-
1
-
-
79959389010
-
AAA+ proteases: ATP-fueled machines of protein destruction
-
Sauer RT, Baker TA (2011) AAA+ proteases: ATP-fueled machines of protein destruction. Annu Rev Biochem 80:587-612
-
(2011)
Annu Rev Biochem
, vol.80
, pp. 587-612
-
-
Sauer, R.T.1
Baker, T.A.2
-
2
-
-
84893728860
-
The Pup-proteasome system of Mycobacterium tuberculosis
-
Dougan DA (ed) Springer, Subcell Biochem
-
Samanovic M, Li H, Darwin KH (2013) The Pup-proteasome system of Mycobacterium tuberculosis. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:267-295
-
(2013)
Regulated proteolysis in microorganisms
, vol.66
, pp. 267-295
-
-
Samanovic, M.1
Li, H.2
Darwin, K.H.3
-
3
-
-
84881486320
-
General and regulatory proteolysis in Bacillus subtilis
-
Dougan DA (ed) Springer, Subcell Biochem
-
Molière N, Turgay K (2013) General and regulatory proteolysis in Bacillus subtilis. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:73-103
-
(2013)
Regulated proteolysis in microorganisms
, vol.66
, pp. 73-103
-
-
Molière, N.1
Turgay, K.2
-
4
-
-
84883575316
-
The Lon AAA+ protease
-
Dougan DA (ed) Springer, Subcell Biochem
-
Gur E (2013) The Lon AAA+ protease. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:35-51
-
(2013)
Regulated proteolysis in microorganisms
, vol.66
, pp. 35-51
-
-
Gur, E.1
-
5
-
-
84900995914
-
FtsH protease-mediated regulation of various cellular functions
-
Dougan DA (ed) Springer, Subcell Biochem
-
Okuno T, Ogura T (2013) FtsH protease-mediated regulation of various cellular functions. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:53-69
-
(2013)
Regulated proteolysis in microorganisms
, vol.66
, pp. 53-69
-
-
Okuno, T.1
Ogura, T.2
-
6
-
-
84880692365
-
Regulated proteolysis: Control of the Escherichia coli s E-dependent cell envelope stress response
-
Dougan DA (ed) Springer, Subcell Biochem
-
Barchinger SE, Ades SE (2013) Regulated proteolysis: control of the Escherichia coli s E-dependent cell envelope stress response. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:129-160
-
(2013)
Regulated proteolysis in microorganisms
, vol.66
, pp. 129-160
-
-
Barchinger, S.E.1
Ades, S.E.2
-
7
-
-
84881497804
-
Proteolytic regulation of stress response pathways in Escherichia coli
-
Dougan DA (ed) Springer, Subcell Biochem
-
Micevski D, Dougan DA (2013) Proteolytic regulation of stress response pathways in Escherichia coli. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:105-128
-
(2013)
Regulated proteolysis in microorganisms
, vol.66
, pp. 105-128
-
-
Micevski, D.1
Dougan, D.A.2
-
9
-
-
77951554481
-
Caenorhabditis elegans as a model system to study intercompartmental proteostasis: Interrelation of mitochondrial function, longevity, and neurodegenerative diseases
-
Kirstein-Miles J, Morimoto RI (2010) Caenorhabditis elegans as a model system to study intercompartmental proteostasis: interrelation of mitochondrial function, longevity, and neurodegenerative diseases. Dev Dyn 239(5):1529-1538
-
(2010)
Dev Dyn
, vol.239
, Issue.5
, pp. 1529-1538
-
-
Kirstein-Miles, J.1
Morimoto, R.I.2
-
10
-
-
84055190893
-
Unfolded protein responses in bacteria and mitochondria: A central role for the ClpXP machine
-
Truscott KN, Bezawork-Geleta A, Dougan DA (2011) Unfolded protein responses in bacteria and mitochondria: a central role for the ClpXP machine. IUBMB Life 63(11):955-963
-
(2011)
IUBMB Life
, vol.63
, Issue.11
, pp. 955-963
-
-
Truscott, K.N.1
Bezawork-Geleta, A.2
Dougan, D.A.3
-
11
-
-
84859863110
-
Proteolytic system of plant mitochondria
-
Kwasniak M, Pogorzelec L, Migdal I, Smakowska E et al (2012) Proteolytic system of plant mitochondria. Physiol Plant 145(1):187-195
-
(2012)
Physiol Plant
, vol.145
, Issue.1
, pp. 187-195
-
-
Kwasniak, M.1
Pogorzelec, L.2
Migdal, I.3
Smakowska, E.4
-
12
-
-
75349107775
-
Diverse functions of mitochondrial AAA+ proteins: Protein activation, disaggregation, and degradation
-
Truscott KN, Lowth BR, Strack PR, Dougan DA (2010) Diverse functions of mitochondrial AAA+ proteins: protein activation, disaggregation, and degradation. Biochem Cell Biol 88(1):97-108
-
(2010)
Biochem Cell Biol
, vol.88
, Issue.1
, pp. 97-108
-
-
Truscott, K.N.1
Lowth, B.R.2
Strack, P.R.3
Dougan, D.A.4
-
13
-
-
0031737552
-
Mcx1p, a ClpX homologue in mitochondria of Saccharomyces cerevisiae
-
van Dyck L, Dembowski M, Neupert W, Langer T (1998) Mcx1p, a ClpX homologue in mitochondria of Saccharomyces cerevisiae. FEBS Lett 438(3):250-254
-
(1998)
FEBS Lett
, vol.438
, Issue.3
, pp. 250-254
-
-
van Dyck, L.1
Dembowski, M.2
Neupert, W.3
Langer, T.4
-
14
-
-
84897472990
-
The role of AAA+ proteases in mitochondrial protein biogenesis, homeostasis and activity control
-
Dougan DA (ed) Springer, Subcell Biochem
-
Voos W, Ward L, Truscott KN (2013) The role of AAA+ proteases in mitochondrial protein biogenesis, homeostasis and activity control. In: Dougan DA (ed) Regulated proteolysis in microorganisms. Springer, Subcell Biochem 66:223-263
-
(2013)
Regulated proteolysis in microorganisms
, vol.66
, pp. 223-263
-
-
Voos, W.1
Ward, L.2
Truscott, K.N.3
-
15
-
-
84859848962
-
The chloroplast ATP-dependent Clp protease in vascular plants - new dimensions and future challenges
-
Clarke AK (2012) The chloroplast ATP-dependent Clp protease in vascular plants - new dimensions and future challenges. Physiol Plant 145(1):235-244
-
(2012)
Physiol Plant
, vol.145
, Issue.1
, pp. 235-244
-
-
Clarke, A.K.1
-
16
-
-
79958140971
-
The Clp protease system; a central component of the chloroplast protease network
-
Olinares PD, Kim J, van Wijk KJ (2011) The Clp protease system; a central component of the chloroplast protease network. Biochim Biophys Acta 1807(8):999-1011
-
(2011)
Biochim Biophys Acta
, vol.1807
, Issue.8
, pp. 999-1011
-
-
Olinares, P.D.1
Kim, J.2
van Wijk, K.J.3
-
17
-
-
0034677361
-
The structures of HsIU and the ATP-dependent protease HsIU-HsIV
-
Bochtler M, Hartmann C, Song HK, Bourenkov GP et al (2000) The structures of HsIU and the ATP-dependent protease HsIU-HsIV. Nature 403(6771):800-805
-
(2000)
Nature
, vol.403
, Issue.6771
, pp. 800-805
-
-
Bochtler, M.1
Hartmann, C.2
Song, H.K.3
Bourenkov, G.P.4
-
18
-
-
0033681249
-
Crystal and solution structures of an HslUV protease-chaperone complex
-
Sousa MC, Trame CB, Tsuruta H, Wilbanks SM et al (2000) Crystal and solution structures of an HslUV protease-chaperone complex. Cell 103(4):633-643
-
(2000)
Cell
, vol.103
, Issue.4
, pp. 633-643
-
-
Sousa, M.C.1
Trame, C.B.2
Tsuruta, H.3
Wilbanks, S.M.4
-
19
-
-
64049095981
-
Optimal ef ficiency of ClpAP and ClpXP chaperone- proteases is achieved by architectural symmetry
-
Maglica Z, Kolygo K, Weber-Ban E (2009) Optimal ef ficiency of ClpAP and ClpXP chaperone- proteases is achieved by architectural symmetry. Structure 17(4):508-516
-
(2009)
Structure
, vol.17
, Issue.4
, pp. 508-516
-
-
Maglica, Z.1
Kolygo, K.2
Weber-Ban, E.3
-
20
-
-
0030691115
-
The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis
-
Wang J, Hartling JA, Flanagan JM (1997) The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell 91(4):447-456
