메뉴 건너뛰기




Volumn 66, Issue , 2013, Pages 105-128

Proteolytic regulation of stress response pathways in Escherichia coli

Author keywords

[No Author keywords available]

Indexed keywords

ESCHERICHIA COLI PROTEIN; SIGMA FACTOR;

EID: 84881497804     PISSN: 03060225     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-94-007-5940-4_5     Document Type: Article
Times cited : (23)

References (149)
  • 1
    • 84880692365 scopus 로고    scopus 로고
    • Regulated proteolysis: Control of the Escherichia coli σ E-dependent cell envelope stress response
    • Dougan DA (ed) Springer, Subcell Biochem
    • Barchinger SE, Ades SE (2013) Regulated proteolysis: control of the Escherichia coli σ E-dependent cell envelope stress response. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:129-160
    • (2013) Regulated proteolysis in microorganisms , vol.66 , pp. 129-160
    • Barchinger, S.E.1    Ades, S.E.2
  • 2
    • 0029739317 scopus 로고    scopus 로고
    • The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli
    • Sledjeski DD, Gupta A, Gottesman S (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15(15):3993-4000
    • (1996) EMBO J , vol.15 , Issue.15 , pp. 3993-4000
    • Sledjeski, D.D.1    Gupta, A.2    Gottesman, S.3
  • 3
    • 0029962930 scopus 로고    scopus 로고
    • Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli
    • Muffler A, Traulsen DD, Lange R, Hengge-Aronis R (1996) Posttranscriptional osmotic regulation of the sigma(s) subunit of RNA polymerase in Escherichia coli. J Bacteriol 178(6):1607-1613
    • (1996) J Bacteriol , vol.178 , Issue.6 , pp. 1607-1613
    • Muffler, A.1    Traulsen, D.D.2    Lange, R.3    Hengge-Aronis, R.4
  • 4
    • 0025769570 scopus 로고
    • Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S
    • Lange R, Hengge-Aronis R (1991) Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J Bacteriol 173(14):4474-4481
    • (1991) J Bacteriol , vol.173 , Issue.14 , pp. 4474-4481
    • Lange, R.1    Hengge-Aronis, R.2
  • 5
    • 0027509821 scopus 로고
    • Survival of hunger and stress: The role of rpoS in early stationary phase gene regulation in E. coli
    • Hengge-Aronis R (1993) Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72(2):165-168
    • (1993) Cell , vol.72 , Issue.2 , pp. 165-168
    • Hengge-Aronis, R.1
  • 6
    • 0025785253 scopus 로고
    • The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli
    • McCann MP, Kidwell JP, Matin A (1991) The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173(13):4188-4194
    • (1991) J Bacteriol , vol.173 , Issue.13 , pp. 4188-4194
    • McCann, M.P.1    Kidwell, J.P.2    Matin, A.3
  • 7
    • 0031844376 scopus 로고    scopus 로고
    • Negative regulation by RpoS: A case of sigma factor competition
    • Farewell A, Kvint K, Nystrom T (1998) Negative regulation by RpoS: a case of sigma factor competition. Mol Microbiol 29(4):1039-1051
    • (1998) Mol Microbiol , vol.29 , Issue.4 , pp. 1039-1051
    • Farewell, A.1    Kvint, K.2    Nystrom, T.3
  • 8
    • 0028176450 scopus 로고
    • The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability
    • Lange R, Hengge-Aronis R (1994) The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8(13):1600-1612
    • (1994) Genes Dev , vol.8 , Issue.13 , pp. 1600-1612
    • Lange, R.1    Hengge-Aronis, R.2
  • 9
    • 0028106110 scopus 로고
    • Role of the transcriptional activator AppY in regulation of the cyx appA operon of Escherichia coli by anaerobiosis, phosphate starvation, and growth phase
    • Atlung T, Brondsted L (1994) Role of the transcriptional activator AppY in regulation of the cyx appA operon of Escherichia coli by anaerobiosis, phosphate starvation, and growth phase. J Bacteriol 176(17):5414-5422
    • (1994) J Bacteriol , vol.176 , Issue.17 , pp. 5414-5422
    • Atlung, T.1    Brondsted, L.2
  • 10
    • 0028200484 scopus 로고
    • The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase
    • Altuvia S, Almiron M, Huisman G, Kolter R et al (1994) The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol 13(2):265-272
    • (1994) Mol Microbiol , vol.13 , Issue.2 , pp. 265-272
    • Altuvia, S.1    Almiron, M.2    Huisman, G.3    Kolter, R.4
  • 11
    • 69249146924 scopus 로고    scopus 로고
    • Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933
    • Dong T, Schellhorn HE (2009) Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC Genomics 10:349
    • (2009) BMC Genomics , vol.10 , pp. 349
    • Dong, T.1    Schellhorn, H.E.2
  • 12
    • 14244256556 scopus 로고    scopus 로고
    • Genome-wide analysis of the general stress response network in Escherichia coli: SigmaS-dependent genes, promoters, and sigma factor selectivity
    • Weber H, Polen T, Heuveling J, Wendisch VF et al (2005) Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187(5):1591-1603
    • (2005) J Bacteriol , vol.187 , Issue.5 , pp. 1591-1603
    • Weber, H.1    Polen, T.2    Heuveling, J.3    Wendisch, V.F.4
  • 13
    • 6044228192 scopus 로고    scopus 로고
    • SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: Function of sigmaS-dependent genes and identi fication of their promoter sequences
    • Lacour S, Landini P (2004) SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identi fication of their promoter sequences. J Bacteriol 186(21):7186-7195
    • (2004) J Bacteriol , vol.186 , Issue.21 , pp. 7186-7195
    • Lacour, S.1    Landini, P.2
  • 14
    • 13244259382 scopus 로고    scopus 로고
    • Microarray analysis of RpoSmediated gene expression in Escherichia coli K-12
    • Patten CL, Kirchhof MG, Schertzberg MR, Morton RA et al (2004) Microarray analysis of RpoSmediated gene expression in Escherichia coli K-12. Mol Genet Genomics 272(5):580-591
    • (2004) Mol Genet Genomics , vol.272 , Issue.5 , pp. 580-591
    • Patten, C.L.1    Kirchhof, M.G.2    Schertzberg, M.R.3    Morton, R.A.4
  • 15
    • 0032563108 scopus 로고    scopus 로고
    • The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death
    • Bishop RE, Leskiw BK, Hodges RS, Kay CM et al (1998) The entericidin locus of Escherichia coli and its implications for programmed bacterial cell death. J Mol Biol 280(4):583-596
    • (1998) J Mol Biol , vol.280 , Issue.4 , pp. 583-596
    • Bishop, R.E.1    Leskiw, B.K.2    Hodges, R.S.3    Kay, C.M.4
  • 16
    • 77349109268 scopus 로고    scopus 로고
    • Role of RpoS in virulence of pathogens
    • Dong T, Schellhorn HE (2010) Role of RpoS in virulence of pathogens. Infect Immun 78(3):887-897
    • (2010) Infect Immun , vol.78 , Issue.3 , pp. 887-897
    • Dong, T.1    Schellhorn, H.E.2
  • 17
    • 0029082430 scopus 로고
    • Identi fication of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the sigma S subunit of RNA polymerase in Escherichia coli
    • Lange R, Fischer D, Hengge-Aronis R (1995) Identi fication of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the sigma S subunit of RNA polymerase in Escherichia coli. J Bacteriol 177(16):4676-4680
    • (1995) J Bacteriol , vol.177 , Issue.16 , pp. 4676-4680
    • Lange, R.1    Fischer, D.2    Hengge-Aronis, R.3
  • 18
    • 0028106775 scopus 로고
    • The nlpD gene is located in an operon with rpoS on the Escherichia coli chromosome and encodes a novel lipoprotein with a potential function in cell wall formation
    • Lange R, Hengge-Aronis R (1994) The nlpD gene is located in an operon with rpoS on the Escherichia coli chromosome and encodes a novel lipoprotein with a potential function in cell wall formation. Mol Microbiol 13(4):733-743
