메뉴 건너뛰기




Volumn 43, Issue , 2013, Pages 589-618

The yin-yang of rigidity sensing: How forces and mechanical properties regulate the cellular response to materials

Author keywords

Cell adhesion; Mechanobiology; Mechanotransduction; Protein unfolding; Rigidity; Traction forces

Indexed keywords

DIFFERENT LENGTH SCALE; ENVIRONMENTAL PROPERTY; EXTRACELLULAR MATRICES; MECHANO-BIOLOGY; MECHANOTRANSDUCTION; PHYSICAL CONNECTIONS; PROTEIN UNFOLDING; TRACTION FORCES;

EID: 84880217477     PISSN: 15317331     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev-matsci-062910-100407     Document Type: Review
Times cited : (109)

References (183)
  • 2
    • 0037418891 scopus 로고    scopus 로고
    • Forces for morphogenesis investigated with laser microsurgery and quantitative modeling
    • Hutson MS, Tokutake Y, Chang MS, Bloor JW, Venakides S, et al. 2003. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300:145-49
    • (2003) Science , vol.300 , pp. 145-149
    • Hutson, M.S.1    Tokutake, Y.2    Chang, M.S.3    Bloor, J.W.4    Venakides, S.5
  • 3
    • 67549147020 scopus 로고    scopus 로고
    • Pulsed forces timed by a ratchet-likemechanism drive directed tissue movement during dorsal closure
    • Solon J, Kaya-Copur A, Colombelli J, BrunnerD. 2009. Pulsed forces timed by a ratchet-likemechanism drive directed tissue movement during dorsal closure. Cell 137:1331-42
    • (2009) Cell , vol.137 , pp. 1331-1342
    • Solon, J.1    Kaya-Copur, A.2    Colombelli, J.3    Brunner, D.4
  • 4
    • 0038410006 scopus 로고    scopus 로고
    • How we are shaped: The biomechanics of gastrulation
    • Keller R, Davidson LA, Shook DR. 2003. How we are shaped: the biomechanics of gastrulation. Differentiation 71:171-205
    • (2003) Differentiation , vol.71 , pp. 171-205
    • Keller, R.1    Davidson, L.A.2    Shook, D.R.3
  • 5
    • 54549125813 scopus 로고    scopus 로고
    • Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis
    • Davidson LA, Dzamba BD, Keller R, Desimone DW. 2008. Live imaging of cell protrusive activity, and extracellular matrix assembly and remodeling during morphogenesis in the frog, Xenopus laevis. Dev. Dyn. 237:2684-92
    • (2008) Dev. Dyn. , vol.237 , pp. 2684-2692
    • Davidson, L.A.1    Dzamba, B.D.2    Keller, R.3    Desimone, D.W.4
  • 6
    • 58049220350 scopus 로고    scopus 로고
    • Mechanotransduction in development: A growing role for contractility
    • Wozniak MA, Chen CS. 2009. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34-43
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 34-43
    • Wozniak, M.A.1    Chen, C.S.2
  • 7
    • 77951228475 scopus 로고    scopus 로고
    • Mechanical control of tissue and organ development
    • Mammoto T, Ingber DE. 2010. Mechanical control of tissue and organ development. Development 137:1407-20
    • (2010) Development , vol.137 , pp. 1407-1420
    • Mammoto, T.1    Ingber, D.E.2
  • 8
    • 0035516140 scopus 로고    scopus 로고
    • Transmembrane crosstalk between the extracellular matrix and the cytoskeleton
    • Geiger B, Bershadsky A, Pankov R, Yamada KM. 2001. Transmembrane crosstalk between the extracellular matrix and the cytoskeleton. Nat. Rev. Mol. Cell Biol. 2:793-805
    • (2001) Nat. Rev. Mol. Cell Biol. , vol.2 , pp. 793-805
    • Geiger, B.1    Bershadsky, A.2    Pankov, R.3    Yamada, K.M.4
  • 9
    • 84865411430 scopus 로고    scopus 로고
    • Transduction of mechanical and cytoskeletal cues by YAP and TAZ
    • Halder G, Dupont S, Piccolo S. 2012. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13(9):591-600
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , Issue.9 , pp. 591-600
    • Halder, G.1    Dupont, S.2    Piccolo, S.3
  • 10
    • 34347224040 scopus 로고    scopus 로고
    • Microtissue elasticity: Measurements by atomic force microscopy and its influence on cell differentiation
    • Engler AJ, Rehfeldt F, Sen S, Discher DE. 2007. Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Methods Cell Biol. 83:521-45
    • (2007) Methods Cell Biol , vol.83 , pp. 521-545
    • Engler, A.J.1    Rehfeldt, F.2    Sen, S.3    Discher, D.E.4
  • 11
    • 74249089196 scopus 로고    scopus 로고
    • Synthetic materials in the study of cell response to substrate rigidity
    • Nemir S, West JL. 2010. Synthetic materials in the study of cell response to substrate rigidity. Ann. Biomed. Eng. 38:2-20
    • (2010) Ann. Biomed. Eng. , vol.38 , pp. 2-20
    • Nemir, S.1    West, J.L.2
  • 12
    • 70450222098 scopus 로고    scopus 로고
    • Matrix crosslinking forces tumor progression by enhancing integrin signaling
    • Levental KR, Yu H, Kass L, Lakins JN, Egeblad M, et al. 2009. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891-906
    • (2009) Cell , vol.139 , pp. 891-906
    • Levental, K.R.1    Yu, H.2    Kass, L.3    Lakins, J.N.4    Egeblad, M.5
  • 13
    • 0642336162 scopus 로고    scopus 로고
    • The tissue engineering puzzle: A molecular perspective
    • Vogel V, Baneyx G. 2003. The tissue engineering puzzle: a molecular perspective. Annu. Rev. Biomed. Eng. 5:441-63
    • (2003) Annu. Rev. Biomed. Eng. , vol.5 , pp. 441-463
    • Vogel, V.1    Baneyx, G.2
  • 14
    • 0347477365 scopus 로고    scopus 로고
    • Mechanobiology and diseases of mechanotransduction
    • Ingber DE. 2003. Mechanobiology and diseases of mechanotransduction. Ann. Med. 35:564-77
    • (2003) Ann. Med. , vol.35 , pp. 564-577
    • Ingber, D.E.1
  • 16
    • 24944436269 scopus 로고    scopus 로고
    • Cell tension, matrix mechanics, and cancer development
    • Huang S, Ingber DE. 2005. Cell tension, matrix mechanics, and cancer development. Cancer Cell 8:175- 76
    • (2005) Cancer Cell , vol.8 , pp. 175-176
    • Huang, S.1    Ingber, D.E.2
  • 17
    • 0018838995 scopus 로고
    • Silicone rubber substrata: A new wrinkle in the study of cell locomotion
    • Harris AK, Wild P, Stopak D. 1980. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177-79
    • (1980) Science , vol.208 , pp. 177-179
    • Harris, A.K.1    Wild, P.2    Stopak, D.3
  • 18
    • 56349169536 scopus 로고    scopus 로고
    • Mechanotransduction: A field pulling together?