-
(1997)
Cell
, vol.91
, Issue.4
, pp. 447-456
-
-
Wang, J.1
Hartling, J.A.2
Flanagan, J.M.3
-
21
-
-
18144426344
-
The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation
-
Gribun A, Kimber MS, Ching R, Sprangers R et al (2005) The ClpP double ring tetradecameric protease exhibits plastic ring-ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation. J Biol Chem 280(16):16185-16196
-
(2005)
J Biol Chem
, vol.280
, Issue.16
, pp. 16185-16196
-
-
Gribun, A.1
Kimber, M.S.2
Ching, R.3
Sprangers, R.4
-
22
-
-
28044440088
-
Quantitative NMR spectroscopy of supramolecular complexes: Dynamic side pores in ClpP are important for product release
-
Sprangers R, Gribun A, Hwang PM, Houry WA et al (2005) Quantitative NMR spectroscopy of supramolecular complexes: dynamic side pores in ClpP are important for product release. Proc Natl Acad Sci U S A 102(46):16678-16683
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, Issue.46
, pp. 16678-16683
-
-
Sprangers, R.1
Gribun, A.2
Hwang, P.M.3
Houry, W.A.4
-
23
-
-
0025358672
-
Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli
-
Maurizi MR, Clark WP, Katayama Y, Rudikoff S et al (1990) Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265(21):12536-12545
-
(1990)
J Biol Chem
, vol.265
, Issue.21
, pp. 12536-12545
-
-
Maurizi, M.R.1
Clark, W.P.2
Katayama, Y.3
Rudikoff, S.4
-
24
-
-
0027382271
-
A comparative study of the chymotrypsin-like activity of the rat liver multicatalytic proteinase and the ClpP from Escherichia coli
-
Arribas J, Castano JG (1993) A comparative study of the chymotrypsin-like activity of the rat liver multicatalytic proteinase and the ClpP from Escherichia coli. J Biol Chem 268(28): 21165-21171
-
(1993)
J Biol Chem
, vol.268
, Issue.28
, pp. 21165-21171
-
-
Arribas, J.1
Castano, J.G.2
-
25
-
-
0028305742
-
Activity and speci ficity of Escherichia coli ClpAP protease in cleaving model peptide substrates
-
Thompson MW, Maurizi MR (1994) Activity and speci ficity of Escherichia coli ClpAP protease in cleaving model peptide substrates. J Biol Chem 269(27):18201-18208
-
(1994)
J Biol Chem
, vol.269
, Issue.27
, pp. 18201-18208
-
-
Thompson, M.W.1
Maurizi, M.R.2
-
26
-
-
55249118150
-
ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: Mechanistic studies of ATP-independent proteolysis
-
Jennings LD, Lun DS, Medard M, Licht S (2008) ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: mechanistic studies of ATP-independent proteolysis. Biochemistry 47(44):11536-11546
-
(2008)
Biochemistry
, vol.47
, Issue.44
, pp. 11536-11546
-
-
Jennings, L.D.1
Lun, D.S.2
Medard, M.3
Licht, S.4
-
27
-
-
77952592280
-
Local and global mobility in the ClpA AAA+ chaperone detected by cryo-electron microscopy: Functional connotations
-
Effantin G, Ishikawa T, De Donatis GM, Maurizi MR et al (2010) Local and global mobility in the ClpA AAA+ chaperone detected by cryo-electron microscopy: functional connotations. Structure 18(5):553-562
-
(2010)
Structure
, vol.18
, Issue.5
, pp. 553-562
-
-
Effantin, G.1
Ishikawa, T.2
De Donatis, G.M.3
Maurizi, M.R.4
-
28
-
-
54349084780
-
The ClpP N-terminus coordinates substrate access with protease active site reactivity
-
Jennings LD, Bohon J, Chance MR, Licht S (2008) The ClpP N-terminus coordinates substrate access with protease active site reactivity. Biochemistry 47(42):11031-11040
-
(2008)
Biochemistry
, vol.47
, Issue.42
, pp. 11031-11040
-
-
Jennings, L.D.1
Bohon, J.2
Chance, M.R.3
Licht, S.4
-
29
-
-
77956947687
-
Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: A model for the ClpX/ClpA-bound state of ClpP
-
Li DH, Chung YS, Gloyd M, Joseph E et al (2010) Acyldepsipeptide antibiotics induce the formation of a structured axial channel in ClpP: a model for the ClpX/ClpA-bound state of ClpP. Chem Biol 17(9):959-969
-
(2010)
Chem Biol
, vol.17
, Issue.9
, pp. 959-969
-
-
Li, D.H.1
Chung, Y.S.2
Gloyd, M.3
Joseph, E.4
-
30
-
-
80053133921
-
Activators of cylindrical proteases as antimicrobials: Identi fication and development of small molecule activators of ClpP protease
-
Leung E, Datti A, Cossette M, Goodreid J et al (2011) Activators of cylindrical proteases as antimicrobials: identi fication and development of small molecule activators of ClpP protease. Chem Biol 18(9):1167-1178
-
(2011)
Chem Biol
, vol.18
, Issue.9
, pp. 1167-1178
-
-
Leung, E.1
Datti, A.2
Cossette, M.3
Goodreid, J.4
-
31
-
-
77950519954
-
Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism
-
Lee BG, Park EY, Lee KE, Jeon H et al (2010) Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat Struct Mol Biol 17(4):471-478
-
(2010)
Nat Struct Mol Biol
, vol.17
, Issue.4
, pp. 471-478
-
-
Lee, B.G.1
Park, E.Y.2
Lee, K.E.3
Jeon, H.4
-
32
-
-
71749110235
-
The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease
-
Kirstein J, Hoffmann A, Lilie H, Schmidt R et al (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1(1):37-49
-
(2009)
EMBO Mol Med
, vol.1
, Issue.1
, pp. 37-49
-
-
Kirstein, J.1
Hoffmann, A.2
Lilie, H.3
Schmidt, R.4
-
33
-
-
80053167259
-
Chemical activators of ClpP: Turning Jekyll into Hyde
-
Dougan DA (2011) Chemical activators of ClpP: turning Jekyll into Hyde. Chem Biol 18(9):1072-1074
-
(2011)
Chem Biol
, vol.18
, Issue.9
, pp. 1072-1074
-
-
Dougan, D.A.1
-
34
-
-
27144460621
-
Dysregulation of bacterial proteolytic machinery by a new class of antibiotics
-
Brotz-Oesterhelt H, Beyer D, Kroll HP, Endermann R et al (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11(10):1082-1087
-
(2005)
Nat Med
, vol.11
, Issue.10
, pp. 1082-1087
-
-
Brotz-Oesterhelt, H.1
Beyer, D.2
Kroll, H.P.3
Endermann, R.4
-
35
-
-
80054829705
-
Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ
-
Sass P, Josten M, Famulla K, Schiffer G et al (2011) Antibiotic acyldepsipeptides activate ClpP peptidase to degrade the cell division protein FtsZ. Proc Natl Acad Sci U S A 108(42):17474-17479
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, Issue.42
, pp. 17474-17479
-
-
Sass, P.1
Josten, M.2
Famulla, K.3
Schiffer, G.4
-
36
-
-
33645741669
-
Adaptor protein controlled oligomerization activates the AAA+ protein ClpC
-
Kirstein J, Schlothauer T, Dougan DA, Lilie H et al (2006) Adaptor protein controlled oligomerization activates the AAA+ protein ClpC. EMBO J 25(7):1481-1491
-
(2006)
EMBO J
, vol.25
, Issue.7
, pp. 1481-1491
-
-
Kirstein, J.1
Schlothauer, T.2
Dougan, D.A.3
Lilie, H.4
-
37
-
-
84864380891
-
Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX
-
Lowth BR, Kirstein-Miles J, Saiyed T, Brotz-Oesterhelt H et al (2012) Substrate recognition and processing by a Walker B mutant of the human mitochondrial AAA+ protein CLPX. J Struct Biol 179(2):193-201
-
(2012)
J Struct Biol
, vol.179
, Issue.2
, pp. 193-201
-
-
Lowth, B.R.1
Kirstein-Miles, J.2
Saiyed, T.3
Brotz-Oesterhelt, H.4
-
38
-
-
27444440627
-
Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX
-
Kang SG, Dimitrova MN, Ortega J, Ginsburg A et al (2005) Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX. J Biol Chem 280(42):35424-35432