    • (1994) Mol Microbiol , vol.13 , Issue.4 , pp. 733-743
    • Lange, R.1    Hengge-Aronis, R.2
  • 19
    • 0036714331 scopus 로고    scopus 로고
    • Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase
    • Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66(3):373-395
    • (2002) Microbiol Mol Biol Rev , vol.66 , Issue.3 , pp. 373-395
    • Hengge-Aronis, R.1
  • 20
    • 0029897937 scopus 로고    scopus 로고
    • The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli
    • Muffler A, Fischer D, Hengge-Aronis R (1996) The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev 10(9):1143-1151
    • (1996) Genes Dev , vol.10 , Issue.9 , pp. 1143-1151
    • Muffler, A.1    Fischer, D.2    Hengge-Aronis, R.3
  • 21
    • 0035954304 scopus 로고    scopus 로고
    • Novel small RNA-encoding genes in the intergenic regions of Escherichia coli
    • Argaman L, Hershberg R, Vogel J, Bejerano G et al (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr Biol 11(12):941-950
    • (2001) Curr Biol , vol.11 , Issue.12 , pp. 941-950
    • Argaman, L.1    Hershberg, R.2    Vogel, J.3    Bejerano, G.4
  • 22
    • 0037133945 scopus 로고    scopus 로고
    • Computational genomics of noncoding RNA genes
    • Eddy SR (2002) Computational genomics of noncoding RNA genes. Cell 109(2):137-140
    • (2002) Cell , vol.109 , Issue.2 , pp. 137-140
    • Eddy, S.R.1
  • 23
    • 0037123632 scopus 로고    scopus 로고
    • An expanding universe of noncoding RNAs
    • Storz G (2002) An expanding universe of noncoding RNAs. Science 296(5571):1260-1263
    • (2002) Science , vol.296 , Issue.5571 , pp. 1260-1263
    • Storz, G.1
  • 24
    • 0035395606 scopus 로고    scopus 로고
    • Identi fication of novel small RNAs using comparative genomics and microarrays
    • Wassarman KM, Repoila F, Rosenow C, Storz G et al (2001) Identi fication of novel small RNAs using comparative genomics and microarrays. Genes Dev 15(13):1637-1651
    • (2001) Genes Dev , vol.15 , Issue.13 , pp. 1637-1651
    • Wassarman, K.M.1    Repoila, F.2    Rosenow, C.3    Storz, G.4
  • 25
    • 1842453716 scopus 로고    scopus 로고
    • Controlling mRNA stability and translation with small, noncoding RNAs
    • Storz G, Opdyke JA, Zhang A (2004) Controlling mRNA stability and translation with small, noncoding RNAs. Curr Opin Microbiol 7(2):140-144
    • (2004) Curr Opin Microbiol , vol.7 , Issue.2 , pp. 140-144
    • Storz, G.1    Opdyke, J.A.2    Zhang, A.3
  • 26
    • 54849408366 scopus 로고    scopus 로고
    • Effect of Hfq on RprA-rpoS mRNA pairing: Hfq-RNA binding and the in fluence of the 5 ′ rpoS mRNA leader region
    • Updegrove T, Wilf N, Sun X, Wartell RM (2008) Effect of Hfq on RprA-rpoS mRNA pairing: Hfq-RNA binding and the in fluence of the 5 ′ rpoS mRNA leader region. Biochemistry 47(43):11184-11195
    • (2008) Biochemistry , vol.47 , Issue.43 , pp. 11184-11195
    • Updegrove, T.1    Wilf, N.2    Sun, X.3    Wartell, R.M.4
  • 27
    • 60149089144 scopus 로고    scopus 로고
    • Regulatory RNAs in bacteria
    • Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136(4):615-628
    • (2009) Cell , vol.136 , Issue.4 , pp. 615-628
    • Waters, L.S.1    Storz, G.2
  • 28
    • 0141644746 scopus 로고    scopus 로고
    • Global analysis of small RNA and mRNA targets of Hfq
    • Zhang A, Wassarman KM, Rosenow C, Tjaden BC et al (2003) Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol 50(4):1111-1124
    • (2003) Mol Microbiol , vol.50 , Issue.4 , pp. 1111-1124
    • Zhang, A.1    Wassarman, K.M.2    Rosenow, C.3    Tjaden, B.C.4
  • 29
    • 0029889596 scopus 로고    scopus 로고
    • Ef ficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene
    • Brown L, Elliott T (1996) Ef ficient translation of the RpoS sigma factor in Salmonella typhimurium requires host factor I, an RNA-binding protein encoded by the hfq gene. J Bacteriol 178(13):3763-3770
    • (1996) J Bacteriol , vol.178 , Issue.13 , pp. 3763-3770
    • Brown, L.1    Elliott, T.2
  • 30
    • 0002782867 scopus 로고    scopus 로고
    • Hfq: A bacterial Sm-like protein that mediates RNA-RNA interaction
    • Moller T, Franch T, Hojrup P, Keene DR et al (2002) Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. Mol Cell 9(1):23-30
    • (2002) Mol Cell , vol.9 , Issue.1 , pp. 23-30
    • Moller, T.1    Franch, T.2    Hojrup, P.3    Keene, D.R.4
  • 31
    • 0031028155 scopus 로고    scopus 로고
    • The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the sigmaS subunit of RNA polymerase in Escherichia coli
    • Muffler A, Traulsen DD, Fischer D, Lange R et al (1997) The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the sigmaS subunit of RNA polymerase in Escherichia coli. J Bacteriol 179(1):297-300
    • (1997) J Bacteriol , vol.179 , Issue.1 , pp. 297-300
    • Muffler, A.1    Traulsen, D.D.2    Fischer, D.3    Lange, R.4
  • 32
    • 0036163624 scopus 로고    scopus 로고
    • The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs
    • Zhang A, Wassarman KM, Ortega J, Steven AC et al (2002) The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. Mol Cell 9(1):11-22
    • (2002) Mol Cell , vol.9 , Issue.1 , pp. 11-22
    • Zhang, A.1    Wassarman, K.M.2    Ortega, J.3    Steven, A.C.4
  • 33
    • 0035100582 scopus 로고    scopus 로고
    • Regulation of RpoS by a novel small RNA: The characterization of RprA
    • Majdalani N, Chen S, Murrow J, St John K et al (2001) Regulation of RpoS by a novel small RNA: the characterization of RprA. Mol Microbiol 39(5):1382-1394
    • (2001) Mol Microbiol , vol.39 , Issue.5 , pp. 1382-1394
    • Majdalani, N.1    Chen, S.2    Murrow, J.3    St John, K.4
  • 34
    • 0035104707 scopus 로고    scopus 로고
    • Hfq is necessary for regulation by the untranslated RNA DsrA
    • Sledjeski DD, Whitman C, Zhang A (2001) Hfq is necessary for regulation by the untranslated RNA DsrA. J Bacteriol 183(6):1997-2005
    • (2001) J Bacteriol , vol.183 , Issue.6 , pp. 1997-2005
    • Sledjeski, D.D.1    Whitman, C.2    Zhang, A.3
  • 35
    • 0035150147 scopus 로고    scopus 로고
    • Negative control of rpoS expression by phosphoenolpyruvate: Carbohydrate phosphotransferase system in Escherichia coli
    • Ueguchi C, Misonou N, Mizuno T (2001) Negative control of rpoS expression by phosphoenolpyruvate: carbohydrate phosphotransferase system in Escherichia coli. J Bacteriol 183(2):520-527
    • (2001) J Bacteriol , vol.183 , Issue.2 , pp. 520-527
    • Ueguchi, C.1    Misonou, N.2    Mizuno, T.3
  • 36
    • 0032531904 scopus 로고    scopus 로고
    • The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein
    • Zhang A, Altuvia S, Tiwari A, Argaman L et al (1998) The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J 17(20):6061-6068
    • (1998) EMBO J , vol.17 , Issue.20 , pp. 6061-6068
    • Zhang, A.1    Altuvia, S.2    Tiwari, A.3    Argaman, L.4
  • 37
    • 33746553370 scopus 로고    scopus 로고
    • Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq
    • Kawamoto H, Koide Y, Morita T, Aiba H (2006) Base-pairing requirement for RNA silencing by a bacterial small RNA and acceleration of duplex formation by Hfq. Mol Microbiol 61(4):1013-1022
    • (2006) Mol Microbiol , vol.61 , Issue.4 , pp. 1013-1022
    • Kawamoto, H.1    Koide, Y.2    Morita, T.3    Aiba, H.4
  • 38
    • 0032514643 scopus 로고    scopus 로고
    • Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci
    • Lease RA, Cusick ME, Belfort M (1998) Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci. Proc Natl Acad Sci U S A 95(21):12456-12461
    • (1998) Proc Natl Acad Sci U S A , vol.95 , Issue.21 , pp. 12456-12461
    • Lease, R.A.1    Cusick, M.E.2    Belfort, M.3
  • 39
    • 0032514739 scopus 로고    scopus 로고
    • DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription
    • Majdalani N, Cunning C, Sledjeski D, Elliott T et al (1998) DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proc Natl Acad Sci U S A 95(21):12462-12467
    • (1998) Proc Natl Acad Sci U S A , vol.95 , Issue.21 , pp. 12462-12467
    • Majdalani, N.1    Cunning, C.2    Sledjeski, D.3    Elliott, T.4
  • 40
    • 0036437019 scopus 로고    scopus 로고
    • Regulation and mode of action of the second small RNA activator of RpoS translation, RprA
    • Majdalani N, Hernandez D, Gottesman S (2002) Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46(3):813-826
    • (2002) Mol Microbiol , vol.46 , Issue.3 , pp. 813-826
    • Majdalani, N.1    Hernandez, D.2    Gottesman, S.3
  • 41
    • 0031459386 scopus 로고    scopus 로고
    • A small, stable RNA induced by oxidative stress: Role as a pleiotropic regulator and antimutator
    • Altuvia S, Weinstein-Fischer D, Zhang A, Postow L et al (1997) A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90(1):43-53
    • (1997) Cell , vol.90 , Issue.1 , pp. 43-53
    • Altuvia, S.1    Weinstein-Fischer, D.2    Zhang, A.3    Postow, L.4
  • 42
    • 0034978781 scopus 로고    scopus 로고
    • Signal transduction cascade for regulation of RpoS: Temperature regulation of DsrA
    • Repoila F, Gottesman S (2001) Signal transduction cascade for regulation of RpoS: temperature regulation of DsrA. J Bacteriol 183(13):4012-4023
    • (2001) J Bacteriol , vol.183 , Issue.13 , pp. 4012-4023
    • Repoila, F.1    Gottesman, S.2
  • 43
    • 0028957883 scopus 로고
    • A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli
    • Sledjeski D, Gottesman S (1995) A small RNA acts as an antisilencer of the H-NS-silenced rcsA gene of Escherichia coli. Proc Natl Acad Sci U S A 92(6):2003-2007
    • (1995) Proc Natl Acad Sci U S A , vol.92 , Issue.6 , pp. 2003-2007
    • Sledjeski, D.1    Gottesman, S.2
  • 44
    • 0242575015 scopus 로고    scopus 로고
    • Temperature sensing by the dsrA promoter
    • Repoila F, Gottesman S (2003) Temperature sensing by the dsrA promoter. J Bacteriol 185(22):6609-6614
    • (2003) J Bacteriol , vol.185 , Issue.22 , pp. 6609-6614
    • Repoila, F.1    Gottesman, S.2
  • 45
    • 9244253711 scopus 로고    scopus 로고
    • Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA
    • Lease RA, Woodson SA (2004) Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 344(5):1211-1223
    • (2004) J Mol Biol , vol.344 , Issue.5 , pp. 1211-1223
    • Lease, R.A.1    Woodson, S.A.2
  • 46
    • 0031721151 scopus 로고    scopus 로고
    • Promoter substitution and deletion analysis of upstream region required for rpoS translational regulation
    • Cunning C, Brown L, Elliott T (1998) Promoter substitution and deletion analysis of upstream region required for rpoS translational regulation. J Bacteriol 180(17):4564-4570
    • (1998) J Bacteriol , vol.180 , Issue.17 , pp. 4564-4570
    • Cunning, C.1    Brown, L.2    Elliott, T.3
  • 48
    • 50649097486 scopus 로고    scopus 로고
    • The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA
    • Soper TJ, Woodson SA (2008) The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA. RNA 14(9):1907-1917
    • (2008) RNA , vol.14 , Issue.9 , pp. 1907-1917
    • Soper, T.J.1    Woodson, S.A.2
  • 49
    • 79958146262 scopus 로고    scopus 로고
    • Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for ef ficient annealing
    • Hwang W, Arluison V, Hohng S (2011) Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for ef ficient annealing. Nucleic Acids Res 39(12):5131-5139
    • (2011) Nucleic Acids Res , vol.39 , Issue.12 , pp. 5131-5139
    • Hwang, W.1    Arluison, V.2    Hohng, S.3
  • 50
    • 34548388002 scopus 로고    scopus 로고
    • Sm-like protein Hfq: Location of the ATPbinding site and the effect of ATP on Hfq- RNA complexes
    • Arluison V, Mutyam SK, Mura C, Marco S et al (2007) Sm-like protein Hfq: location of the ATPbinding site and the effect of ATP on Hfq- RNA complexes. Protein Sci 16(9):1830-1841
    • (2007) Protein Sci , vol.16 , Issue.9 , pp. 1830-1841
    • Arluison, V.1    Mutyam, S.K.2    Mura, C.3    Marco, S.4
  • 51
    • 78049365859 scopus 로고    scopus 로고
    • Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: Pairing increases translation and protects rpoS mRNA from degradation
    • McCullen CA, Benhammou JN, Majdalani N, Gottesman S (2010) Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol 192(21):5559-5571
    • (2010) J Bacteriol , vol.192 , Issue.21 , pp. 5559-5571
    • McCullen, C.A.1    Benhammou, J.N.2    Majdalani, N.3    Gottesman, S.4
  • 52
    • 70350176597 scopus 로고    scopus 로고
    • Speci fic and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA
    • Papenfort K, Said N, Welsink T, Lucchini S et al (2009) Speci fic and pleiotropic patterns of mRNA regulation by ArcZ, a conserved, Hfq-dependent small RNA. Mol Microbiol 74(1):139-158
    • (2009) Mol Microbiol , vol.74 , Issue.1 , pp. 139-158
    • Papenfort, K.1    Said, N.2    Welsink, T.3    Lucchini, S.4
  • 53
    • 77956879952 scopus 로고    scopus 로고
    • Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA
    • Mandin P, Gottesman S (2010) Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J 29(18):3094-3107
    • (2010) EMBO J , vol.29 , Issue.18 , pp. 3094-3107
    • Mandin, P.1    Gottesman, S.2
  • 54
    • 0030033933 scopus 로고    scopus 로고
    • Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease
    • Schweder T, Lee KH, Lomovskaya O, Matin A (1996) Regulation of Escherichia coli starvation sigma factor (sigma s) by ClpXP protease. J Bacteriol 178(2):470-476
    • (1996) J Bacteriol , vol.178 , Issue.2 , pp. 470-476
    • Schweder, T.1    Lee, K.H.2    Lomovskaya, O.3    Matin, A.4
  • 55
    • 0034933066 scopus 로고    scopus 로고
    • Role of the response regulator RssB in sigma recognition and initiation of sigma proteolysis in Escherichia coli
    • Klauck E, Lingnau M, Hengge-Aronis R (2001) Role of the response regulator RssB in sigma recognition and initiation of sigma proteolysis in Escherichia coli. Mol Microbiol 40(6):1381-1390
    • (2001) Mol Microbiol , vol.40 , Issue.6 , pp. 1381-1390
    • Klauck, E.1    Lingnau, M.2    Hengge-Aronis, R.3
  • 56
    • 0029990928 scopus 로고    scopus 로고
    • The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli
    • Muffler A, Fischer D, Altuvia S, Storz G et al (1996) The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. EMBO J 15(6):1333-1339
    • (1996) EMBO J , vol.15 , Issue.6 , pp. 1333-1339
    • Muffler, A.1    Fischer, D.2    Altuvia, S.3    Storz, G.4
  • 57
    • 0029983001 scopus 로고    scopus 로고
    • The response regulator SprE controls the stability of RpoS
    • Pratt LA, Silhavy TJ (1996) The response regulator SprE controls the stability of RpoS. Proc Natl Acad Sci U S A 93(6):2488-2492
    • (1996) Proc Natl Acad Sci U S A , vol.93 , Issue.6 , pp. 2488-2492
    • Pratt, L.A.1    Silhavy, T.J.2
  • 58
    • 0035281566 scopus 로고    scopus 로고
