1093
-
-
Escande, C.1
Nin, V.2
Price, N.L.3
-
71
-
-
84869192260
-
Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice
-
Li H, Xu M, Lee J, He C, Xie Z. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice. Am J Physiol Endocrinol Metab 2012; 303: E1234-1244.
-
(2012)
Am J Physiol Endocrinol Metab
, vol.303
-
-
Li, H.1
Xu, M.2
Lee, J.3
He, C.4
Xie, Z.5
-
72
-
-
82455212299
-
Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function
-
Caton PW, Kieswich J, Yaqoob MM, Holness MJ, Sugden MC. Nicotinamide mononucleotide protects against pro-inflammatory cytokine-mediated impairment of mouse islet function. Diabetologia 2011; 54: 3083-3092.
-
(2011)
Diabetologia
, vol.54
, pp. 3083-3092
-
-
Caton, P.W.1
Kieswich, J.2
Yaqoob, M.M.3
Holness, M.J.4
Sugden, M.C.5
-
73
-
-
84876502959
-
Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients
-
Caton PW, Richardson SJ, Kieswich J et al. Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia 2013; 56: 1068-1077.
-
(2013)
Diabetologia
, vol.56
, pp. 1068-1077
-
-
Caton, P.W.1
Richardson, S.J.2
Kieswich, J.3
-
74
-
-
84862022077
-
The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity
-
Canto C, Houtkooper RH, Pirinen E et al. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 2012; 15: 838-847.
-
(2012)
Cell Metab
, vol.15
, pp. 838-847
-
-
Canto, C.1
Houtkooper, R.H.2
Pirinen, E.3
-
75
-
-
84875245617
-
Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-gamma coactivator 1alpha regulated beta-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models
-
Gong B, Pan Y, Vempati P et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-gamma coactivator 1alpha regulated beta-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models. Neurobiol Aging 2013; 34: 1581-1588.
-
(2013)
Neurobiol Aging
, vol.34
, pp. 1581-1588
-
-
Gong, B.1
Pan, Y.2
Vempati, P.3
|