-
(2005)
J Biol Chem
, vol.280
, Issue.42
, pp. 35424-35432
-
-
Kang, S.G.1
Dimitrova, M.N.2
Ortega, J.3
Ginsburg, A.4
-
39
-
-
84864387458
-
ClpP: A structurally dynamic protease regulated by AAA+ proteins
-
Alexopoulos JA, Guarne A, Ortega J (2012) ClpP: a structurally dynamic protease regulated by AAA+ proteins. J Struct Biol 179(2):202-210
-
(2012)
J Struct Biol
, vol.179
, Issue.2
, pp. 202-210
-
-
Alexopoulos, J.A.1
Guarne, A.2
Ortega, J.3
-
40
-
-
0036210995
-
ClpS, a substrate modulator of the ClpAP machine
-
Dougan DA, Reid BG, Horwich AL, Bukau B (2002) ClpS, a substrate modulator of the ClpAP machine. Mol Cell 9(3):673-683
-
(2002)
Mol Cell
, vol.9
, Issue.3
, pp. 673-683
-
-
Dougan, D.A.1
Reid, B.G.2
Horwich, A.L.3
Bukau, B.4
-
41
-
-
0037195961
-
Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA
-
Guo F, Esser L, Singh SK, Maurizi MR et al (2002) Crystal structure of the heterodimeric complex of the adaptor, ClpS, with the N-domain of the AAA+ chaperone, ClpA. J Biol Chem 277(48):46753-46762
-
(2002)
J Biol Chem
, vol.277
, Issue.48
, pp. 46753-46762
-
-
Guo, F.1
Esser, L.2
Singh, S.K.3
Maurizi, M.R.4
-
42
-
-
0036896886
-
Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA
-
Zeth K, Ravelli RB, Paal K, Cusack S et al (2002) Structural analysis of the adaptor protein ClpS in complex with the N-terminal domain of ClpA. Nat Struct Biol 9(12):906-911
-
(2002)
Nat Struct Biol
, vol.9
, Issue.12
, pp. 906-911
-
-
Zeth, K.1
Ravelli, R.B.2
Paal, K.3
Cusack, S.4
-
43
-
-
40749142482
-
Conserved residues in the N-domain of the AAA+ chaperone ClpA regulate substrate recognition and unfolding
-
Erbse AH, Wagner JN, Truscott KN, Spall SK et al (2008) Conserved residues in the N-domain of the AAA+ chaperone ClpA regulate substrate recognition and unfolding. FEBS J 275(7):1400-1410
-
(2008)
FEBS J
, vol.275
, Issue.7
, pp. 1400-1410
-
-
Erbse, A.H.1
Wagner, J.N.2
Truscott, K.N.3
Spall, S.K.4
-
44
-
-
0035107305
-
Characterization of the N-terminal repeat domain of Escherichia coli ClpA-A class I Clp/HSP100 ATPase
-
Lo JH, Baker TA, Sauer RT (2001) Characterization of the N-terminal repeat domain of Escherichia coli ClpA-A class I Clp/HSP100 ATPase. Protein Sci 10(3):551-559
-
(2001)
Protein Sci
, vol.10
, Issue.3
, pp. 551-559
-
-
Lo, J.H.1
Baker, T.A.2
Sauer, R.T.3
-
45
-
-
34247255841
-
The tyrosine kinase McsB is a regulated adaptor protein for ClpCP
-
Kirstein J, Dougan DA, Gerth U, Hecker M et al (2007) The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. EMBO J 26(8):2061-2070
-
(2007)
EMBO J
, vol.26
, Issue.8
, pp. 2061-2070
-
-
Kirstein, J.1
Dougan, D.A.2
Gerth, U.3
Hecker, M.4
-
46
-
-
67651208925
-
Adapting the machine: Adaptor proteins for Hsp100/Clp and AAA+ proteases
-
Kirstein J, Moliere N, Dougan DA, Turgay K (2009) Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. Nat Rev Microbiol 7(8):589-599
-
(2009)
Nat Rev Microbiol
, vol.7
, Issue.8
, pp. 589-599
-
-
Kirstein, J.1
Moliere, N.2
Dougan, D.A.3
Turgay, K.4
-
47
-
-
62049085109
-
Structural and motional contributions of the Bacillus subtilis ClpC N-domain to adaptor protein interactions
-
Kojetin DJ, McLaughlin PD, Thompson RJ, Dubnau D et al (2009) Structural and motional contributions of the Bacillus subtilis ClpC N-domain to adaptor protein interactions. J Mol Biol 387(3):639-652
-
(2009)
J Mol Biol
, vol.387
, Issue.3
, pp. 639-652
-
-
Kojetin, D.J.1
McLaughlin, P.D.2
Thompson, R.J.3
Dubnau, D.4
-
48
-
-
79952816898
-
Structure and mechanism of the hexameric MecA-ClpC molecular machine
-
Wang F, Mei Z, Qi Y, Yan C et al (2011) Structure and mechanism of the hexameric MecA-ClpC molecular machine. Nature 471(7338):331-335
-
(2011)
Nature
, vol.471
, Issue.7338
, pp. 331-335
-
-
Wang, F.1
Mei, Z.2
Qi, Y.3
Yan, C.4
-
49
-
-
1242322964
-
Solution structure of the dimeric zinc binding domain of the chaperone ClpX
-
Donaldson LW, Wojtyra U, Houry WA (2003) Solution structure of the dimeric zinc binding domain of the chaperone ClpX. J Biol Chem 278(49):48991-48996
-
(2003)
J Biol Chem
, vol.278
, Issue.49
, pp. 48991-48996
-
-
Donaldson, L.W.1
Wojtyra, U.2
Houry, W.A.3
-
50
-
-
0141957392
-
Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX
-
Dougan DA, Weber-Ban E, Bukau B (2003) Targeted delivery of an ssrA-tagged substrate by the adaptor protein SspB to its cognate AAA+ protein ClpX. Mol Cell 12(2):373-380
-
(2003)
Mol Cell
, vol.12
, Issue.2
, pp. 373-380
-
-
Dougan, D.A.1
Weber-Ban, E.2
Bukau, B.3
-
51
-
-
84862272387
-
Role of the N-terminal domain of the chaperone ClpX in the recognition and degradation of lambda phage protein O
-
Thibault G, Houry WA (2012) Role of the N-terminal domain of the chaperone ClpX in the recognition and degradation of lambda phage protein O. J Phys Chem B 116(23): 6717-6724
-
(2012)
J Phys Chem B
, vol.116
, Issue.23
, pp. 6717-6724
-
-
Thibault, G.1
Houry, W.A.2
-
52
-
-
1242289869
-
The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function
-
Wojtyra UA, Thibault G, Tuite A, Houry WA (2003) The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. J Biol Chem 278(49):48981-48990
-
(2003)
J Biol Chem
, vol.278
, Issue.49
, pp. 48981-48990
-
-
Wojtyra, U.A.1
Thibault, G.2
Tuite, A.3
Houry, W.A.4
-
53
-
-
33847108004
-
Structural basis of SspB-tail recognition by the zinc binding domain of ClpX
-
Park EY, Lee BG, Hong SB, Kim HW et al (2007) Structural basis of SspB-tail recognition by the zinc binding domain of ClpX. J Mol Biol 367(2):514-526
-
(2007)
J Mol Biol
, vol.367
, Issue.2
, pp. 514-526
-
-
Park, E.Y.1
Lee, B.G.2
Hong, S.B.3
Kim, H.W.4
-
54
-
-
0345687188
-
Distinct peptide signals in the UmuD and UmuD ¢ subunits of UmuD/D ¢ mediate tethering and substrate processing by the ClpXP protease
-
Neher SB, Sauer RT, Baker TA (2003) Distinct peptide signals in the UmuD and UmuD ¢ subunits of UmuD/D ¢ mediate tethering and substrate processing by the ClpXP protease. Proc Natl Acad Sci U S A 100(23):13219-13224
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, Issue.23
, pp. 13219-13224
-
-
Neher, S.B.1
Sauer, R.T.2
Baker, T.A.3
-
55
-
-
70350772363
-
Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine
-
Glynn SE, Martin A, Nager AR, Baker TA et al (2009) Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139(4):744-756
-
(2009)
Cell
, vol.139
, Issue.4
, pp. 744-756
-
-
Glynn, S.E.1
Martin, A.2
Nager, A.R.3
Baker, T.A.4
-
56
-
-
0348010311
-
Crystal structure of ClpX molecular chaperone from Helicobacter pylori
-
Kim DY, Kim KK (2003) Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J Biol Chem 278(50):50664-50670
-
(2003)
J Biol Chem
, vol.278
, Issue.50
, pp. 50664-50670
-
-
Kim, D.Y.1
Kim, K.K.2
-
57
-
-
0032969563
-
AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes
-
Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA+: a class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9(1):27-43
-
(1999)
Genome Res
, vol.9
, Issue.1
, pp. 27-43
-
-
Neuwald, A.F.1