    • The RssB response regulator directly targets sigma(S) for degradation by ClpXP
    • Zhou Y, Gottesman S, Hoskins JR, Maurizi MR et al (2001) The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev 15(5):627-637
    • (2001) Genes Dev , vol.15 , Issue.5 , pp. 627-637
    • Zhou, Y.1    Gottesman, S.2    Hoskins, J.R.3    Maurizi, M.R.4
  • 59
    • 0033951376 scopus 로고    scopus 로고
    • The response regulator RssB, a recognition factor for sigmaS proteolysis in Escherichia coli, can act like an anti-sigmaS factor
    • Becker G, Klauck E, Hengge-Aronis R (2000) The response regulator RssB, a recognition factor for sigmaS proteolysis in Escherichia coli, can act like an anti-sigmaS factor. Mol Microbiol 35(3):657-666
    • (2000) Mol Microbiol , vol.35 , Issue.3 , pp. 657-666
    • Becker, G.1    Klauck, E.2    Hengge-Aronis, R.3
  • 60
    • 0032989449 scopus 로고    scopus 로고
    • Regulation of RpoS proteolysis in Escherichia coli: The response regulator RssB is a recognition factor that interacts with the turnover element in RpoS
    • Becker G, Klauck E, Hengge-Aronis R (1999) Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc Natl Acad Sci U S A 96(11):6439-6444
    • (1999) Proc Natl Acad Sci U S A , vol.96 , Issue.11 , pp. 6439-6444
    • Becker, G.1    Klauck, E.2    Hengge-Aronis, R.3
  • 61
    • 0031939765 scopus 로고    scopus 로고
    • Regulation of RssB-dependent proteolysis in Escherichia coli: A role for acetyl phosphate in a response regulator-controlled process
    • Bouche S, Klauck E, Fischer D, Lucassen M et al (1998) Regulation of RssB-dependent proteolysis in Escherichia coli: a role for acetyl phosphate in a response regulator-controlled process. Mol Microbiol 27(4):787-795
    • (1998) Mol Microbiol , vol.27 , Issue.4 , pp. 787-795
    • Bouche, S.1    Klauck, E.2    Fischer, D.3    Lucassen, M.4
  • 62
    • 41049111259 scopus 로고    scopus 로고
    • Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors
    • Bougdour A, Cunning C, Baptiste PJ, Elliott T et al (2008) Multiple pathways for regulation of sigmaS (RpoS) stability in Escherichia coli via the action of multiple anti-adaptors. Mol Microbiol 68(2):298-313
    • (2008) Mol Microbiol , vol.68 , Issue.2 , pp. 298-313
    • Bougdour, A.1    Cunning, C.2    Baptiste, P.J.3    Elliott, T.4
  • 63
    • 33645522854 scopus 로고    scopus 로고
    • Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli
    • Bougdour A, Wickner S, Gottesman S (2006) Modulating RssB activity: IraP, a novel regulator of sigma(S) stability in Escherichia coli. Genes Dev 20(7):884-897
    • (2006) Genes Dev , vol.20 , Issue.7 , pp. 884-897
    • Bougdour, A.1    Wickner, S.2    Gottesman, S.3
  • 64
    • 79959389010 scopus 로고    scopus 로고
    • AAA+ proteases: ATP-fueled machines of protein destruction
    • Sauer RT, Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587-612
    • (2011) Annu Rev Biochem , vol.80 , pp. 587-612
    • Sauer, R.T.1    Baker, T.A.2
  • 65
    • 70350772363 scopus 로고    scopus 로고
    • Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine
    • Glynn SE, Martin A, Nager AR, Baker TA et al (2009) Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139(4):744-756
    • (2009) Cell , vol.139 , Issue.4 , pp. 744-756
    • Glynn, S.E.1    Martin, A.2    Nager, A.R.3    Baker, T.A.4
  • 66
    • 0348010311 scopus 로고    scopus 로고
    • Crystal structure of ClpX molecular chaperone from Helicobacter pylori
    • Kim DY, Kim KK (2003) Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J Biol Chem 278(50):50664-50670
    • (2003) J Biol Chem , vol.278 , Issue.50 , pp. 50664-50670
    • Kim, D.Y.1    Kim, K.K.2
  • 67
    • 1642325936 scopus 로고    scopus 로고
    • Evolutionary history and higher order classi fication of AAA+ ATPases
    • Iyer LM, Leipe DD, Koonin EV, Aravind L (2004) Evolutionary history and higher order classi fication of AAA+ ATPases. J Struct Biol 146(1-2):11-31
    • (2004) J Struct Biol , vol.146 , Issue.1-2 , pp. 11-31
    • Iyer, L.M.1    Leipe, D.D.2    Koonin, E.V.3    Aravind, L.4
  • 68
    • 0035122947 scopus 로고    scopus 로고
    • Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase
    • Kim YI, Levchenko I, Fraczkowska K, Woodruff RV et al (2001) Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Biol 8(3):230-233
    • (2001) Nat Struct Biol , vol.8 , Issue.3 , pp. 230-233
    • Kim, Y.I.1    Levchenko, I.2    Fraczkowska, K.3    Woodruff, R.V.4
  • 69
    • 0032969563 scopus 로고    scopus 로고
    • AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
    • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9(1):27-43
    • (1999) Genome Res , vol.9 , Issue.1 , pp. 27-43
    • Neuwald, A.F.1    Aravind, L.2    Spouge, J.L.3    Koonin, E.V.4
  • 70
    • 0020002423 scopus 로고
    • E. coli F1-ATPase interacts with a membrane protein component of a proton channel
    • Walker JE, Saraste M, Gay NJ (1982) E. coli F1-ATPase interacts with a membrane protein component of a proton channel. Nature 298(5877):867-869
    • (1982) Nature , vol.298 , Issue.5877 , pp. 867-869
    • Walker, J.E.1    Saraste, M.2    Gay, N.J.3
  • 71
    • 84881533533 scopus 로고    scopus 로고
    • Machines of destruction - AAA+ proteases and the adaptors that control them
    • Dougan DA (ed) Springer, Subcell Biochem
    • Gur E, Ottofuelling R, Dougan DA (2013) Machines of destruction - AAA+ proteases and the adaptors that control them. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:3-33
    • (2013) Regulated proteolysis in microorganisms , vol.66 , pp. 3-33
    • Gur, E.1    Ottofuelling, R.2    Dougan, D.A.3
  • 72
    • 55249118150 scopus 로고    scopus 로고
    • ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: Mechanistic studies of ATP-independent proteolysis
    • Jennings LD, Lun DS, Medard M, Licht S (2008) ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: mechanistic studies of ATP-independent proteolysis. Biochemistry 47(44):11536-11546
    • (2008) Biochemistry , vol.47 , Issue.44 , pp. 11536-11546
    • Jennings, L.D.1    Lun, D.S.2    Medard, M.3    Licht, S.4
  • 73
    • 0030691115 scopus 로고    scopus 로고
    • The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis
    • Wang J, Hartling JA, Flanagan JM (1997) The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell 91(4):447-456
    • (1997) Cell , vol.91 , Issue.4 , pp. 447-456
    • Wang, J.1    Hartling, J.A.2    Flanagan, J.M.3
  • 74
    • 0032524297 scopus 로고    scopus 로고
    • Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP
    • Grimaud R, Kessel M, Beuron F, Steven AC et al (1998) Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J Biol Chem 273(20):12476-12481
    • (1998) J Biol Chem , vol.273 , Issue.20 , pp. 12476-12481
    • Grimaud, R.1    Kessel, M.2    Beuron, F.3    Steven, A.C.4
  • 75
    • 64049095981 scopus 로고    scopus 로고
    • Optimal ef ficiency of ClpAP and ClpXP chaperone- proteases is achieved by architectural symmetry
    • Maglica Z, Kolygo K, Weber-Ban E (2009) Optimal ef ficiency of ClpAP and ClpXP chaperone- proteases is achieved by architectural symmetry. Structure 17(4):508-516
    • (2009) Structure , vol.17 , Issue.4 , pp. 508-516
    • Maglica, Z.1    Kolygo, K.2    Weber-Ban, E.3
  • 76
    • 0037119954 scopus 로고    scopus 로고
    • Alternating translocation of protein substrates from both ends of ClpXP protease