    • Chen CS. 2008. Mechanotransduction: a field pulling together? J. Cell Sci. 121:3285-92
    • (2008) J. Cell Sci. , vol.121 , pp. 3285-3292
    • Chen, C.S.1
  • 19
    • 27944497333 scopus 로고    scopus 로고
    • Tissue cells feel and respond to the stiffness of their substrate
    • Discher DE, Janmey P, Wang YL. 2005. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139-43
    • (2005) Science , vol.310 , pp. 1139-1143
    • Discher, D.E.1    Janmey, P.2    Wang, Y.L.3
  • 20
    • 33645773666 scopus 로고    scopus 로고
    • Local force and geometry sensing regulate cell functions
    • Vogel V, Sheetz M. 2006. Local force and geometry sensing regulate cell functions. Nat. Rev. Mol. Cell Biol. 7:265-75
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 265-275
    • Vogel, V.1    Sheetz, M.2
  • 21
    • 28444491145 scopus 로고    scopus 로고
    • Is the mechanical activity of epithelial cells controlled by deformations or forces?
    • Saez A, Buguin A, Silberzan P, Ladoux B. 2005. Is the mechanical activity of epithelial cells controlled by deformations or forces? Biophys. J. 89:L52-54
    • (2005) Biophys. J , vol.89
    • Saez, A.1    Buguin, A.2    Silberzan, P.3    Ladoux, B.4
  • 23
    • 0018140371 scopus 로고
    • Role of cell shape in growth control
    • Folkman J, Moscona A. 1978. Role of cell shape in growth control. Nature 273:345-49
    • (1978) Nature , vol.273 , pp. 345-349
    • Folkman, J.1    Moscona, A.2
  • 24
    • 0025881229 scopus 로고
    • An RGD spacing of 440 nm is sufficient for integrin αvβ3- mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation
    • Massia SP, Hubbell JA. 1991. An RGD spacing of 440 nm is sufficient for integrin αvβ3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 114:1089-100
    • (1991) J. Cell Biol. , vol.114 , pp. 1089-1100
    • Massia, S.P.1    Hubbell, J.A.2
  • 25
    • 0031034352 scopus 로고    scopus 로고
    • Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness
    • Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF. 1997. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537-40
    • (1997) Nature , vol.385 , pp. 537-540
    • Palecek, S.P.1    Loftus, J.C.2    Ginsberg, M.H.3    Lauffenburger, D.A.4    Horwitz, A.F.5
  • 27
    • 0030994017 scopus 로고    scopus 로고
    • Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages
    • Choquet D, Felsenfeld DP, Sheetz MP. 1997. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39-48
    • (1997) Cell , vol.88 , pp. 39-48
    • Choquet, D.1    Felsenfeld, D.P.2    Sheetz, M.P.3
  • 28
    • 0033917881 scopus 로고    scopus 로고
    • Cell movement is guided by the rigidity of the substrate
    • Lo CM,WangHB, DemboM,Wang YL. 2000. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144-52
    • (2000) Biophys. J. , vol.79 , pp. 144-152
    • Lo, C.M.1    Wang, H.B.2    Dembo, M.3    Wang, Y.L.4
  • 29
    • 59549095389 scopus 로고    scopus 로고
    • Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: Scar-like rigidity inhibits beating
    • Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, et al. 2008. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: Scar-like rigidity inhibits beating. J. Cell Sci. 121:3794- 802
    • (2008) J. Cell Sci. , vol.121 , pp. 3794-3802
    • Engler, A.J.1    Carag-Krieger, C.2    Johnson, C.P.3    Raab, M.4    Tang, H.Y.5
  • 30
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • Engler AJ, Sen S, Sweeney HL, Discher DE. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677-89
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 31
    • 15444368220 scopus 로고    scopus 로고
    • Cell type-specific response to growth on soft materials
    • Georges PC, Janmey PA. 2005. Cell type-specific response to growth on soft materials. J. Appl. Physiol. 98:1547-53
    • (2005) J. Appl. Physiol. , vol.98 , pp. 1547-1553
    • Georges, P.C.1    Janmey, P.A.2
  • 32
    • 0030744142 scopus 로고    scopus 로고
    • Kinesin hydrolyses one ATP per 8-nm step
    • Schnitzer MJ, Block SM. 1997. Kinesin hydrolyses one ATP per 8-nm step. Nature 388:386-90
    • (1997) Nature , vol.388 , pp. 386-390
    • Schnitzer, M.J.1    Block, S.M.2
  • 35
    • 79954604476 scopus 로고    scopus 로고
    • Dynamic and structural signatures of lamellar actomyosin force generation
    • Aratyn-Schaus Y, Oakes PW, Gardel ML. 2011. Dynamic and structural signatures of lamellar actomyosin force generation. Mol. Biol. Cell 22:1330-39
    • (2011) Mol. Biol. Cell , vol.22 , pp. 1330-1339
    • Aratyn-Schaus, Y.1    Oakes, P.W.2    Gardel, M.L.3
  • 36
    • 33646179573 scopus 로고    scopus 로고
    • Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics
    • Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, et al. 2006. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 90:3762-73
    • (2006) Biophys. J. , vol.90 , pp. 3762-3773
    • Kumar, S.1    Maxwell, I.Z.2    Heisterkamp, A.3    Polte, T.R.4    Lele, T.P.5
  • 37
    • 78349269956 scopus 로고    scopus 로고
    • Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery
    • TannerK,BoudreauA,Bissell MJ,Kumar S. 2010. Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery. Biophys. J. 99:2775-83
    • (2010) Biophys. J. , vol.99 , pp. 2775-2783
    • Tanner, K.1    Boudreau, A.2    Bissell, M.J.3    Kumar, S.4
  • 38
    • 0037459075 scopus 로고    scopus 로고
    • Cellular motility driven by assembly and disassembly of actin filaments
    • Pollard TD, Borisy GG. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112:453-65
    • (2003) Cell , vol.112 , pp. 453-465
    • Pollard, T.D.1    Borisy, G.G.2
  • 41
    • 84865342852 scopus 로고    scopus 로고
    • Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling
    • Pan CQ, Sudol M, Sheetz M, Low BC. 2012. Modularity and functional plasticity of scaffold proteins as p(l)acemakers in cell signaling. Cell. Signal. 24:2143-65
    • (2012) Cell. Signal. , vol.24 , pp. 2143-2165
    • Pan, C.Q.1    Sudol, M.2    Sheetz, M.3    Low, B.C.4
  • 43
    • 84867084870 scopus 로고    scopus 로고
    • Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions
    • Rossier O, Octeau V, Sibarita JB, Leduc C, Tessier B, et al. 2012. Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat. Cell Biol. 14:1057-67
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1057-1067
    • Rossier, O.1    Octeau, V.2    Sibarita, J.B.3    Leduc, C.4    Tessier, B.5
  • 46
    • 83155168389 scopus 로고    scopus 로고
    • Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration
    • Huynh J, Nishimura N, Rana K, Peloquin JM, Califano JP, et al. 2011. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci. Transl. Med. 3:112ra22
    • (2011) Sci. Transl. Med. , vol.3
    • Huynh, J.1    Nishimura, N.2    Rana, K.3    Peloquin, J.M.4    Califano, J.P.5
  • 47
    • 84866736640 scopus 로고    scopus 로고
    • A bigger picture: Classical cadherins and the dynamic actin cytoskeleton
    • Ratheesh A, Yap AS. 2012. A bigger picture: classical cadherins and the dynamic actin cytoskeleton. Nat. Rev. Mol. Cell Biol. 13:673-79
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 673-679
    • Ratheesh, A.1    Yap, A.S.2
  • 48
    • 33845380864 scopus 로고    scopus 로고
    • Re-solving the cadherin-catenin-actin conundrum
    • Weis WI, Nelson WJ. 2006. Re-solving the cadherin-catenin-actin conundrum. J. Biol. Chem. 281:35593-97
    • (2006) J. Biol. Chem. , vol.281 , pp. 35593-35597
    • Weis, W.I.1    Nelson, W.J.2
  • 50
    • 84864506988 scopus 로고    scopus 로고
    • E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch
    • Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL, et al. 2012. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc. Natl. Acad. Sci. USA 109:12568-73
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 12568-12573
    • Borghi, N.1    Sorokina, M.2    Shcherbakova, O.G.3    Weis, W.I.4    Pruitt, B.L.5
  • 51
    • 77954410997 scopus 로고    scopus 로고
    • Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin IIdependent manner
    • le Duc Q, Shi QM, Blonk I, Sonnenberg A, Wang N, et al. 2010. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin IIdependent manner. J. Cell Biol. 189:1107-15
    • (2010) J. Cell Biol. , vol.189 , pp. 1107-1115
    • Le Duc, Q.1    Shi, Q.M.2    Blonk, I.3    Sonnenberg, A.4    Wang, N.5
  • 52
    • 0344912596 scopus 로고    scopus 로고
    • Cell locomotion and focal adhesions are regulated by substrate flexibility
    • Pelham RJ Jr,Wang Y. 1997. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94:13661-65
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 13661-13665
    • Pelham Jr., R.J.1    Wang, Y.2
  • 53
    • 0035002155 scopus 로고    scopus 로고
    • Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates
    • Balaban NQ, Schwarz US, Riveline D, Goichberg P, TzurG, et al. 2001. Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat. Cell Biol. 3:466-72
    • (2001) Nat. Cell Biol. , vol.3 , pp. 466-472
    • Balaban, N.Q.1    Schwarz, U.S.2    Riveline, D.3    Goichberg, P.4    Tzur, G.5
  • 55
    • 78649816845 scopus 로고    scopus 로고
    • 4D traction force microscopy reveals asymmetric cortical forces in migrating Dictyostelium cells
    • Delanoe-Ayari H, Rieu JP, Sano M. 2010. 4D traction force microscopy reveals asymmetric cortical forces in migrating Dictyostelium cells. Phys. Rev. Lett. 105:248103
    • (2010) Phys. Rev. Lett. , vol.105 , pp. 248103
    • Delanoe-Ayari, H.1    Rieu, J.P.2    Sano, M.3
  • 56
    • 79953229555 scopus 로고    scopus 로고
    • Three-dimensional traction force microscopy: A new tool for quantifying cell-matrix interactions
    • Franck C, Maskarinec SA, Tirrell DA, Ravichandran G. 2011. Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PLoS ONE 6:e17833
    • (2011) PLoS ONE , vol.6
    • Franck, C.1    Maskarinec, S.A.2    Tirrell, D.A.3    Ravichandran, G.4
  • 58
    • 84860807182 scopus 로고    scopus 로고
    • Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness
    • Trichet L, Le Digabel J, Hawkins RJ, Vedula SR, Gupta M, et al. 2012. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. Proc. Natl. Acad. Sci. USA 109:6933-38
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 6933-6938
    • Trichet, L.1    Le Digabel, J.2    Hawkins, R.J.3    Vedula, S.R.4    Gupta, M.5
  • 59
    • 84865373665 scopus 로고    scopus 로고
    • Decoupling substrate stiffness, spread area, and micropost density: A close spatial relationship between traction forces and focal adhesions
    • Han SJ, Bielawski KS, Ting LH, Rodriguez ML, Sniadecki NJ. 2012. Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys. J. 103:640-48
    • (2012) Biophys. J. , vol.103 , pp. 640-648
    • Han, S.J.1    Bielawski, K.S.2    Ting, L.H.3    Rodriguez, M.L.4    Sniadecki, N.J.5
  • 60
    • 77956318381 scopus 로고    scopus 로고
    • Mechanical regulation of cell function with geometrically modulated elastomeric substrates
    • Fu J, Wang YK, Yang MT, Desai RA, Yu X, et al. 2010. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733-36
    • (2010) Nat. Methods , vol.7 , pp. 733-736
    • Fu, J.1    Wang, Y.K.2    Yang, M.T.3    Desai, R.A.4    Yu, X.5
  • 61
    • 79960325552 scopus 로고    scopus 로고
    • Spatiotemporal constraints on the forcedependent growth of focal adhesions
    • Stricker J, Aratyn-Schaus Y, Oakes PW, Gardel ML. 2011. Spatiotemporal constraints on the forcedependent growth of focal adhesions. Biophys. J. 100:2883-93
    • (2011) Biophys. J. , vol.100 , pp. 2883-2893
    • Stricker, J.1    Aratyn-Schaus, Y.2    Oakes, P.W.3    Gardel, M.L.4
  • 66
    • 77955783595 scopus 로고    scopus 로고
    • Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions
    • Borghi N, Lowndes M, Maruthamuthu V, Gardel ML, Nelson WJ. 2010. Regulation of cell motile behavior by crosstalk between cadherin- and integrin-mediated adhesions. Proc. Natl. Acad. Sci. USA 107:13324-29
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 13324-13329
    • Borghi, N.1    Lowndes, M.2    Maruthamuthu, V.3    Gardel, M.L.4    Nelson, W.J.5
  • 67
    • 0037117522 scopus 로고    scopus 로고
    • Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension
    • Baneyx G, Baugh L, Vogel V. 2002. Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. Proc. Natl. Acad. Sci. USA 99:5139-43
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 5139-5143
    • Baneyx, G.1    Baugh, L.2    Vogel, V.3
  • 68
    • 33645780908 scopus 로고    scopus 로고
    • Mechanotransduction involving multimodular proteins: Converting force into biochemical signals
    • Vogel V. 2006. Mechanotransduction involving multimodular proteins: converting force into biochemical signals. Annu. Rev. Biophys. Biomol. Struct. 35:459-88
    • (2006) Annu. Rev. Biophys. Biomol. Struct. , vol.35 , pp. 459-488
    • Vogel, V.1
  • 69
    • 79960686720 scopus 로고    scopus 로고
    • Probing the folded state of fibronectin type III domains in stretched fibrils by measuring buried cysteine accessibility
    • Lemmon CA, Ohashi T, Erickson HP. 2011. Probing the folded state of fibronectin type III domains in stretched fibrils by measuring buried cysteine accessibility. J. Biol. Chem. 286:26375-82
    • (2011) J. Biol. Chem. , vol.286 , pp. 26375-26382
    • Lemmon, C.A.1    Ohashi, T.2    Erickson, H.P.3
  • 70
    • 71949122441 scopus 로고    scopus 로고
    • Stretched extracellular matrix proteins turn fouling and are functionally rescued by the chaperones albumin and casein
    • Little WC, Schwartlander R, Smith ML, Gourdon D, Vogel V. 2009. Stretched extracellular matrix proteins turn fouling and are functionally rescued by the chaperones albumin and casein. Nano Lett. 9:4158-67
    • (2009) Nano Lett , vol.9 , pp. 4158-4167
    • Little, W.C.1    Schwartlander, R.2    Smith, M.L.3    Gourdon, D.4    Vogel, V.5
  • 71
    • 84880260541 scopus 로고    scopus 로고
    • Stretching fibronectin fibres disrupts binding of bacterial adhesins by physically destroying an epitope
    • ChabriaM,Hertig S, SmithML,VogelV. 2010. Stretching fibronectin fibres disrupts binding of bacterial adhesins by physically destroying an epitope. Nat. Commun. 1:135
    • (2010) Nat. Commun. , vol.1 , pp. 135
    • Chabria, M.1    Hertig, S.2    Smith, M.L.3    Voge, L.V.4
  • 72
    • 0026245524 scopus 로고
    • Integrins as mechanochemical transducers
    • Ingber D. 1991. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol. 3:841-48
    • (1991) Curr. Opin. Cell Biol. , vol.3 , pp. 841-848
    • Ingber, D.1
  • 73
    • 59149101169 scopus 로고    scopus 로고
    • Cell biology. The force is with us
    • Schwartz MA. 2009. Cell biology. The force is with us. Science 323:588-89
    • (2009) Science , vol.323 , pp. 588-589
    • Schwartz, M.A.1
  • 75
    • 84855163922 scopus 로고    scopus 로고
    • Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin
    • Margadant F, Chew LL, Hu X, Yu H, Bate N, et al. 2011. Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol. 9:e1001223
    • (2011) PLoS Biol. , vol.9
    • Margadant, F.1    Chew, L.L.2    Hu, X.3    Yu, H.4    Bate, N.5
  • 76
    • 0034755942 scopus 로고    scopus 로고
    • Molecular complexity and dynamics of cell-matrix adhesions
    • Zamir E, Geiger B. 2001. Molecular complexity and dynamics of cell-matrix adhesions. J. Cell Sci. 114:3583-90
    • (2001) J. Cell Sci. , vol.114 , pp. 3583-3590
    • Zamir, E.1    Geiger, B.2
  • 77
    • 33751335857 scopus 로고    scopus 로고
    • Force sensing by mechanical extension of the Src family kinase substrate p130Cas
    • Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R, et al. 2006. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015-26
    • (2006) Cell , vol.127 , pp. 1015-1026
    • Sawada, Y.1    Tamada, M.2    Dubin-Thaler, B.J.3    Cherniavskaya, O.4    Sakai, R.5
  • 78
    • 77949754056 scopus 로고    scopus 로고
    • Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation
    • Pasapera AM, Schneider IC, Rericha E, Schlaepfer DD, Waterman CM. 2010. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188:877-90
    • (2010) J. Cell Biol. , vol.188 , pp. 877-890
    • Pasapera, A.M.1    Schneider, I.C.2    Rericha, E.3    Schlaepfer, D.D.4    Waterman, C.M.5
  • 79
    • 77954486800 scopus 로고    scopus 로고
    • Measuringmechanical tension across vinculin reveals regulation of focal adhesion dynamics
    • Grashoff C, Hoffman BD, BrennerMD, Zhou RB, Parsons M, et al. 2010. Measuringmechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263-66
    • (2010) Nature , vol.466 , pp. 263-266
    • Grashoff, C.1    Hoffman, B.D.2    Brenner, M.D.3    Zhou, R.B.4    Parsons, M.5
  • 80
    • 40149107045 scopus 로고    scopus 로고
    • How force might activate talin's vinculin binding sites: SMD reveals a structural mechanism
    • Hytonen VP, Vogel V. 2008. How force might activate talin's vinculin binding sites: SMD reveals a structural mechanism. PLoS Comput. Biol. 4:e24
    • (2008) PLoS Comput. Biol. , vol.4
    • Hytonen, V.P.1    Vogel, V.2
  • 85
    • 0242361579 scopus 로고    scopus 로고
    • Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation
    • Giannone G, JiangG, SuttonDH, CritchleyDR, SheetzMP. 2003. Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J. Cell Biol. 163:409-19
    • (2003) J. Cell Biol. , vol.163 , pp. 409-419
    • Giannone, G.1    Jiang, G.2    Sutton, D.H.3    Critchley, D.R.4    Sheetz, M.P.5
  • 86
    • 0037175402 scopus 로고    scopus 로고
    • The relationship between force and focal complex development
    • Galbraith CG, Yamada KM, Sheetz MP. 2002. The relationship between force and focal complex development. J. Cell Biol. 159:695-705
    • (2002) J. Cell Biol. , vol.159 , pp. 695-705
    • Galbraith, C.G.1    Yamada, K.M.2    Sheetz, M.P.3
  • 87
    • 77951246518 scopus 로고    scopus 로고
    • Contractility modulates cell adhesion strengthening through focal adhesion kinase and assembly of vinculin-containing focal adhesions
    • Dumbauld DW, Shin H, Gallant ND, Michael KE, Radhakrishna H, Garcia AJ. 2010. Contractility modulates cell adhesion strengthening through focal adhesion kinase and assembly of vinculin-containing focal adhesions. J. Cell. Physiol. 223:746-56