Aravind, L.2
Spouge, J.L.3
Koonin, E.V.4
-
58
-
-
21244480104
-
Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation
-
Hinnerwisch J, Fenton WA, Furtak KJ, Farr GW et al (2005) Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121(7):1029-1041
-
(2005)
Cell
, vol.121
, Issue.7
, pp. 1029-1041
-
-
Hinnerwisch, J.1
Fenton, W.A.2
Furtak, K.J.3
Farr, G.W.4
-
59
-
-
33749234752
-
Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region
-
Okuno T, Yamanaka K, Ogura T (2006) Characterization of mutants of the Escherichia coli AAA protease, FtsH, carrying a mutation in the central pore region. J Struct Biol 156(1):109-114
-
(2006)
J Struct Biol
, vol.156
, Issue.1
, pp. 109-114
-
-
Okuno, T.1
Yamanaka, K.2
Ogura, T.3
-
60
-
-
3042642040
-
Substrate recognition by the AAA+ chaperone ClpB
-
Schlieker C, Weibezahn J, Patzelt H, Tessarz P et al (2004) Substrate recognition by the AAA+ chaperone ClpB. Nat Struct Mol Biol 11(7):607-615
-
(2004)
Nat Struct Mol Biol
, vol.11
, Issue.7
, pp. 607-615
-
-
Schlieker, C.1
Weibezahn, J.2
Patzelt, H.3
Tessarz, P.4
-
61
-
-
0348010363
-
Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis
-
Yamada-Inagawa T, Okuno T, Karata K, Yamanaka K et al (2003) Conserved pore residues in the AAA protease FtsH are important for proteolysis and its coupling to ATP hydrolysis. J Biol Chem 278(50):50182-50187
-
(2003)
J Biol Chem
, vol.278
, Issue.50
, pp. 50182-50187
-
-
Yamada-Inagawa, T.1
Okuno, T.2
Karata, K.3
Yamanaka, K.4
-
62
-
-
0035164972
-
Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response
-
Turgay K, Persuh M, Hahn J, Dubnau D (2001) Roles of the two ClpC ATP binding sites in the regulation of competence and the stress response. Mol Microbiol 42(3):717-727
-
(2001)
Mol Microbiol
, vol.42
, Issue.3
, pp. 717-727
-
-
Turgay, K.1
Persuh, M.2
Hahn, J.3
Dubnau, D.4
-
63
-
-
0028077782
-
Mutational analysis demonstrates different functional roles for the two ATP-binding sites in ClpAP protease from Escherichia coli
-
Singh SK, Maurizi MR (1994) Mutational analysis demonstrates different functional roles for the two ATP-binding sites in ClpAP protease from Escherichia coli. J Biol Chem 269(47):29537-29545
-
(1994)
J Biol Chem
, vol.269
, Issue.47
, pp. 29537-29545
-
-
Singh, S.K.1
Maurizi, M.R.2
-
64
-
-
71449115274
-
Both ATPase domains of ClpA are critical for processing of stable protein structures
-
Kress W, Mutschler H, Weber-Ban E (2009) Both ATPase domains of ClpA are critical for processing of stable protein structures. J Biol Chem 284(45):31441-31452
-
(2009)
J Biol Chem
, vol.284
, Issue.45
, pp. 31441-31452
-
-
Kress, W.1
Mutschler, H.2
Weber-Ban, E.3
-
65
-
-
21244482459
-
Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: Allosteric control of a protein machine
-
Hersch GL, Burton RE, Bolon DN, Baker TA et al (2005) Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell 121(7):1017-1027
-
(2005)
Cell
, vol.121
, Issue.7
, pp. 1017-1027
-
-
Hersch, G.L.1
Burton, R.E.2
Bolon, D.N.3
Baker, T.A.4
-
66
-
-
0032524297
-
Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP
-
Grimaud R, Kessel M, Beuron F, Steven AC et al (1998) Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J Biol Chem 273(20):12476-12481
-
(1998)
J Biol Chem
, vol.273
, Issue.20
, pp. 12476-12481
-
-
Grimaud, R.1
Kessel, M.2
Beuron, F.3
Steven, A.C.4
-
67
-
-
2542443628
-
Communication between ClpX and ClpP during substrate processing and degradation
-
Joshi SA, Hersch GL, Baker TA, Sauer RT (2004) Communication between ClpX and ClpP during substrate processing and degradation. Nat Struct Mol Biol 11(5):404-411
-
(2004)
Nat Struct Mol Biol
, vol.11
, Issue.5
, pp. 404-411
-
-
Joshi, S.A.1
Hersch, G.L.2
Baker, T.A.3
Sauer, R.T.4
-
68
-
-
0035122947
-
Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase
-
Kim YI, Levchenko I, Fraczkowska K, Woodruff RV et al (2001) Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat Struct Biol 8(3):230-233
-
(2001)
Nat Struct Biol
, vol.8
, Issue.3
, pp. 230-233
-
-
Kim, Y.I.1
Levchenko, I.2
Fraczkowska, K.3
Woodruff, R.V.4
-
69
-
-
0035800729
-
Functional domains of the ClpA and ClpX molecular chaperones identi fied by limited proteolysis and deletion analysis
-
Singh SK, Rozycki J, Ortega J, Ishikawa T et al (2001) Functional domains of the ClpA and ClpX molecular chaperones identi fied by limited proteolysis and deletion analysis. J Biol Chem 276(31):29420-29429
-
(2001)
J Biol Chem
, vol.276
, Issue.31
, pp. 29420-29429
-
-
Singh, S.K.1
Rozycki, J.2
Ortega, J.3
Ishikawa, T.4
-
70
-
-
31344467469
-
The asymmetry in the mature aminoterminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes
-
Bewley MC, Graziano V, Griffin K, Flanagan JM (2006) The asymmetry in the mature aminoterminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes. J Struct Biol 153(2):113-128
-
(2006)
J Struct Biol
, vol.153
, Issue.2
, pp. 113-128
-
-
Bewley, M.C.1
Graziano, V.2
Griffin, K.3
Flanagan, J.M.4
-
71
-
-
34250850205
-
Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease
-
Martin A, Baker TA, Sauer RT (2007) Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. Mol Cell 27(1):41-52
-
(2007)
Mol Cell
, vol.27
, Issue.1
, pp. 41-52
-
-
Martin, A.1
Baker, T.A.2
Sauer, R.T.3
-
74
-
-
77951567636
-
The bacterial N-end rule pathway: Expect the unexpected
-
Dougan DA, Truscott KN, Zeth K (2010) The bacterial N-end rule pathway: expect the unexpected. Mol Microbiol 76(3):545-558
-
(2010)
Mol Microbiol
, vol.76
, Issue.3
, pp. 545-558
-
-
Dougan, D.A.1
Truscott, K.N.2
Zeth, K.3
-
75
-
-
0034046020
-
The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue
-
Karzai AW, Roche ED, Sauer RT (2000) The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol 7(6):449-455
-
(2000)
Nat Struct Biol
, vol.7
, Issue.6
, pp. 449-455
-
-
Karzai, A.W.1
Roche, E.D.2
Sauer, R.T.3
-
76
-
-
4444377383
-
Modulating substrate choice: The SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation
-
Flynn JM, Levchenko I, Sauer RT, Baker TA (2004) Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev 18(18):2292-2301
-
(2004)
Genes Dev
, vol.18
, Issue.18
, pp. 2292-2301
-
-
Flynn, J.M.1
Levchenko, I.2
Sauer, R.T.3
Baker, T.A.4
-
77
-
-
0037740010
-
Latent ClpX-recognition signals ensure LexA destruction after DNA damage
-
Neher SB, Flynn JM, Sauer RT, Baker TA (2003) Latent ClpX-recognition signals ensure LexA destruction after DNA damage. Genes Dev 17(9):1084-1089
-
(2003)
Genes Dev
, vol.17
, Issue.9
, pp. 1084-1089
-
-
Neher, S.B.1
Flynn, J.M.2
Sauer, R.T.3
Baker, T.A.4
-
78
-
-
67649552963
-
Modi fication of PATase by L/Ftransferase generates a ClpS-dependent N-end rule substrate in Escherichia coli
-
Ninnis RL, Spall SK, Talbo GH, Truscott KN et al (2009) Modi fication of PATase by L/Ftransferase generates a ClpS-dependent N-end rule substrate in Escherichia coli. EMBO J 28(12):1732-1744
-
(2009)
EMBO J
, vol.28
, Issue.12
, pp. 1732-1744
-
-
Ninnis, R.L.1
Spall, S.K.2
Talbo, G.H.3
Truscott, K.N.4
-
79
-
-
64149130398
-
ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway
-
Schmidt R, Zahn R, Bukau B, Mogk A (2009) ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol Microbiol 72(2):506-517
-
(2009)
Mol Microbiol
, vol.72
, Issue.2
, pp. 506-517
-
-
Schmidt, R.1
Zahn, R.2
Bukau, B.3
Mogk, A.4
-
80
-
-
0028176450
-
The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability
-
Lange R, Hengge-Aronis R (1994) The cellular concentration of the sigma S subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8(13):1600-1612
-
(1994)
Genes Dev
, vol.8
, Issue.13
, pp. 1600-1612
-
-
Lange, R.1
Hengge-Aronis, R.2
-
81
-
-
53149091681
-
Turnover of endogenous SsrA-tagged proteins mediated by ATPdependent proteases in Escherichia coli
-
Lies M, Maurizi MR (2008) Turnover of endogenous SsrA-tagged proteins mediated by ATPdependent proteases in Escherichia coli. J Biol Chem 283(34):22918-22929
-
(2008)
J Biol Chem
, vol.283
, Issue.34
, pp. 22918-22929
-
-
Lies, M.1
Maurizi, M.R.2
-
82
-
-
26944431987
-
Ribosome rescue: TmRNA tagging activity and capacity in Escherichia coli
-
Moore SD, Sauer RT (2005) Ribosome rescue: tmRNA tagging activity and capacity in Escherichia coli. Mol Microbiol 58(2):456-466
-
(2005)
Mol Microbiol
, vol.58
, Issue.2
, pp. 456-466
-
-
Moore, S.D.1
Sauer, R.T.2
-
83
-
-
34247103448
-
The tmRNA system for translational surveillance and ribosome rescue
-
Moore SD, Sauer RT (2007) The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem 76:101-124
-
(2007)
Annu Rev Biochem
, vol.76
, pp. 101-124
-
-
Moore, S.D.1
Sauer, R.T.2
-
84
-
-
0030024281
-
Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA
-
Keiler KC, Waller PR, Sauer RT (1996) Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271(5251):990-993
-
(1996)
Science
, vol.271
, Issue.5251
, pp. 990-993
-
-
Keiler, K.C.1
Waller, P.R.2
Sauer, R.T.3
-
85
-
-
0025350539
-
Location of a gene (ssrA) for a small, stable RNA (10Sa RNA) in the Escherichia coli chromosome
-
Oh BK, Chauhan AK, Isono K, Apirion D (1990) Location of a gene (ssrA) for a small, stable RNA (10Sa RNA) in the Escherichia coli chromosome. J Bacteriol 172(8):4708-4709
-
(1990)
J Bacteriol
, vol.172
, Issue.8
, pp. 4708-4709
-
-
Oh, B.K.1
Chauhan, A.K.2
Isono, K.3
Apirion, D.4
-
86
-
-
0028124122
-
A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli
-
Komine Y, Kitabatake M, Yokogawa T, Nishikawa K et al (1994) A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci U S A 91(20):9223-9227
-
(1994)
Proc Natl Acad Sci U S A
, vol.91
, Issue.20
, pp. 9223-9227
-
-
Komine, Y.1
Kitabatake, M.2
Yokogawa, T.3
Nishikawa, K.4
-
87
-
-
0028906813
-
C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide
-
Tu GF, Reid GE, Zhang JG, Moritz RL et al (1995) C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide. J Biol Chem 270(16):9322-9326
-
(1995)
J Biol Chem
, vol.270
, Issue.16
, pp. 9322-9326
-
-
Tu, G.F.1
Reid, G.E.2
Zhang, J.G.3
Moritz, R.L.4
-
88
-
-
0032079329
-
The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system
-
Gottesman S, Roche E, Zhou Y, Sauer RT (1998) The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12(9):1338-1347
-
(1998)
Genes Dev
, vol.12
, Issue.9
, pp. 1338-1347
-
-
Gottesman, S.1
Roche, E.2
Zhou, Y.3
Sauer, R.T.4
-
89
-
-
55849126226
-
Evolution of the ssrA degradation tag in Mycoplasma: Speci ficity switch to a different protease
-
Gur E, Sauer RT (2008) Evolution of the ssrA degradation tag in Mycoplasma: speci ficity switch to a different protease. Proc Natl Acad Sci U S A 105(42):16113-16118
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, Issue.42
, pp. 16113-16118
-
-
Gur, E.1
Sauer, R.T.2
-
90
-
-
0344211512
-
Lack of a robust unfoldase activity confers a unique level of substrate speci ficity to the universal AAA protease FtsH
-
Herman C, Prakash S, Lu CZ, Matouschek A et al (2003) Lack of a robust unfoldase activity confers a unique level of substrate speci ficity to the universal AAA protease FtsH. Mol Cell 11(3):659-669
-
(2003)
Mol Cell
, vol.11
, Issue.3
, pp. 659-669
-
-
Herman, C.1
Prakash, S.2
Lu, C.Z.3
Matouschek, A.4
-
91
-
-
25144452838
-
Cytoplasmic degradation of ssrA-tagged proteins
-
Farrell CM, Grossman AD, Sauer RT (2005) Cytoplasmic degradation of ssrA-tagged proteins. Mol Microbiol 57(6):1750-1761
-
(2005)
Mol Microbiol
, vol.57
, Issue.6
, pp. 1750-1761
-
-
Farrell, C.M.1
Grossman, A.D.2
Sauer, R.T.3
-
92
-
-
0042329502
-
Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine
-
Kenniston JA, Baker TA, Fernandez JM, Sauer RT (2003) Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 114(4):511-520
-
(2003)
Cell
, vol.114
, Issue.4
, pp. 511-520
-
-
Kenniston, J.A.1
Baker, T.A.2
Fernandez, J.M.3
Sauer, R.T.4
-
93
-
-
13444306170
-
Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing
-
Kenniston JA, Baker TA, Sauer RT (2005) Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing. Proc Natl Acad Sci U S A 102(5):1390-1395
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, Issue.5
, pp. 1390-1395
-
-
Kenniston, J.A.1
Baker, T.A.2
Sauer, R.T.3
-
94
-
-
1642308732
-
Effects of local protein stability and the geometric position of the substrate degradation tag on the ef ficiency of ClpXP denaturation and degradation
-
Kenniston JA, Burton RE, Siddiqui SM, Baker TA et al (2004) Effects of local protein stability and the geometric position of the substrate degradation tag on the ef ficiency of ClpXP denaturation and degradation. J Struct Biol 146(1-2):130-140
-
(2004)
J Struct Biol
, vol.146
, Issue.1-2
, pp. 130-140
-
-
Kenniston, J.A.1
Burton, R.E.2
Siddiqui, S.M.3
Baker, T.A.4
-
95
-
-
0033517351
-
Global unfolding of a substrate protein by the Hsp100 chaperone ClpA
-
Weber-Ban EU, Reid BG, Miranker AD, Horwich AL (1999) Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401(6748):90-93
-
(1999)
Nature
, vol.401
, Issue.6748
, pp. 90-93
-
-
Weber-Ban, E.U.1
Reid, B.G.2
Miranker, A.D.3
Horwich, A.L.4
-
96
-
-
0037351068
-
Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals
-
Flynn JM, Neher SB, Kim YI, Sauer RT et al (2003) Proteomic discovery of cellular substrates of the ClpXP protease reveals five classes of ClpX-recognition signals. Mol Cell 11(3):671-683
-
(2003)
Mol Cell
, vol.11
, Issue.3
, pp. 671-683
-
-
Flynn, J.M.1
Neher, S.B.2
Kim, Y.I.3
Sauer, R.T.4
-
97
-
-
33646021005
-
Proteomic pro filing of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon
-
Neher SB, Villen J, Oakes EC, Bakalarski CE et al (2006) Proteomic pro filing of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. Mol Cell 22(2):193-204
-
(2006)
Mol Cell
, vol.22
, Issue.2
, pp. 193-204
-
-
Neher, S.B.1
Villen, J.2
Oakes, E.C.3
Bakalarski, C.E.4
-
98
-
-
0033553474
-
Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease
-
Gonciarz-Swiatek M, Wawrzynow A, Um SJ, Learn BA et al (1999) Recognition, targeting, and hydrolysis of the lambda O replication protein by the ClpP/ClpX protease. J Biol Chem 274(20):13999-14005
-
(1999)
J Biol Chem
, vol.274
, Issue.20
, pp. 13999-14005
-
-
Gonciarz-Swiatek, M.1