    • Ortega J, Lee HS, Maurizi MR, Steven AC (2002) Alternating translocation of protein substrates from both ends of ClpXP protease. EMBO J 21(18):4938-4949
    • (2002) EMBO J , vol.21 , Issue.18 , pp. 4938-4949
    • Ortega, J.1    Lee, H.S.2    Maurizi, M.R.3    Steven, A.C.4
  • 77
    • 2542443628 scopus 로고    scopus 로고
    • Communication between ClpX and ClpP during substrate processing and degradation
    • Joshi SA, Hersch GL, Baker TA, Sauer RT (2004) Communication between ClpX and ClpP during substrate processing and degradation. Nat Struct Mol Biol 11(5):404-411
    • (2004) Nat Struct Mol Biol , vol.11 , Issue.5 , pp. 404-411
    • Joshi, S.A.1    Hersch, G.L.2    Baker, T.A.3    Sauer, R.T.4
  • 78
    • 34250850205 scopus 로고    scopus 로고
    • Distinct static and dynamic interactions control ATPasepeptidase communication in a AAA+ protease
    • Martin A, Baker TA, Sauer RT (2007) Distinct static and dynamic interactions control ATPasepeptidase communication in a AAA+ protease. Mol Cell 27(1):41-52
    • (2007) Mol Cell , vol.27 , Issue.1 , pp. 41-52
    • Martin, A.1    Baker, T.A.2    Sauer, R.T.3
  • 79
    • 80053167259 scopus 로고    scopus 로고
    • Chemical activators of ClpP: Turning Jekyll into Hyde
    • Dougan DA (2011) Chemical activators of ClpP: turning Jekyll into Hyde. Chem Biol 18(9):1072-1074
    • (2011) Chem Biol , vol.18 , Issue.9 , pp. 1072-1074
    • Dougan, D.A.1
  • 80
    • 71749110235 scopus 로고    scopus 로고
    • The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease
    • Kirstein J, Hoffmann A, Lilie H, Schmidt R et al (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1(1):37-49
    • (2009) EMBO Mol Med , vol.1 , Issue.1 , pp. 37-49
    • Kirstein, J.1    Hoffmann, A.2    Lilie, H.3    Schmidt, R.4
  • 81
    • 77950519954 scopus 로고    scopus 로고
    • Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism
    • Lee BG, Park EY, Lee KE, Jeon H et al (2010) Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 17(4):471-478
    • (2010) Nat Struct Mol Biol , vol.17 , Issue.4 , pp. 471-478
    • Lee, B.G.1    Park, E.Y.2    Lee, K.E.3    Jeon, H.4
  • 82
    • 80053133921 scopus 로고    scopus 로고
    • Activators of cylindrical proteases as antimicrobials: Identi fication and development of small molecule activators of ClpP protease
    • Leung E, Datti A, Cossette M, Goodreid J et al (2011) Activators of cylindrical proteases as antimicrobials: identi fication and development of small molecule activators of ClpP protease. Chem Biol 18(9):1167-1178
    • (2011) Chem Biol , vol.18 , Issue.9 , pp. 1167-1178
    • Leung, E.1    Datti, A.2    Cossette, M.3    Goodreid, J.4
  • 83
    • 77956947687 scopus 로고    scopus 로고
    • Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP
    • Li DH, Chung YS, Gloyd M, Joseph E et al (2010) Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP. Chem Biol 17(9):959-969
    • (2010) Chem Biol , vol.17 , Issue.9 , pp. 959-969
    • Li, D.H.1    Chung, Y.S.2    Gloyd, M.3    Joseph, E.4
  • 84
    • 18144426344 scopus 로고    scopus 로고
    • The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation
    • Gribun A, Kimber MS, Ching R, Sprangers R et al (2005) The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation. J Biol Chem 280(16):16185-16196
    • (2005) J Biol Chem , vol.280 , Issue.16 , pp. 16185-16196
    • Gribun, A.1    Kimber, M.S.2    Ching, R.3    Sprangers, R.4
  • 85
    • 7444254844 scopus 로고    scopus 로고
    • Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP
    • Kang SG, Maurizi MR, Thompson M, Mueser T et al (2004) Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP. J Struct Biol 148(3):338-352
    • (2004) J Struct Biol , vol.148 , Issue.3 , pp. 338-352
    • Kang, S.G.1    Maurizi, M.R.2    Thompson, M.3    Mueser, T.4
  • 86
    • 54349084780 scopus 로고    scopus 로고
    • The ClpP N-terminus coordinates substrate access with protease active site reactivity
    • Jennings LD, Bohon J, Chance MR, Licht S (2008) The ClpP N-terminus coordinates substrate access with protease active site reactivity. Biochemistry 47(42):11031-11040
    • (2008) Biochemistry , vol.47 , Issue.42 , pp. 11031-11040
    • Jennings, L.D.1    Bohon, J.2    Chance, M.R.3    Licht, S.4
  • 87
    • 55549088522 scopus 로고    scopus 로고
    • Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding
    • Martin A, Baker TA, Sauer RT (2008) Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat Struct Mol Biol 15(11):1147-1151
    • (2008) Nat Struct Mol Biol , vol.15 , Issue.11 , pp. 1147-1151
    • Martin, A.1    Baker, T.A.2    Sauer, R.T.3
  • 88
    • 39549084936 scopus 로고    scopus 로고
    • Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates
    • Martin A, Baker TA, Sauer RT (2008) Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol Cell 29(4):441-450
    • (2008) Mol Cell , vol.29 , Issue.4 , pp. 441-450
    • Martin, A.1    Baker, T.A.2    Sauer, R.T.3
  • 89
    • 0037351068 scopus 로고    scopus 로고
    • Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals
    • Flynn JM, Neher SB, Kim YI, Sauer RT et al (2003) Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11(3):671-683
    • (2003) Mol Cell , vol.11 , Issue.3 , pp. 671-683
    • Flynn, J.M.1    Neher, S.B.2    Kim, Y.I.3    Sauer, R.T.4
  • 90
    • 0033638255 scopus 로고    scopus 로고
    • Dynamics of substrate denaturation and translocation by the ClpXP degradation machine
    • Kim YI, Burton RE, Burton BM, Sauer RT et al (2000) Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol Cell 5(4):639-648
    • (2000) Mol Cell , vol.5 , Issue.4 , pp. 639-648
    • Kim, Y.I.1    Burton, R.E.2    Burton, B.M.3    Sauer, R.T.4
  • 91
    • 0034502532 scopus 로고    scopus 로고
    • Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP
    • Ortega J, Singh SK, Ishikawa T, Maurizi MR et al (2000) Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Mol Cell 6(6):1515-1521
    • (2000) Mol Cell , vol.6 , Issue.6 , pp. 1515-1521
    • Ortega, J.1    Singh, S.K.2    Ishikawa, T.3    Maurizi, M.R.4
  • 92
    • 0028365133 scopus 로고
    • Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the multiple array of active sites in ClpP but not ATP hydrolysis
    • Thompson MW, Singh SK, Maurizi MR (1994) Processive degradation of proteins by the ATP-dependent Clp protease from Escherichia coli. Requirement for the multiple array of active sites in ClpP but not ATP hydrolysis. J Biol Chem 269(27):18209-18215
    • (1994) J Biol Chem , vol.269 , Issue.27 , pp. 18209-18215
    • Thompson, M.W.1    Singh, S.K.2    Maurizi, M.R.3
  • 94
    • 1542283751 scopus 로고    scopus 로고
    • Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of speci fic protein substrates
    • Siddiqui SM, Sauer RT, Baker TA (2004) Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of speci fic protein substrates. Genes Dev 18(4):369-374
    • (2004) Genes Dev , vol.18 , Issue.4 , pp. 369-374
    • Siddiqui, S.M.1    Sauer, R.T.2    Baker, T.A.3
  • 95
    • 0035096082 scopus 로고    scopus 로고
    • Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism
    • Wang J, Song JJ, Franklin MC, Kamtekar S et al (2001) Crystal structures of the HslVU peptidase-ATPase complex reveal an ATP-dependent proteolysis mechanism. Structure 9(2):177-184
    • (2001) Structure , vol.9 , Issue.2 , pp. 177-184
    • Wang, J.1    Song, J.J.2    Franklin, M.C.3    Kamtekar, S.4
  • 96