    • (2010) J. Cell. Physiol. , vol.223 , pp. 746-756
    • Dumbauld, D.W.1    Shin, H.2    Gallant, N.D.3    Michael, K.E.4    Radhakrishna, H.5    Garcia, A.J.6
  • 89
    • 80054043810 scopus 로고    scopus 로고
    • Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A
    • Ehrlicher AJ, Nakamura F, Hartwig JH, Weitz DA, Stossel TP. 2011. Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature 478(7368):260-63
    • (2011) Nature , vol.478 , Issue.7368 , pp. 260-263
    • Ehrlicher, A.J.1    Nakamura, F.2    Hartwig, J.H.3    Weitz, D.A.4    Stossel, T.P.5
  • 92
    • 0037096170 scopus 로고    scopus 로고
    • Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation
    • Coussen F, ChoquetD, SheetzMP, EricksonHP. 2002. Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. J. Cell Sci. 115:2581-90
    • (2002) J. Cell Sci. , vol.115 , pp. 2581-2590
    • Coussen, F.1    Choquet, D.2    Sheetz, M.P.3    Erickson, H.P.4
  • 94
    • 84855500059 scopus 로고    scopus 로고
    • Early integrin binding to Arg-Gly-Asp peptide activates actin polymerization and contractile movement that stimulates outward translocation
    • Yu CH, Law JBK, Suryana M, Low HY, Sheetz MP. 2011. Early integrin binding to Arg-Gly-Asp peptide activates actin polymerization and contractile movement that stimulates outward translocation. Proc. Natl. Acad. Sci. USA 108:20585-90
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 20585-20590
    • Yu, C.H.1    Law, J.B.K.2    Suryana, M.3    Low, H.Y.4    Sheetz, M.P.5
  • 96
    • 0018101150 scopus 로고
    • Models for specific adhesion of cells to cells
    • Bell GI. 1978. Models for specific adhesion of cells to cells. Science 200:618-27
    • (1978) Science , vol.200 , pp. 618-627
    • Bell, G.I.1
  • 97
    • 0033531109 scopus 로고    scopus 로고
    • Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy
    • Merkel R, Nassoy P, Leung A, Ritchie K, Evans E. 1999. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397:50-53
    • (1999) Nature , vol.397 , pp. 50-53
    • Merkel, R.1    Nassoy, P.2    Leung, A.3    Ritchie, K.4    Evans, E.5
  • 98
    • 0009310332 scopus 로고    scopus 로고
    • Surface imaging by self-propelled nanoscale probes
    • Hess H, Clemmens J, Howard J, Vogel V. 2002. Surface imaging by self-propelled nanoscale probes. Nano Lett. 2:113-16
    • (2002) Nano Lett , vol.2 , pp. 113-116
    • Hess, H.1    Clemmens, J.2    Howard, J.3    Vogel, V.4
  • 100
  • 102
    • 50249122663 scopus 로고    scopus 로고
    • Catch bonds in adhesion
    • Thomas W. 2008. Catch bonds in adhesion. Annu. Rev. Biomed. Eng. 10:39-57
    • (2008) Annu. Rev. Biomed. Eng. , vol.10 , pp. 39-57
    • Thomas, W.1
  • 103
    • 77955915209 scopus 로고    scopus 로고
    • A mechanically stabilized receptor-ligand flex-bond important in the vasculature
    • Kim J, Zhang C-Z, Zhang X, Springer TA. 2010. A mechanically stabilized receptor-ligand flex-bond important in the vasculature. Nature 466:992-95
    • (2010) Nature , vol.466 , pp. 992-995
    • Kim, J.1    Zhang, C.-Z.2    Zhang, X.3    Springer, T.A.4
  • 104
  • 105
    • 78649476255 scopus 로고    scopus 로고
    • Tension directly stabilizes reconstituted kinetochore-microtubule attachments
    • Akiyoshi B, Sarangapani KK, Powers AF,NelsonCR, Reichow SL, et al. 2010. Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468:576-79
    • (2010) Nature , vol.468 , pp. 576-579
    • Akiyoshi, B.1    Sarangapani, K.K.2    Powers, A.F.3    Nelson, C.R.4    Reichow, S.L.5
  • 107
    • 33748628507 scopus 로고    scopus 로고
    • Uncoiling mechanics of Escherichia coli type i fimbriae are optimized for catch bonds
    • Forero M, Yakovenko O, Sokurenko EV, Thomas WE, Vogel V. 2006. Uncoiling mechanics of Escherichia coli type I fimbriae are optimized for catch bonds. PLoS Biol. 4:e298
    • (2006) PLoS Biol. , vol.4
    • Forero, M.1    Yakovenko, O.2    Sokurenko, E.V.3    Thomas, W.E.4    Vogel, V.5
  • 108
    • 67650309799 scopus 로고    scopus 로고
    • Mechanical signaling in networks ofmotor and cytoskeletal proteins
    • Howard J. 2009. Mechanical signaling in networks ofmotor and cytoskeletal proteins. Annu. Rev. Biophys. 38:217-34
    • (2009) Annu. Rev. Biophys. , vol.38 , pp. 217-234
    • Howard, J.1
  • 109
    • 0028219509 scopus 로고
    • Quantitative studies of endothelial-cell adhesion: Directional remodeling of focal adhesion sites in response to flow forces
    • Davies PF, Robotewskyj A, Griem ML. 1994. Quantitative studies of endothelial-cell adhesion: directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Investig. 93:2031-38
    • (1994) J. Clin. Investig. , vol.93 , pp. 2031-2038
    • Davies, P.F.1    Robotewskyj, A.2    Griem, M.L.3
  • 111
    • 0037128202 scopus 로고    scopus 로고
    • Force transduction by Triton cytoskeletons
    • Sawada Y, Sheetz MP. 2002. Force transduction by Triton cytoskeletons. J. Cell Biol. 156:609-15
    • (2002) J. Cell Biol. , vol.156 , pp. 609-615
    • Sawada, Y.1    Sheetz, M.P.2
  • 112
    • 70349496205 scopus 로고    scopus 로고
    • Clustering of α5β1 integrins determines adhesion strength whereas αvβ3 and talin enable mechanotransduction
    • Roca-Cusachs P, Gauthier NC, Del Rio A, Sheetz MP. 2009. Clustering of α5β1 integrins determines adhesion strength whereas αvβ3 and talin enable mechanotransduction. Proc. Natl. Acad. Sci. USA 106:16245-50
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 16245-16250
    • Roca-Cusachs, P.1    Gauthier, N.C.2    Del Rio, A.3    Sheetz, M.P.4
  • 113
    • 84863113109 scopus 로고    scopus 로고
    • Actin stress fibers: Assembly, dynamics and biological roles
    • Tojkander S, Gateva G, Lappalainen P. 2012. Actin stress fibers: assembly, dynamics and biological roles. J. Cell Sci. 125:1855-64
    • (2012) J. Cell Sci. , vol.125 , pp. 1855-1864
    • Tojkander, S.1    Gateva, G.2    Lappalainen, P.3
  • 114
    • 84861390541 scopus 로고    scopus 로고
    • Actin-bundling proteins in cancer progression at a glance
    • Stevenson RP, Veltman D, Machesky LM. 2012. Actin-bundling proteins in cancer progression at a glance. J. Cell Sci. 125:1073-79