Wawrzynow, A.2
Um, S.J.3
Learn, B.A.4
-
99
-
-
33845981507
-
Altered speci ficity of a AAA+ protease
-
Farrell CM, Baker TA, Sauer RT (2007) Altered speci ficity of a AAA+ protease. Mol Cell 25(1):161-166
-
(2007)
Mol Cell
, vol.25
, Issue.1
, pp. 161-166
-
-
Farrell, C.M.1
Baker, T.A.2
Sauer, R.T.3
-
100
-
-
0025360846
-
The ATP-dependent Clp protease of Escherichia coli. Sequence of clpA and identi fication of a Clp-speci fic substrate
-
Gottesman S, Clark WP, Maurizi MR (1990) The ATP-dependent Clp protease of Escherichia coli. Sequence of clpA and identi fication of a Clp-speci fic substrate. J Biol Chem 265(14):7886-7893
-
(1990)
J Biol Chem
, vol.265
, Issue.14
, pp. 7886-7893
-
-
Gottesman, S.1
Clark, W.P.2
Maurizi, M.R.3
-
101
-
-
54849425578
-
An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate speci ficity
-
Maglica Z, Striebel F, Weber-Ban E (2008) An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate speci ficity. J Mol Biol 384(2):503-511
-
(2008)
J Mol Biol
, vol.384
, Issue.2
, pp. 503-511
-
-
Maglica, Z.1
Striebel, F.2
Weber-Ban, E.3
-
102
-
-
0034255124
-
Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP
-
Hoskins JR, Singh SK, Maurizi MR, Wickner S (2000) Protein binding and unfolding by the chaperone ClpA and degradation by the protease ClpAP. Proc Natl Acad Sci U S A 97(16):8892-8897
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, Issue.16
, pp. 8892-8897
-
-
Hoskins, J.R.1
Singh, S.K.2
Maurizi, M.R.3
Wickner, S.4
-
103
-
-
32244435782
-
Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP
-
Hoskins JR, Wickner S (2006) Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP. Proc Natl Acad Sci U S A 103(4):909-914
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, Issue.4
, pp. 909-914
-
-
Hoskins, J.R.1
Wickner, S.2
-
104
-
-
0034634591
-
Substrate recognition by the ClpA chaperone component of ClpAP protease
-
Hoskins JR, Kim SY, Wickner S (2000) Substrate recognition by the ClpA chaperone component of ClpAP protease. J Biol Chem 275(45):35361-35367
-
(2000)
J Biol Chem
, vol.275
, Issue.45
, pp. 35361-35367
-
-
Hoskins, J.R.1
Kim, S.Y.2
Wickner, S.3
-
105
-
-
54049111071
-
Tuning the strength of a bacterial N-end rule degradation signal
-
Wang KH, Oakes ES, Sauer RT, Baker TA (2008) Tuning the strength of a bacterial N-end rule degradation signal. J Biol Chem 283(36):24600-24607
-
(2008)
J Biol Chem
, vol.283
, Issue.36
, pp. 24600-24607
-
-
Wang, K.H.1
Oakes, E.S.2
Sauer, R.T.3
Baker, T.A.4
-
106
-
-
0033638255
-
Dynamics of substrate denaturation and translocation by the ClpXP degradation machine
-
Kim YI, Burton RE, Burton BM, Sauer RT et al (2000) Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol Cell 5(4):639-648
-
(2000)
Mol Cell
, vol.5
, Issue.4
, pp. 639-648
-
-
Kim, Y.I.1
Burton, R.E.2
Burton, B.M.3
Sauer, R.T.4
-
107
-
-
55549088522
-
Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding
-
Martin A, Baker TA, Sauer RT (2008) Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat Struct Mol Biol 15(11):1147-1151
-
(2008)
Nat Struct Mol Biol
, vol.15
, Issue.11
, pp. 1147-1151
-
-
Martin, A.1
Baker, T.A.2
Sauer, R.T.3
-
108
-
-
39549084936
-
Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates
-
Martin A, Baker TA, Sauer RT (2008) Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Mol Cell 29(4):441-450
-
(2008)
Mol Cell
, vol.29
, Issue.4
, pp. 441-450
-
-
Martin, A.1
Baker, T.A.2
Sauer, R.T.3
-
109
-
-
20744457369
-
Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase
-
Park E, Rho YM, Koh OJ, Ahn SW et al (2005) Role of the GYVG pore motif of HslU ATPase in protein unfolding and translocation for degradation by HslV peptidase. J Biol Chem 280(24):22892-22898
-
(2005)
J Biol Chem
, vol.280
, Issue.24
, pp. 22892-22898
-
-
Park, E.1
Rho, Y.M.2
Koh, O.J.3
Ahn, S.W.4
-
110
-
-
40949141846
-
Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP
-
Hou JY, Sauer RT, Baker TA (2008) Distinct structural elements of the adaptor ClpS are required for regulating degradation by ClpAP. Nat Struct Mol Biol 15(3):288-294
-
(2008)
Nat Struct Mol Biol
, vol.15
, Issue.3
, pp. 288-294
-
-
Hou, J.Y.1
Sauer, R.T.2
Baker, T.A.3
-
111
-
-
79960451307
-
The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease
-
Roman-Hernandez G, Hou JY, Grant RA, Sauer RT et al (2011) The ClpS adaptor mediates staged delivery of N-end rule substrates to the AAA+ ClpAP protease. Mol Cell 43(2):217-228
-
(2011)
Mol Cell
, vol.43
, Issue.2
, pp. 217-228
-
-
Roman-Hernandez, G.1
Hou, J.Y.2
Grant, R.A.3
Sauer, R.T.4
-
112
-
-
0034730496
-
A speci ficity-enhancing factor for the ClpXP degradation machine
-
Levchenko I, Seidel M, Sauer RT, Baker TA (2000) A speci ficity-enhancing factor for the ClpXP degradation machine. Science 289(5488):2354-2356
-
(2000)
Science
, vol.289
, Issue.5488
, pp. 2354-2356
-
-
Levchenko, I.1
Seidel, M.2
Sauer, R.T.3
Baker, T.A.4
-
113
-
-
0035281566
-
The RssB response regulator directly targets sigma(S) for degradation by ClpXP
-
Zhou Y, Gottesman S, Hoskins JR, Maurizi MR et al (2001) The RssB response regulator directly targets sigma(S) for degradation by ClpXP. Genes Dev 15(5):627-637
-
(2001)
Genes Dev
, vol.15
, Issue.5
, pp. 627-637
-
-
Zhou, Y.1
Gottesman, S.2
Hoskins, J.R.3
Maurizi, M.R.4
-
114
-
-
32544432878
-
ClpS is an essential component of the N-end rule pathway in Escherichia coli
-
Erbse A, Schmidt R, Bornemann T, Schneider-Mergener J et al (2006) ClpS is an essential component of the N-end rule pathway in Escherichia coli. Nature 439(7077):753-756
-
(2006)
Nature
, vol.439
, Issue.7077
, pp. 753-756
-
-
Erbse, A.1
Schmidt, R.2
Bornemann, T.3
Schneider-Mergener, J.4
-
115
-
-
0029990928
-
The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli
-
Muffler A, Fischer D, Altuvia S, Storz G et al (1996) The response regulator RssB controls stability of the sigma(S) subunit of RNA polymerase in Escherichia coli. EMBO J 15(6):1333-1339
-
(1996)
EMBO J
, vol.15
, Issue.6
, pp. 1333-1339
-
-
Muffler, A.1
Fischer, D.2
Altuvia, S.3
Storz, G.4
-
116
-
-
0029983001
-
The response regulator SprE controls the stability of RpoS
-
Pratt LA, Silhavy TJ (1996) The response regulator SprE controls the stability of RpoS. Proc Natl Acad Sci U S A 93(6):2488-2492
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, Issue.6
, pp. 2488-2492
-
-
Pratt, L.A.1
Silhavy, T.J.2
-
117
-
-
84860805449
-
Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis
-
Elsholz AK, Turgay K, Michalik S, Hessling B et al (2012) Global impact of protein arginine phosphorylation on the physiology of Bacillus subtilis. Proc Natl Acad Sci U S A 109(19):7451-7456
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.19
, pp. 7451-7456
-
-
Elsholz, A.K.1
Turgay, K.2
Michalik, S.3
Hessling, B.4
-
118
-
-
66749180668
-
McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR
-
Fuhrmann J, Schmidt A, Spiess S, Lehner A et al (2009) McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science 324(5932):1323-1327
-
(2009)
Science