    • 0348010363 scopus 로고    scopus 로고
    • Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis
    • Yamada-Inagawa T, Okuno T, Karata K, Yamanaka K et al (2003) Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J Biol Chem 278(50):50182-50187
    • (2003) J Biol Chem , vol.278 , Issue.50 , pp. 50182-50187
    • Yamada-Inagawa, T.1    Okuno, T.2    Karata, K.3    Yamanaka, K.4
  • 97
    • 3142657524 scopus 로고    scopus 로고
    • Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104
    • Lum R, Tkach JM, Vierling E, Glover JR (2004) Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem 279(28): 29139-29146
    • (2004) J Biol Chem , vol.279 , Issue.28 , pp. 29139-29146
    • Lum, R.1    Tkach, J.M.2    Vierling, E.3    Glover, J.R.4
  • 98
    • 0034596991 scopus 로고    scopus 로고
    • Subunit-speci fic degradation of the UmuD/D ′ heterodimer by the ClpXP protease: The role of trans recognition in UmuD ′ stability
    • Gonzalez M, Rasulova F, Maurizi MR, Woodgate R (2000) Subunit-speci fic degradation of the UmuD/D ′ heterodimer by the ClpXP protease: the role of trans recognition in UmuD ′ stability. EMBO J 19(19):5251-5258
    • (2000) EMBO J , vol.19 , Issue.19 , pp. 5251-5258
    • Gonzalez, M.1    Rasulova, F.2    Maurizi, M.R.3    Woodgate, R.4
  • 99
    • 0141957392 scopus 로고    scopus 로고
    • Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX
    • Dougan DA, Weber-Ban E, Bukau B (2003) Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX. Mol Cell 12(2):373-380
    • (2003) Mol Cell , vol.12 , Issue.2 , pp. 373-380
    • Dougan, D.A.1    Weber-Ban, E.2    Bukau, B.3
  • 100
    • 0345687188 scopus 로고    scopus 로고
    • Distinct peptide signals in the UmuD and UmuD ′ subunits of UmuD/D ′ mediate tethering and substrate processing by the ClpXP protease
    • Neher SB, Sauer RT, Baker TA (2003) Distinct peptide signals in the UmuD and UmuD ′ subunits of UmuD/D ′ mediate tethering and substrate processing by the ClpXP protease. Proc Natl Acad Sci U S A 100(23):13219-13224
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.23 , pp. 13219-13224
    • Neher, S.B.1    Sauer, R.T.2    Baker, T.A.3
  • 101
    • 0141888401 scopus 로고    scopus 로고
    • Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease
    • Wah DA, Levchenko I, Rieckhof GE, Bolon DN et al (2003) Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol Cell 12(2):355-363
    • (2003) Mol Cell , vol.12 , Issue.2 , pp. 355-363
    • Wah, D.A.1    Levchenko, I.2    Rieckhof, G.E.3    Bolon, D.N.4
  • 102
    • 33744983969 scopus 로고    scopus 로고
    • Structural classi fication of bacterial response regulators: Diversity of output domains and domain combinations
    • Galperin MY (2006) Structural classi fication of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol 188(12):4169-4182
    • (2006) J Bacteriol , vol.188 , Issue.12 , pp. 4169-4182
    • Galperin, M.Y.1
  • 103
    • 6044235523 scopus 로고    scopus 로고
    • RpoS proteolysis is regulated by a mechanism that does not require the SprE (RssB) response regulator phosphorylation site
    • Peterson CN, Ruiz N, Silhavy TJ (2004) RpoS proteolysis is regulated by a mechanism that does not require the SprE (RssB) response regulator phosphorylation site. J Bacteriol 186(21):7403-7410
    • (2004) J Bacteriol , vol.186 , Issue.21 , pp. 7403-7410
    • Peterson, C.N.1    Ruiz, N.2    Silhavy, T.J.3
  • 104
    • 0029812828 scopus 로고    scopus 로고
    • Signal termination in bacterial chemotaxis: CheZ mediates dephosphorylation of free rather than switch-bound CheY
    • Bren A, Welch M, Blat Y, Eisenbach M (1996) Signal termination in bacterial chemotaxis: CheZ mediates dephosphorylation of free rather than switch-bound CheY. Proc Natl Acad Sci U S A 93(19):10090-10093
    • (1996) Proc Natl Acad Sci U S A , vol.93 , Issue.19 , pp. 10090-10093
    • Bren, A.1    Welch, M.2    Blat, Y.3    Eisenbach, M.4
  • 105
    • 0023723766 scopus 로고
    • Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis
    • Hess JF, Bourret RB, Simon MI (1988) Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Nature 336(6195):139-143
    • (1988) Nature , vol.336 , Issue.6195 , pp. 139-143
    • Hess, J.F.1    Bourret, R.B.2    Simon, M.I.3
  • 106
    • 34547743126 scopus 로고    scopus 로고
    • Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllo fluoride
    • Bachhawat P, Stock AM (2007) Crystal structures of the receiver domain of the response regulator PhoP from Escherichia coli in the absence and presence of the phosphoryl analog beryllo fluoride. J Bacteriol 189(16):5987-5995
    • (2007) J Bacteriol , vol.189 , Issue.16 , pp. 5987-5995
    • Bachhawat, P.1    Stock, A.M.2
  • 107
    • 24344476732 scopus 로고    scopus 로고
    • Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states
    • Bachhawat P, Swapna GV, Montelione GT, Stock AM (2005) Mechanism of activation for transcription factor PhoB suggested by different modes of dimerization in the inactive and active states. Structure 13(9):1353-1363
    • (2005) Structure , vol.13 , Issue.9 , pp. 1353-1363
    • Bachhawat, P.1    Swapna, G.V.2    Montelione, G.T.3    Stock, A.M.4
  • 108
    • 0035844214 scopus 로고    scopus 로고
    • Crystal structure of activated CheY. Comparison with other activated receiver domains
    • Lee SY, Cho HS, Pelton JG, Yan D et al (2001) Crystal structure of activated CheY. Comparison with other activated receiver domains. J Biol Chem 276(19):16425-16431
    • (2001) J Biol Chem , vol.276 , Issue.19 , pp. 16425-16431
    • Lee, S.Y.1    Cho, H.S.2    Pelton, J.G.3    Yan, D.4
  • 109
    • 18144411635 scopus 로고    scopus 로고
    • Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: A symmetric dimer mediated by the alpha4-beta5-alpha5 face
    • Toro-Roman A, Mack TR, Stock AM (2005) Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: a symmetric dimer mediated by the alpha4-beta5-alpha5 face. J Mol Biol 349(1):11-26
    • (2005) J Mol Biol , vol.349 , Issue.1 , pp. 11-26
    • Toro-Roman, A.1    Mack, T.R.2    Stock, A.M.3
  • 110
    • 28844432653 scopus 로고    scopus 로고
    • A common dimerization interface in bacterial response regulators KdpE and TorR
    • Toro-Roman A, Wu T, Stock AM (2005) A common dimerization interface in bacterial response regulators KdpE and TorR. Protein Sci 14(12):3077-3088
    • (2005) Protein Sci , vol.14 , Issue.12 , pp. 3077-3088
    • Toro-Roman, A.1    Wu, T.2    Stock, A.M.3
  • 111
    • 0041465001 scopus 로고    scopus 로고
    • Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX
    • Studemann A, Noirclerc-Savoye M, Klauck E, Becker G et al (2003) Sequential recognition of two distinct sites in sigma(S) by the proteolytic targeting factor RssB and ClpX. EMBO J 22(16):4111-4120
    • (2003) EMBO J , vol.22 , Issue.16 , pp. 4111-4120
    • Studemann, A.1    Noirclerc-Savoye, M.2    Klauck, E.3    Becker, G.4
  • 112
    • 0028145628 scopus 로고
    • Identi fication of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis
    • D'Souza C, Nakano MM, Zuber P (1994) Identi fication of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proc Natl Acad Sci U S A 91(20):9397-9401
    • (1994) Proc Natl Acad Sci U S A , vol.91 , Issue.20 , pp. 9397-9401
    • D'Souza, C.1    Nakano, M.M.2    Zuber, P.3
  • 113
    • 0028964280 scopus 로고
    • A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis
    • Hamoen LW, Eshuis H, Jongbloed J, Venema G et al (1995) A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Mol Microbiol 15(1):55-63
    • (1995) Mol Microbiol , vol.15 , Issue.1 , pp. 55-63
    • Hamoen, L.W.1    Eshuis, H.2    Jongbloed, J.3    Venema, G.4
  • 114
    • 0031030242 scopus 로고    scopus 로고
    • Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis
    • Turgay K, Hamoen LW, Venema G, Dubnau D (1997) Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev 11(1):119-128
    • (1997) Genes Dev , vol.11 , Issue.1 , pp. 119-128
    • Turgay, K.1    Hamoen, L.W.2    Venema, G.3    Dubnau, D.4
  • 115
    • 0032796135 scopus 로고    scopus 로고
    • The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch
    • Persuh M, Turgay K, Mandic-Mulec I, Dubnau D (1999) The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Mol Microbiol 33(4):886-894
    • (1999) Mol Microbiol , vol.33 , Issue.4 , pp. 886-894
    • Persuh, M.1    Turgay, K.2    Mandic-Mulec, I.3    Dubnau, D.4
  • 116
    • 0032538886 scopus 로고    scopus 로고
    • Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor
    • Turgay K, Hahn J, Burghoorn J, Dubnau D (1998) Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17(22):6730-6738
    • (1998) EMBO J , vol.17 , Issue.22 , pp. 6730-6738
    • Turgay, K.1    Hahn, J.2    Burghoorn, J.3    Dubnau, D.4
  • 117
    • 0032971882 scopus 로고    scopus 로고
    • Mutational analysis of ComS: Evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis
    • Ogura M, Liu L, Lacelle M, Nakano MM et al (1999) Mutational analysis of ComS: evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Mol Microbiol 32(4):799-812
    • (1999) Mol Microbiol , vol.32 , Issue.4 , pp. 799-812
    • Ogura, M.1    Liu, L.2    Lacelle, M.3    Nakano, M.M.4
  • 118
    • 34547913090 scopus 로고    scopus 로고
    • ppGpp regulation of RpoS degradation via anti-adaptor protein IraP
    • Bougdour A, Gottesman S (2007) ppGpp regulation of RpoS degradation via anti-adaptor protein IraP. Proc Natl Acad Sci U S A 104(31):12896-12901
    • (2007) Proc Natl Acad Sci U S A , vol.104 , Issue.31 , pp. 12896-12901
    • Bougdour, A.1    Gottesman, S.2
  • 119
    • 0016373748 scopus 로고
    • Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs
    • Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84(3):389-398
    • (1974) J Mol Biol , vol.84 , Issue.3 , pp. 389-398
    • Tissieres, A.1    Mitchell, H.K.2    Tracy, U.M.3
  • 120
    • 0026696625 scopus 로고
    • Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32
    • Gamer J, Bujard H, Bukau B (1992) Physical interaction between heat shock proteins DnaK, DnaJ, and GrpE and the bacterial heat shock transcription factor sigma 32. Cell 69(5):833-842
    • (1992) Cell , vol.69 , Issue.5 , pp. 833-842
    • Gamer, J.1    Bujard, H.2    Bukau, B.3
  • 121
    • 8644290874 scopus 로고    scopus 로고
    • A chaperone network controls the heat shock response in E. coli
    • Guisbert E, Herman C, Lu CZ, Gross CA (2004) A chaperone network controls the heat shock response in E. coli. Genes Dev 18(22):2812-2821
    • (2004) Genes Dev , vol.18 , Issue.22 , pp. 2812-2821
    • Guisbert, E.1    Herman, C.2    Lu, C.Z.3    Gross, C.A.4
  • 122
    • 0023240043 scopus 로고
    • The heat shock response of E. coli is regulated by changes in the concentration of sigma 32
    • Straus DB, Walter WA, Gross CA (1987) The heat shock response of E. coli is regulated by changes in the concentration of sigma 32. Nature 329(6137):348-351
    • (1987) Nature , vol.329 , Issue.6137 , pp. 348-351
    • Straus, D.B.1    Walter, W.A.2    Gross, C.A.3
  • 123
    • 0028985616 scopus 로고
    • Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by H fl B
    • Herman C, Thevenet D, D'Ari R, Bouloc P (1995) Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by H fl B. Proc Natl Acad Sci U S A 92(8):3516-3520
    • (1995) Proc Natl Acad Sci U S A , vol.92 , Issue.8 , pp. 3516-3520
    • Herman, C.1    Thevenet, D.2    D'Ari, R.3    Bouloc, P.4
  • 124
    • 0030613795 scopus 로고    scopus 로고
    • Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli
    • Kanemori M, Nishihara K, Yanagi H, Yura T (1997) Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J Bacteriol 179(23):7219-7225
    • (1997) J Bacteriol , vol.179 , Issue.23 , pp. 7219-7225
    • Kanemori, M.1    Nishihara, K.2    Yanagi, H.3    Yura, T.4
  • 125
    • 0029060112 scopus 로고
    • Escherichia coli FtsH is a membrane- bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32
    • Tomoyasu T, Gamer J, Bukau B, Kanemori M et al (1995) Escherichia coli FtsH is a membrane- bound, ATP-dependent protease which degrades the heat-shock transcription factor sigma 32. EMBO J 14(11):2551-2560
    • (1995) EMBO J , vol.14 , Issue.11 , pp. 2551-2560
    • Tomoyasu, T.1    Gamer, J.2    Bukau, B.3    Kanemori, M.4
  • 126
    • 0033681249 scopus 로고    scopus 로고
    • Crystal and solution structures of an HslUV protease-chaperone complex
    • Sousa MC, Trame CB, Tsuruta H, Wilbanks SM et al (2000) Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103(4):633-643
    • (2000) Cell , vol.103 , Issue.4 , pp. 633-643
    • Sousa, M.C.1    Trame, C.B.2    Tsuruta, H.3    Wilbanks, S.M.4
  • 127
    • 84900995914 scopus 로고    scopus 로고
    • FtsH protease-mediated regulation of various cellular functions
    • Dougan DA (ed) Springer, Subcell Biochem
    • Okuno T, Ogura T (2013) FtsH protease-mediated regulation of various cellular functions. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:53-69
    • (2013) Regulated proteolysis in microorganisms , vol.66 , pp. 53-69
    • Okuno, T.1    Ogura, T.2
  • 128
    • 0033618309 scopus 로고    scopus 로고
    • Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation
    • Kanemori M, Yanagi H, Yura T (1999) Marked instability of the sigma(32) heat shock transcription factor at high temperature. Implications for heat shock regulation. J Biol Chem 274(31):22002-22007
    • (1999) J Biol Chem , vol.274 , Issue.31 , pp. 22002-22007
    • Kanemori, M.1    Yanagi, H.2    Yura, T.3
  • 129
    • 55249108963 scopus 로고    scopus 로고
    • Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones
    • Rodriguez F, Arsene-Ploetze F, Rist W, Rudiger S et al (2008) Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones. Mol Cell 32(3):347-358
    • (2008) Mol Cell , vol.32 , Issue.3 , pp. 347-358
    • Rodriguez, F.1    Arsene-Ploetze, F.2    Rist, W.3    Rudiger, S.4
  • 130
    • 7744233862 scopus 로고    scopus 로고
    • Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity
    • Horikoshi M, Yura T, Tsuchimoto S, Fukumori Y et al (2004) Conserved region 2.1 of Escherichia coli heat shock transcription factor sigma32 is required for modulating both metabolic stability and transcriptional activity. J Bacteriol 186(22):7474-7480
    • (2004) J Bacteriol , vol.186 , Issue.22 , pp. 7474-7480
    • Horikoshi, M.1    Yura, T.2    Tsuchimoto, S.3    Fukumori, Y.4
  • 131
    • 34547918032 scopus 로고    scopus 로고
    • Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not suf ficient for degradation by the FtsH protease
    • Obrist M, Milek S, Klauck E, Hengge R et al (2007) Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is necessary but not suf ficient for degradation by the FtsH protease. Microbiology 153(Pt 8):2560-2571
    • (2007) Microbiology , vol.153 , pp. 2560-2571