    • (2012) J. Cell Sci. , vol.125 , pp. 1073-1079
    • Stevenson, R.P.1    Veltman, D.2    Machesky, L.M.3
  • 116
    • 84865183689 scopus 로고    scopus 로고
    • Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks
    • Falzone TT, Lenz M, Kovar DR, Gardel ML. 2012. Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks. Nat. Commun. 3:861
    • (2012) Nat. Commun. , vol.3 , pp. 861
    • Falzone, T.T.1    Lenz, M.2    Kovar, D.R.3    Gardel, M.L.4
  • 117
    • 67650763823 scopus 로고    scopus 로고
    • Fibronectins in vascular morphogenesis
    • Astrof S, Hynes RO. 2009. Fibronectins in vascular morphogenesis. Angiogenesis 12:165-75
    • (2009) Angiogenesis , vol.12 , pp. 165-175
    • Astrof, S.1    Hynes, R.O.2
  • 118
    • 84868572497 scopus 로고    scopus 로고
    • Fibers with integrated mechanochemical switches: Minimalistic design principles derived from fibronectin
    • Peleg O, Savrin V, Kolmakov GV, Salib IG, Balazs AC, et al. 2012. Fibers with integrated mechanochemical switches: minimalistic design principles derived from fibronectin. Biophys. J. 103:1909-18
    • (2012) Biophys. J. , vol.103 , pp. 1909-1918
    • Peleg, O.1    Savrin, V.2    Kolmakov, G.V.3    Salib, I.G.4    Balazs, A.C.5
  • 119
    • 1542381278 scopus 로고    scopus 로고
    • Dynamic force spectroscopy
    • ed. H Flyvbjerg, F Julicher, P Ormos, F David Berlin, Springer
    • Evans E, Williams P. 2002. Dynamic force spectroscopy. In Physics of Biomolecules and Cells, ed. H Flyvbjerg, F Julicher, P Ormos, F David, pp. 145-204. Berlin: Springer
    • (2002) Physics of Biomolecules and Cells , pp. 145-204
    • Evans, E.1    Williams, P.2
  • 120
    • 0031017220 scopus 로고    scopus 로고
    • Demonstration of mechanical connections between integrins cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure
    • Maniotis AJ, Chen CS, Ingber DE. 1997. Demonstration of mechanical connections between integrins cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc.Natl. Acad. Sci. USA 94:849- 54
    • (1997) Proc.Natl. Acad. Sci. USA , vol.94 , pp. 849-854
    • Maniotis, A.J.1    Chen, C.S.2    Ingber, D.E.3
  • 121
  • 123
    • 84869111112 scopus 로고    scopus 로고
    • United we stand: Integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction
    • Schwarz US, Gardel ML. 2012. United we stand: integrating the actin cytoskeleton and cell-matrix adhesions in cellular mechanotransduction. J. Cell Sci. 125:3051-60
    • (2012) J. Cell Sci. , vol.125 , pp. 3051-3060
    • Schwarz, U.S.1    Gardel, M.L.2
  • 124
    • 52449089651 scopus 로고    scopus 로고
    • Comparative dynamics of retrograde actin flow and focal adhesions: Formation of nascent adhesions triggers transition from fast to slow flow
    • Alexandrova AY, Arnold K, Schaub S, Vasiliev JM, Meister JJ, et al. 2008. Comparative dynamics of retrograde actin flow and focal adhesions: formation of nascent adhesions triggers transition from fast to slow flow. PLoS ONE 3:e3234
    • (2008) PLoS ONE , vol.3
    • Alexandrova, A.Y.1    Arnold, K.2    Schaub, S.3    Vasiliev, J.M.4    Meister, J.J.5
  • 125
    • 33646196554 scopus 로고    scopus 로고
    • Limitation of cell adhesion by the elasticity of the extracellular matrix
    • Nicolas A, Safrany SA. 2006. Limitation of cell adhesion by the elasticity of the extracellular matrix. Biophys. J. 91:61-73
    • (2006) Biophys. J. , vol.91 , pp. 61-73
    • Nicolas, A.1    Safrany, S.A.2
  • 126
    • 0035136028 scopus 로고    scopus 로고
    • Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy
    • Stark RW, Drobek T, Heckl WM. 2001. Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy. Ultramicroscopy 86:207-15
    • (2001) Ultramicroscopy , vol.86 , pp. 207-215
    • Stark, R.W.1    Drobek, T.2    Heckl, W.M.3
  • 127
    • 0036472312 scopus 로고    scopus 로고
    • Measuring the
    • spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods
    • Levy R, Maaloum M. 2002. Measuring the spring constant of atomic force microscope cantilevers: thermal fluctuations and other methods. Nanotechnology 13:33-37
    • (2002) Nanotechnology , vol.13 , pp. 33-37
    • Levy, R.1    Maaloum, M.2
  • 128
    • 3242722951 scopus 로고    scopus 로고
    • Progress toward Systeme International d'Unites traceable force metrology for nanomechanics
    • Pratt JR, SmithDT, Newell DB,Kramar JA, Whitenton E. 2004. Progress toward Systeme International d'Unites traceable force metrology for nanomechanics. J. Mater. Res. 19:366-79
    • (2004) J. Mater. Res. , vol.19 , pp. 366-379
    • Pratt, J.R.1    Smith, D.T.2    Newell, D.B.3    Kramar, J.A.4    Whitenton, E.5
  • 129
    • 34948851837 scopus 로고    scopus 로고
    • Spring constant calibration of atomic force microscopy cantilevers with a piezosensor transfer standard
    • Langlois ED, Shaw GA, Kramar JA, Pratt JR, Hurley DC. 2007. Spring constant calibration of atomic force microscopy cantilevers with a piezosensor transfer standard. Rev. Sci. Instrum. 78:093705-10
    • (2007) Rev. Sci. Instrum. , vol.78 , pp. 093705-093710
    • Langlois, E.D.1    Shaw, G.A.2    Kramar, J.A.3    Pratt, J.R.4    Hurley, D.C.5
  • 130
    • 80052431726 scopus 로고    scopus 로고
    • Effects of gel thickness on microscopic indentation measurements of gel modulus
    • Long R, Hall MS, Wu MM, Hui CY. 2011. Effects of gel thickness on microscopic indentation measurements of gel modulus. Biophys. J. 101:643-50
    • (2011) Biophys. J. , vol.101 , pp. 643-650
    • Long, R.1    Hall, M.S.2    Wu, M.M.3    Hui, C.Y.4
  • 131
    • 0036708449 scopus 로고    scopus 로고
    • Calculation of forces at focal adhesions from elastic substrate data: The effect of localized force and the need for regularization
    • Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, Safran SA. 2002. Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys. J. 83:1380-94
    • (2002) Biophys. J. , vol.83 , pp. 1380-1394
    • Schwarz, U.S.1    Balaban, N.Q.2    Riveline, D.3    Bershadsky, A.4    Geiger, B.5    Safran, S.A.6