, vol.324
, Issue.5932
, pp. 1323-1327
-
-
Fuhrmann, J.1
Schmidt, A.2
Spiess, S.3
Lehner, A.4
-
119
-
-
0036204637
-
A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation
-
Persuh M, Mandic-Mulec I, Dubnau D (2002) A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation. J Bacteriol 184(8):2310-2313
-
(2002)
J Bacteriol
, vol.184
, Issue.8
, pp. 2310-2313
-
-
Persuh, M.1
Mandic-Mulec, I.2
Dubnau, D.3
-
120
-
-
0037418224
-
MecA, an adaptor protein necessary for ClpC chaperone activity
-
Schlothauer T, Mogk A, Dougan DA, Bukau B et al (2003) MecA, an adaptor protein necessary for ClpC chaperone activity. Proc Natl Acad Sci U S A 100(5):2306-2311
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, Issue.5
, pp. 2306-2311
-
-
Schlothauer, T.1
Mogk, A.2
Dougan, D.A.3
Bukau, B.4
-
121
-
-
0032538886
-
Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor
-
Turgay K, Hahn J, Burghoorn J, Dubnau D (1998) Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. EMBO J 17(22):6730-6738
-
(1998)
EMBO J
, vol.17
, Issue.22
, pp. 6730-6738
-
-
Turgay, K.1
Hahn, J.2
Burghoorn, J.3
Dubnau, D.4
-
122
-
-
84860537881
-
Geobacillus thermodenitri ficans YjbH recognizes the C-terminal end of Bacillus subtilis Spx to accelerate Spx proteolysis by ClpXP
-
Chan CM, Garg S, Lin AA, Zuber P (2012) Geobacillus thermodenitri ficans YjbH recognizes the C-terminal end of Bacillus subtilis Spx to accelerate Spx proteolysis by ClpXP. Microbiology 158(Pt 5):1268-1278
-
(2012)
Microbiology
, vol.158
, pp. 1268-1278
-
-
Chan, C.M.1
Garg, S.2
Lin, A.A.3
Zuber, P.4
-
123
-
-
0036015647
-
Spx (YjbD), a negative effector of competence in Bacillus subtilis, enhances ClpC-MecA-ComK interaction
-
Nakano MM, Nakano S, Zuber P (2002) Spx (YjbD), a negative effector of competence in Bacillus subtilis, enhances ClpC-MecA-ComK interaction. Mol Microbiol 44(5):1341-1349
-
(2002)
Mol Microbiol
, vol.44
, Issue.5
, pp. 1341-1349
-
-
Nakano, M.M.1
Nakano, S.2
Zuber, P.3
-
124
-
-
35148895152
-
Structure and substrate speci ficity of an SspB ortholog: Design implications for AAA+ adaptors
-
Chien P, Grant RA, Sauer RT, Baker TA (2007) Structure and substrate speci ficity of an SspB ortholog: design implications for AAA+ adaptors. Structure 15(10):1296-1305
-
(2007)
Structure
, vol.15
, Issue.10
, pp. 1296-1305
-
-
Chien, P.1
Grant, R.A.2
Sauer, R.T.3
Baker, T.A.4
-
125
-
-
33845916549
-
Proteolytic adaptor for transfer-messenger RNAtagged proteins from alpha-proteobacteria
-
Lessner FH, Venters BJ, Keiler KC (2007) Proteolytic adaptor for transfer-messenger RNAtagged proteins from alpha-proteobacteria. J Bacteriol 189(1):272-275
-
(2007)
J Bacteriol
, vol.189
, Issue.1
, pp. 272-275
-
-
Lessner, F.H.1
Venters, B.J.2
Keiler, K.C.3
-
126
-
-
0141992126
-
Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag
-
Levchenko I, Grant RA, Wah DA, Sauer RT et al (2003) Structure of a delivery protein for an AAA+ protease in complex with a peptide degradation tag. Mol Cell 12(2):365-372
-
(2003)
Mol Cell
, vol.12
, Issue.2
, pp. 365-372
-
-
Levchenko, I.1
Grant, R.A.2
Wah, D.A.3
Sauer, R.T.4
-
127
-
-
0141888401
-
Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease
-
Wah DA, Levchenko I, Rieckhof GE, Bolon DN et al (2003) Flexible linkers leash the substrate binding domain of SspB to a peptide module that stabilizes delivery complexes with the AAA+ ClpXP protease. Mol Cell 12(2):355-363
-
(2003)
Mol Cell
, vol.12
, Issue.2
, pp. 355-363
-
-
Wah, D.A.1
Levchenko, I.2
Rieckhof, G.E.3
Bolon, D.N.4
-
128
-
-
5344266886
-
Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease
-
Bolon DN, Grant RA, Baker TA, Sauer RT (2004) Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Mol Cell 16(3):343-350
-
(2004)
Mol Cell
, vol.16
, Issue.3
, pp. 343-350
-
-
Bolon, D.N.1
Grant, R.A.2
Baker, T.A.3
Sauer, R.T.4
-
129
-
-
1242271992
-
Bivalent tethering of SspB to ClpXP is required for ef ficient substrate delivery: A protein-design study
-
Bolon DN, Wah DA, Hersch GL, Baker TA et al (2004) Bivalent tethering of SspB to ClpXP is required for ef ficient substrate delivery: a protein-design study. Mol Cell 13(3):443-449
-
(2004)
Mol Cell
, vol.13
, Issue.3
, pp. 443-449
-
-
Bolon, D.N.1
Wah, D.A.2
Hersch, G.L.3
Baker, T.A.4
-
130
-
-
0035845498
-
Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis
-
Flynn JM, Levchenko I, Seidel M, Wickner SH et al (2001) Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc Natl Acad Sci U S A 98(19):10584-10589
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, Issue.19
, pp. 10584-10589
-
-
Flynn, J.M.1
Levchenko, I.2
Seidel, M.3
Wickner, S.H.4
-
131
-
-
33744518327
-
Engineering controllable protein degradation
-
McGinness KE, Baker TA, Sauer RT (2006) Engineering controllable protein degradation. Mol Cell 22(5):701-707
-
(2006)
Mol Cell
, vol.22
, Issue.5
, pp. 701-707
-
-
McGinness, K.E.1
Baker, T.A.2
Sauer, R.T.3
-
132
-
-
0032989449
-
Regulation of RpoS proteolysis in Escherichia coli: The response regulator RssB is a recognition factor that interacts with the turnover element in RpoS
-
Becker G, Klauck E, Hengge-Aronis R (1999) Regulation of RpoS proteolysis in Escherichia coli: the response regulator RssB is a recognition factor that interacts with the turnover element in RpoS. Proc Natl Acad Sci U S A 96(11):6439-6444
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, Issue.11
, pp. 6439-6444
-
-
Becker, G.1
Klauck, E.2
Hengge-Aronis, R.3
-
133
-
-
0029965097
-
Speci fic in vivo protein-protein interactions between Escherichia coli SOS mutagenesis proteins
-
Jonczyk P, Nowicka A (1996) Speci fic in vivo protein-protein interactions between Escherichia coli SOS mutagenesis proteins. J Bacteriol 178(9):2580-2585
-
(1996)
J Bacteriol
, vol.178
, Issue.9
, pp. 2580-2585
-
-
Jonczyk, P.1
Nowicka, A.2
-
134
-
-
0034596991
-
Subunit-speci fic degradation of the UmuD/D ¢ heterodimer by the ClpXP protease: The role of trans recognition in UmuD ¢ stability
-
Gonzalez M, Rasulova F, Maurizi MR, Woodgate R (2000) Subunit-speci fic degradation of the UmuD/D ¢ heterodimer by the ClpXP protease: the role of trans recognition in UmuD ¢ stability. EMBO J 19(19):5251-5258
-
(2000)
EMBO J
, vol.19
, Issue.19
, pp. 5251-5258
-
-
Gonzalez, M.1
Rasulova, F.2
Maurizi, M.R.3
Woodgate, R.4
-
135
-
-
0029861143
-
The N-end rule: Functions, mysteries, uses
-
Varshavsky A (1996) The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A 93(22):12142-12149
-
(1996)
Proc Natl Acad Sci U S A
, vol.93
, Issue.22
, pp. 12142-12149
-
-
Varshavsky, A.1
-
136
-
-
79960683356
-
The N-end rule pathway and regulation by proteolysis
-
Varshavsky A (2011) The N-end rule pathway and regulation by proteolysis. Protein Sci 20(8):1298-1345
-
(2011)
Protein Sci
, vol.20
, Issue.8
, pp. 1298-1345
-
-
Varshavsky, A.1
-
137
-
-
84855198546
-
The N-end rule pathway: From recognition by N-recognins, to destruction by AAA+ proteases
-
Dougan DA, Micevski D, Truscott KN (2012) The N-end rule pathway: from recognition by N-recognins, to destruction by AAA+ proteases. Biochim Biophys Acta 1823(1):83-91