    • Obrist, M.1    Milek, S.2    Klauck, E.3    Hengge, R.4
  • 132
    • 0344211512 scopus 로고    scopus 로고
    • Lack of a robust unfoldase activity confers a unique level of substrate speci ficity to the universal AAA protease FtsH
    • Herman C, Prakash S, Lu CZ, Matouschek A et al (2003) Lack of a robust unfoldase activity confers a unique level of substrate speci ficity to the universal AAA protease FtsH. Mol Cell 11(3):659-669
    • (2003) Mol Cell , vol.11 , Issue.3 , pp. 659-669
    • Herman, C.1    Prakash, S.2    Lu, C.Z.3    Matouschek, A.4
  • 133
    • 84855198122 scopus 로고    scopus 로고
    • Structure and function of the bacterial AAA protease FtsH
    • Langklotz S, Baumann U, Narberhaus F (2012) Structure and function of the bacterial AAA protease FtsH. Biochim Biophys Acta 1823(1):40-48
    • (2012) Biochim Biophys Acta , vol.1823 , Issue.1 , pp. 40-48
    • Langklotz, S.1    Baumann, U.2    Narberhaus, F.3
  • 134
    • 57449104565 scopus 로고    scopus 로고
    • Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease
    • Obrist M, Langklotz S, Milek S, Fuhrer F et al (2009) Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease. FEMS Microbiol Lett 290(2):199-208
    • (2009) FEMS Microbiol Lett , vol.290 , Issue.2 , pp. 199-208
    • Obrist, M.1    Langklotz, S.2    Milek, S.3    Fuhrer, F.4
  • 135
    • 0034805893 scopus 로고    scopus 로고
    • The C terminus of sigma(32) is not essential for degradation by FtsH
    • Tomoyasu T, Arsene F, Ogura T, Bukau B (2001) The C terminus of sigma(32) is not essential for degradation by FtsH. J Bacteriol 183(20):5911-5917
    • (2001) J Bacteriol , vol.183 , Issue.20 , pp. 5911-5917
    • Tomoyasu, T.1    Arsene, F.2    Ogura, T.3    Bukau, B.4
  • 136
    • 0033520987 scopus 로고    scopus 로고
    • Posttranslational quality control: Folding, refolding, and degrading proteins
    • Wickner S, Maurizi MR, Gottesman S (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science 286(5446):1888-1893
    • (1999) Science , vol.286 , Issue.5446 , pp. 1888-1893
    • Wickner, S.1    Maurizi, M.R.2    Gottesman, S.3
  • 137
    • 50049083221 scopus 로고    scopus 로고
    • Recognition of misfolded proteins by Lon, a AAA(+) protease
    • Gur E, Sauer RT (2008) Recognition of misfolded proteins by Lon, a AAA(+) protease. Genes Dev 22(16):2267-2277
    • (2008) Genes Dev , vol.22 , Issue.16 , pp. 2267-2277
    • Gur, E.1    Sauer, R.T.2
  • 138
    • 0036210995 scopus 로고    scopus 로고
    • ClpS, a substrate modulator of the ClpAP machine
    • Dougan DA, Reid BG, Horwich AL, Bukau B (2002) ClpS, a substrate modulator of the ClpAP machine. Mol Cell 9(3):673-683
    • (2002) Mol Cell , vol.9 , Issue.3 , pp. 673-683
    • Dougan, D.A.1    Reid, B.G.2    Horwich, A.L.3    Bukau, B.4
  • 139
    • 25144452838 scopus 로고    scopus 로고
    • Cytoplasmic degradation of ssrA-tagged proteins
    • Farrell CM, Grossman AD, Sauer RT (2005) Cytoplasmic degradation of ssrA-tagged proteins. Mol Microbiol 57(6):1750-1761
    • (2005) Mol Microbiol , vol.57 , Issue.6 , pp. 1750-1761
    • Farrell, C.M.1    Grossman, A.D.2    Sauer, R.T.3
  • 140
    • 0033573135 scopus 로고    scopus 로고
    • Identi fication of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB
    • Mogk A, Tomoyasu T, Goloubinoff P, Rudiger S et al (1999) Identi fication of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. EMBO J 18(24):6934-6949
    • (1999) EMBO J , vol.18 , Issue.24 , pp. 6934-6949
    • Mogk, A.1    Tomoyasu, T.2    Goloubinoff, P.3    Rudiger, S.4
  • 141
    • 0033598703 scopus 로고    scopus 로고
    • Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network
    • Goloubinoff P, Mogk A, Zvi AP, Tomoyasu T et al (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci U S A 96(24):13732-13737
    • (1999) Proc Natl Acad Sci U S A , vol.96 , Issue.24 , pp. 13732-13737
    • Goloubinoff, P.1    Mogk, A.2    Zvi, A.P.3    Tomoyasu, T.4
  • 142
    • 0037418224 scopus 로고    scopus 로고
    • MecA, an adaptor protein necessary for ClpC chaperone activity
    • Schlothauer T, Mogk A, Dougan DA, Bukau B et al (2003) MecA, an adaptor protein necessary for ClpC chaperone activity. Proc Natl Acad Sci U S A 100(5):2306-2311
    • (2003) Proc Natl Acad Sci U S A , vol.100 , Issue.5 , pp. 2306-2311
    • Schlothauer, T.1    Mogk, A.2    Dougan, D.A.3    Bukau, B.4
  • 143
    • 0029000134 scopus 로고
    • The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate speci ficity component of the ClpPClpX protease, is a novel molecular chaperone
    • Wawrzynow A, Wojtkowiak D, Marszalek J, Banecki B et al (1995) The ClpX heat-shock protein of Escherichia coli, the ATP-dependent substrate speci ficity component of the ClpPClpX protease, is a novel molecular chaperone. EMBO J 14(9):1867-1877
    • (1995) EMBO J , vol.14 , Issue.9 , pp. 1867-1877
    • Wawrzynow, A.1    Wojtkowiak, D.2    Marszalek, J.3    Banecki, B.4
  • 144
    • 4344696027 scopus 로고    scopus 로고
    • The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis
    • Kock H, Gerth U, Hecker M (2004) The ClpP peptidase is the major determinant of bulk protein turnover in Bacillus subtilis. J Bacteriol 186(17):5856-5864
    • (2004) J Bacteriol , vol.186 , Issue.17 , pp. 5856-5864
    • Kock, H.1    Gerth, U.2    Hecker, M.3
  • 145
    • 33745434063 scopus 로고    scopus 로고
    • Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control
    • Miethke M, Hecker M, Gerth U (2006) Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. J Bacteriol 188(13):4610-4619
    • (2006) J Bacteriol , vol.188 , Issue.13 , pp. 4610-4619
    • Miethke, M.1    Hecker, M.2    Gerth, U.3
  • 146
    • 0036810483 scopus 로고    scopus 로고
    • Protein folding and degradation in bacteria: To degrade or not to degrade? That is the question
    • Dougan DA, Mogk A, Bukau B (2002) Protein folding and degradation in bacteria: to degrade or not to degrade? That is the question. Cell Mol Life Sci 59(10):1607-1616
    • (2002) Cell Mol Life Sci , vol.59 , Issue.10 , pp. 1607-1616
    • Dougan, D.A.1    Mogk, A.2    Bukau, B.3
  • 147
    • 16844368450 scopus 로고    scopus 로고
    • The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state
    • Matuszewska M, Kuczynska-Wisnik D, Laskowska E, Liberek K (2005) The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem 280(13):12292-12298
    • (2005) J Biol Chem , vol.280 , Issue.13 , pp. 12292-12298
    • Matuszewska, M.1    Kuczynska-Wisnik, D.2    Laskowska, E.3    Liberek, K.4
  • 148
    • 0142125283 scopus 로고    scopus 로고
    • Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation
    • Mogk A, Deuerling E, Vorderwulbecke S, Vierling E et al (2003) Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol Microbiol 50(2):585-595
    • (2003) Mol Microbiol , vol.50 , Issue.2 , pp. 585-595
    • Mogk, A.1    Deuerling, E.2    Vorderwulbecke, S.3    Vierling, E.4
  • 149
    • 77949346874 scopus 로고    scopus 로고
    • The IbpA and IbpB small heatshock proteins are substrates of the AAA+ Lon protease
    • Bissonnette SA, Rivera-Rivera I, Sauer RT, Baker TA (2010) The IbpA and IbpB small heatshock proteins are substrates of the AAA+ Lon protease. Mol Microbiol 75(6):1539-1549
    • (2010) Mol Microbiol , vol.75 , Issue.6 , pp. 1539-1549
    • Bissonnette, S.A.1    Rivera-Rivera, I.2    Sauer, R.T.3    Baker, T.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.