  • 133
    • 77952340058 scopus 로고    scopus 로고
    • Probing cellular traction forces by micropillar arrays: Contribution of substrate warping to pillar deflection
    • Schoen I, Hu W, Klotzsch E, Vogel V. 2010. Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. Nano Lett. 10:1823-30
    • (2010) Nano Lett , vol.10 , pp. 1823-1830
    • Schoen, I.1    Hu, W.2    Klotzsch, E.3    Vogel, V.4
  • 134
    • 79957647399 scopus 로고    scopus 로고
    • Calibrated micropost arrays for biomechanical characterisation of cardiomyocytes
    • Kim K, Taylor R, Sim JY, Park SJ,Norman J, et al. 2011. Calibrated micropost arrays for biomechanical characterisation of cardiomyocytes. Micro Nano Lett. IET 6:317-22
    • (2011) Micro Nano Lett. IET , vol.6 , pp. 317-322
    • Kim, K.1    Taylor, R.2    Sim, J.Y.3    Park, S.J.4    Norman, J.5
  • 135
    • 84872620061 scopus 로고    scopus 로고
    • Sacrificial layer technique for axial force post assay of immature cardiomyocytes
    • Taylor RE, Kim K, Sun N, Park SJ, Sim JY, et al. 2013. Sacrificial layer technique for axial force post assay of immature cardiomyocytes. Biomed. Microdevices 15:171-81
    • (2013) Biomed. Microdevices , vol.15 , pp. 171-181
    • Taylor, R.E.1    Kim, K.2    Sun, N.3    Park, S.J.4    Sim, J.Y.5
  • 136
    • 0027085491 scopus 로고
    • Elastic contact versus indentation modeling of multilayered materials
    • Gao HJ, Chiu CH, Lee J. 1992. Elastic contact versus indentation modeling of multilayered materials. Int. J. Solids Struct. 29:2471-92
    • (1992) Int. J. Solids Struct. , vol.29 , pp. 2471-2492
    • Gao, H.J.1    Chiu, C.H.2    Lee, J.3
  • 138
    • 58749096540 scopus 로고    scopus 로고
    • Cell-cell mechanical communication through compliant substrates
    • Reinhart-King CA, DemboM, Hammer DA. 2008. Cell-cell mechanical communication through compliant substrates. Biophys. J. 95:6044-51
    • (2008) Biophys. J. , vol.95 , pp. 6044-6051
    • Reinhart-King, C.A.1    Dembo, M.2    Hammer, D.A.3
  • 139
    • 84856134600 scopus 로고    scopus 로고
    • Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing
    • Prager-Khoutorsky M, Lichtenstein A, Krishnan R, Rajendran K, Mayo A, et al. 2011. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 13:1457-65
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1457-1465
    • Prager-Khoutorsky, M.1    Lichtenstein, A.2    Krishnan, R.3    Rajendran, K.4    Mayo, A.5
  • 140
    • 77649223377 scopus 로고    scopus 로고
    • Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells
    • Kubow KE, Klotzsch E, Smith ML,Gourdon D, LittleWC, Vogel V. 2009. Crosslinking of cell-derived 3D scaffolds up-regulates the stretching and unfolding of new extracellular matrix assembled by reseeded cells. Integr. Biol. 1:635-48
    • (2009) Integr. Biol. , vol.1 , pp. 635-648
    • Kubow, K.E.1    Klotzsch, E.2    Smith, M.L.3    Gourdon, D.4    Little, W.5    Vogel, V.6
  • 141
    • 34347204139 scopus 로고    scopus 로고
    • Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates
    • Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B. 2007. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl. Acad. Sci. USA 104:8281-86
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 8281-8286
    • Saez, A.1    Ghibaudo, M.2    Buguin, A.3    Silberzan, P.4    Ladoux, B.5
  • 142
    • 70849116975 scopus 로고    scopus 로고
    • FRET and mechanobiology
    • Wang Y, Wang N. 2009. FRET and mechanobiology. Integr. Biol. 1:565-73
    • (2009) Integr. Biol. , vol.1 , pp. 565-573
    • Wang, Y.1    Wang, N.2
  • 143
    • 0035807873 scopus 로고    scopus 로고
    • Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer
    • Baneyx G, Baugh L, Vogel V. 2001. Coexisting conformations of fibronectin in cell culture imaged using fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. 98:14464-68
    • (2001) Proc. Natl. Acad. Sci. , vol.98 , pp. 14464-14468
    • Baneyx, G.1    Baugh, L.2    Vogel, V.3
  • 144
    • 35648954122 scopus 로고    scopus 로고
    • Force-induced unfolding of fibronectin in the extracellular matrix of living cells
    • Smith ML, Gourdon D, Little WC, Kubow KE, Eguiluz RA, et al. 2007. Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol. 5:e268
    • (2007) PLoS Biol. , vol.5
    • Smith, M.L.1    Gourdon, D.2    Little, W.C.3    Kubow, K.E.4    Eguiluz, R.A.5
  • 145
    • 45049084735 scopus 로고    scopus 로고
    • Assay tomechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage
    • LittleWC, SmithML, Ebneter U, VogelV. 2008. Assay tomechanically tune and optically probe fibrillar fibronectin conformations from fully relaxed to breakage. Matrix Biol. 27:451-61
    • (2008) Matrix Biol. , vol.27 , pp. 451-461
    • Little, W.C.1    Smith, M.L.2    Ebneter, U.3    Voge, L.V.4
  • 146
    • 70849127367 scopus 로고    scopus 로고
    • Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites
    • Klotzsch E, Smith ML, Kubow KE, Muntwyler S, Little WC, et al. 2009. Fibronectin forms the most extensible biological fibers displaying switchable force-exposed cryptic binding sites. Proc. Natl. Acad. Sci. USA 106:18267-72
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 18267-18272
    • Klotzsch, E.1    Smith, M.L.2    Kubow, K.E.3    Muntwyler, S.4    Little, W.C.5
  • 147
    • 84867437035 scopus 로고    scopus 로고
    • Engineering mechanosensitive multivalent receptor-ligand interactions: Why the nanolinker regions of bacterial adhesins matter
    • Hertig S, Chabria M, Vogel V. 2012. Engineering mechanosensitive multivalent receptor-ligand interactions: why the nanolinker regions of bacterial adhesins matter. Nano Lett. 12:5162-68
    • (2012) Nano Lett , vol.12 , pp. 5162-5168
    • Hertig, S.1    Chabria, M.2    Vogel, V.3
  • 148
    • 44349176807 scopus 로고    scopus 로고
    • A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ
    • Meng F, Suchyna TM, Sachs F. 2008. A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J. 275:3072-87
    • (2008) FEBS J , vol.275 , pp. 3072-3087
    • Meng, F.1    Suchyna, T.M.2    Sachs, F.3