-
(2012)
Biochim Biophys Acta
, vol.1823
, Issue.1
, pp. 83-91
-
-
Dougan, D.A.1
Micevski, D.2
Truscott, K.N.3
-
138
-
-
77955268037
-
The plant N-end rule pathway: Structure and functions
-
Graciet E, Wellmer F (2010) The plant N-end rule pathway: structure and functions. Trends Plant Sci 15(8):447-453
-
(2010)
Trends Plant Sci
, vol.15
, Issue.8
, pp. 447-453
-
-
Graciet, E.1
Wellmer, F.2
-
139
-
-
33947713897
-
The N-end rule pathway for regulated proteolysis: Prokaryotic and eukaryotic strategies
-
Mogk A, Schmidt R, Bukau B (2007) The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17(4):165-172
-
(2007)
Trends Cell Biol
, vol.17
, Issue.4
, pp. 165-172
-
-
Mogk, A.1
Schmidt, R.2
Bukau, B.3
-
140
-
-
0027255191
-
The N-end rule in Escherichia coli: Cloning and analysis of the leucyl, phenylalanyl-tRNA-protein transferase gene aat
-
Shrader TE, Tobias JW, Varshavsky A (1993) The N-end rule in Escherichia coli: cloning and analysis of the leucyl, phenylalanyl-tRNA-protein transferase gene aat. J Bacteriol 175(14):4364-4374
-
(1993)
J Bacteriol
, vol.175
, Issue.14
, pp. 4364-4374
-
-
Shrader, T.E.1
Tobias, J.W.2
Varshavsky, A.3
-
141
-
-
0037287864
-
Bioinformatic analysis of ClpS, a protein module involved in prokaryotic and eukaryotic protein degradation
-
Lupas AN, Koretke KK (2003) Bioinformatic analysis of ClpS, a protein module involved in prokaryotic and eukaryotic protein degradation. J Struct Biol 141(1):77-83
-
(2003)
J Struct Biol
, vol.141
, Issue.1
, pp. 77-83
-
-
Lupas, A.N.1
Koretke, K.K.2
-
142
-
-
67049154051
-
Molecular basis of substrate selection by the N-end rule adaptor protein ClpS
-
Roman-Hernandez G, Grant RA, Sauer RT, Baker TA (2009) Molecular basis of substrate selection by the N-end rule adaptor protein ClpS. Proc Natl Acad Sci U S A 106(22):8888-8893
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, Issue.22
, pp. 8888-8893
-
-
Roman-Hernandez, G.1
Grant, R.A.2
Sauer, R.T.3
Baker, T.A.4
-
143
-
-
67349099562
-
Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS
-
Schuenemann VJ, Kralik SM, Albrecht R, Spall SK et al (2009) Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS. EMBO Rep 10(5):508-514
-
(2009)
EMBO Rep
, vol.10
, Issue.5
, pp. 508-514
-
-
Schuenemann, V.J.1
Kralik, S.M.2
Albrecht, R.3
Spall, S.K.4
-
144
-
-
55049110221
-
The molecular basis of N-end rule recognition
-
Wang KH, Roman-Hernandez G, Grant RA, Sauer RT et al (2008) The molecular basis of N-end rule recognition. Mol Cell 32(3):406-414
-
(2008)
Mol Cell
, vol.32
, Issue.3
, pp. 406-414
-
-
Wang, K.H.1
Roman-Hernandez, G.2
Grant, R.A.3
Sauer, R.T.4
-
145
-
-
0031030242
-
Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis
-
Turgay K, Hamoen LW, Venema G, Dubnau D (1997) Biochemical characterization of a molecular switch involving the heat shock protein ClpC, which controls the activity of ComK, the competence transcription factor of Bacillus subtilis. Genes Dev 11(1):119-128
-
(1997)
Genes Dev
, vol.11
, Issue.1
, pp. 119-128
-
-
Turgay, K.1
Hamoen, L.W.2
Venema, G.3
Dubnau, D.4
-
146
-
-
0032796135
-
The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch
-
Persuh M, Turgay K, Mandic-Mulec I, Dubnau D (1999) The N- and C-terminal domains of MecA recognize different partners in the competence molecular switch. Mol Microbiol 33(4):886-894
-
(1999)
Mol Microbiol
, vol.33
, Issue.4
, pp. 886-894
-
-
Persuh, M.1
Turgay, K.2
Mandic-Mulec, I.3
Dubnau, D.4
-
147
-
-
33645745841
-
Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity
-
Andersson FI, Blakytny R, Kirstein J, Turgay K et al (2006) Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity. J Biol Chem 281(9):5468-5475
-
(2006)
J Biol Chem
, vol.281
, Issue.9
, pp. 5468-5475
-
-
Andersson, F.I.1
Blakytny, R.2
Kirstein, J.3
Turgay, K.4
-
148
-
-
0035875890
-
Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine
-
Burton RE, Siddiqui SM, Kim YI, Baker TA et al (2001) Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine. EMBO J 20(12):3092-3100
-
(2001)
EMBO J
, vol.20
, Issue.12
, pp. 3092-3100
-
-
Burton, R.E.1
Siddiqui, S.M.2
Kim, Y.I.3
Baker, T.A.4
-
149
-
-
0035957317
-
ClpA mediates directional translocation of substrate proteins into the ClpP protease
-
Reid BG, Fenton WA, Horwich AL, Weber-Ban EU (2001) ClpA mediates directional translocation of substrate proteins into the ClpP protease. Proc Natl Acad Sci U S A 98(7):3768-3772
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, Issue.7
, pp. 3768-3772
-
-
Reid, B.G.1
Fenton, W.A.2
Horwich, A.L.3
Weber-Ban, E.U.4
-
150
-
-
0035184442
-
Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU
-
Wang J, Song JJ, Seong IS, Franklin MC et al (2001) Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9(11):1107-1116
-
(2001)
Structure
, vol.9
, Issue.11
, pp. 1107-1116
-
-
Wang, J.1
Song, J.J.2
Seong, I.S.3
Franklin, M.C.4
-
151
-
-
0034598920
-
Multivalent binding of nonnative substrate proteins by the chaperonin GroEL
-
Farr GW, Furtak K, Rowland MB, Ranson NA et al (2000) Multivalent binding of nonnative substrate proteins by the chaperonin GroEL. Cell 100(5):561-573
-
(2000)
Cell
, vol.100
, Issue.5
, pp. 561-573
-
-
Farr, G.W.1
Furtak, K.2
Rowland, M.B.3
Ranson, N.A.4
-
152
-
-
27144474906
-
Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines
-
Martin A, Baker TA, Sauer RT (2005) Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature 437(7062):1115-1120
-
(2005)
Nature
, vol.437
, Issue.7062
, pp. 1115-1120
-
-
Martin, A.1
Baker, T.A.2
Sauer, R.T.3
-
153
-
-
0033669185
-
Point mutations alter the mechanical stability of immunoglobulin modules
-
Li H, Carrion-Vazquez M, Oberhauser AF, Marszalek PE et al (2000) Point mutations alter the mechanical stability of immunoglobulin modules. Nat Struct Biol 7(12):1117-1120
-
(2000)
Nat Struct Biol
, vol.7
, Issue.12
, pp. 1117-1120
-
-
Li, H.1
Carrion-Vazquez, M.2
Oberhauser, A.F.3
Marszalek, P.E.4
-
154
-
-
79953888421
-
Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine
-
Aubin-Tam ME, Olivares AO, Sauer RT, Baker TA et al (2011) Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 145(2):257-267
-
(2011)
Cell
, vol.145
, Issue.2
, pp. 257-267
-
-
Aubin-Tam, M.E.1
Olivares, A.O.2
Sauer, R.T.3
Baker, T.A.4
-
155
-
-
0035266072
-
ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal
-
Lee C, Schwartz MP, Prakash S, Iwakura M et al (2001) ATP-dependent proteases degrade their substrates by processively unraveling them from the degradation signal. Mol Cell 7(3):627-637
-
(2001)
Mol Cell
, vol.7
, Issue.3
, pp. 627-637
-
-
Lee, C.1
Schwartz, M.P.2
Prakash, S.3
Iwakura, M.4
-
156
-
-
67649550852
-
Polypeptide translocation by the AAA+ ClpXP protease machine
-
Barkow SR, Levchenko I, Baker TA, Sauer RT (2009) Polypeptide translocation by the AAA+ ClpXP protease machine. Chem Biol 16(6):605-612
-
(2009)
Chem Biol
, vol.16
, Issue.6
, pp. 605-612
-
-
Barkow, S.R.1
Levchenko, I.2
Baker, T.A.3
Sauer, R.T.4
|