  • 149
    • 55949135877 scopus 로고    scopus 로고
    • Visualizing myosin-actin interaction with a genetically-encoded fluorescent strain sensor
    • Iwai S, Uyeda TQP. 2008. Visualizing myosin-actin interaction with a genetically-encoded fluorescent strain sensor. Proc. Natl. Acad. Sci. USA 105:16882-87
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 16882-16887
    • Iwai, S.1    Uyeda, T.Q.P.2
  • 150
    • 79251591301 scopus 로고    scopus 로고
    • Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor
    • Meng F, Sachs F. 2011. Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor. J. Cell Sci. 124:261-69
    • (2011) J. Cell Sci. , vol.124 , pp. 261-269
    • Meng, F.1    Sachs, F.2
  • 151
    • 84868292566 scopus 로고    scopus 로고
    • Modeling the structure and fluorescence of GFP's intermediate states
    • Saeger J, Hytonen VP, Klotzsch E, Vogel V. 2012. Modeling the structure and fluorescence of GFP's intermediate states. PLoS ONE 7:e46962
    • (2012) PLoS ONE , vol.7
    • Saeger, J.1    Hytonen, V.P.2    Klotzsch, E.3    Vogel, V.4
  • 152
    • 84856440471 scopus 로고    scopus 로고
    • Visualizing mechanical tension across membrane receptors with a fluorescent sensor
    • Stabley DR, Jurchenko C, Marshall SS, Salaita KS. 2012. Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat. Methods 9:64-67
    • (2012) Nat. Methods , vol.9 , pp. 64-67
    • Stabley, D.R.1    Jurchenko, C.2    Marshall, S.S.3    Salaita, K.S.4
  • 153
    • 84860811841 scopus 로고    scopus 로고
    • Phage-based molecular probes that discriminate force-induced structural states of fibronectin in vivo
    • Cao L, Zeller MK, Fiore VF, Strane P, Bermudez H, Barker TH. 2012. Phage-based molecular probes that discriminate force-induced structural states of fibronectin in vivo. Proc. Natl. Acad. Sci. USA 109:7251-56
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 7251-7256
    • Cao, L.1    Zeller, M.K.2    Fiore, V.F.3    Strane, P.4    Bermudez, H.5    Barker, T.H.6
  • 154
    • 84863213613 scopus 로고    scopus 로고
    • Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films
    • Grover CN, Gwynne JH, Pugh N, Hamaia S, Farndale RW, et al. 2012. Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomater. 8:3080-90
    • (2012) Acta Biomater. , vol.8 , pp. 3080-3090
    • Grover, C.N.1    Gwynne, J.H.2    Pugh, N.3    Hamaia, S.4    Farndale, R.W.5
  • 155
    • 11844273330 scopus 로고    scopus 로고
    • Adhesion remodeling underlying tissue morphogenesis
    • Lecuit T. 2005. Adhesion remodeling underlying tissue morphogenesis. Trends Cell Biol. 15:34-42
    • (2005) Trends Cell Biol , vol.15 , pp. 34-42
    • Lecuit, T.1
  • 156
    • 0026627851 scopus 로고
    • Of mice and men: Genetic skin diseases of keratin
    • Fuchs E, Coulombe PA. 1992. Of mice and men: genetic skin diseases of keratin. Cell 69:899-902
    • (1992) Cell , vol.69 , pp. 899-902
    • Fuchs, E.1    Coulombe, P.A.2
  • 157
    • 35348927451 scopus 로고    scopus 로고
    • Desmosomes: New perspectives on a classic
    • Green KJ, Simpson CL. 2007. Desmosomes: new perspectives on a classic. J. Investig. Dermatol. 127:2499-515
    • (2007) J. Investig. Dermatol. , vol.127 , pp. 2499-2515
    • Green, K.J.1    Simpson, C.L.2
  • 158
    • 69549130809 scopus 로고    scopus 로고
    • Remodeling of the adherens junctions during morphogenesis
    • Nishimura T, Takeichi M. 2009. Remodeling of the adherens junctions during morphogenesis. Curr. Top. Dev. Biol. 89:33-54
    • (2009) Curr. Top. Dev. Biol. , vol.89 , pp. 33-54
    • Nishimura, T.1    Takeichi, M.2
  • 159
    • 69549116340 scopus 로고    scopus 로고
    • Intercellular adhesion in morphogenesis: Molecular and biophysical considerations
    • Borghi N, Nelson WJ. 2009. Intercellular adhesion in morphogenesis: molecular and biophysical considerations. Curr. Top. Dev. Biol. 89:1-32
    • (2009) Curr. Top. Dev. Biol. , vol.89 , pp. 1-32
    • Borghi, N.1    Nelson, W.J.2
  • 160
    • 0036696823 scopus 로고    scopus 로고
    • Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell-cell adhesion
    • Ehrlich JS, Hansen MD, Nelson WJ. 2002. Spatio-temporal regulation of Rac1 localization and lamellipodia dynamics during epithelial cell-cell adhesion. Dev. Cell 3:259-70
    • (2002) Dev. Cell , vol.3 , pp. 259-270
    • Ehrlich, J.S.1    Hansen, M.D.2    Nelson, W.J.3
  • 161
    • 0032808090 scopus 로고    scopus 로고
    • Analysis of actin filament bundle dynamics during contact formation in live epithelial cells
    • Krendel MF, Bonder EM. 1999. Analysis of actin filament bundle dynamics during contact formation in live epithelial cells. Cell Motil. Cytoskelet. 43:296-309
    • (1999) Cell Motil. Cytoskelet. , vol.43 , pp. 296-309
    • Krendel, M.F.1    Bonder, E.M.2
  • 162
    • 34547571737 scopus 로고    scopus 로고
    • Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion
    • Yamada S, Nelson WJ. 2007. Localized zones of Rho and Rac activities drive initiation and expansion of epithelial cell-cell adhesion. J. Cell Biol. 178:517-27
    • (2007) J. Cell Biol. , vol.178 , pp. 517-527
    • Yamada, S.1    Nelson, W.J.2
  • 163
    • 0031692261 scopus 로고    scopus 로고
    • Cytomechanics of cadherin-mediated cell-cell adhesion
    • Adams CL, Nelson WJ. 1998. Cytomechanics of cadherin-mediated cell-cell adhesion. Curr. Opin. Cell Biol. 10:572-77
    • (1998) Curr. Opin. Cell Biol. , vol.10 , pp. 572-577
    • Adams, C.L.1    Nelson, W.J.2
  • 166
    • 0042925433 scopus 로고    scopus 로고
    • Cell organization in softmedia due to activemechanosensing
    • Bischofs IB, Schwarz US. 2003. Cell organization in softmedia due to activemechanosensing. Proc. Natl. Acad. Sci. USA 100:9274-79
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 9274-9279
    • Bischofs, I.B.1    Schwarz, U.S.2
  • 168
    • 79959532417 scopus 로고    scopus 로고
    • How far cardiac cells can see each other mechanically
    • Tang X, Bajaj P, Bashir R, Saif TA. 2011. How far cardiac cells can see each other mechanically. Soft Matter 7:6151-58
    • (2011) Soft Matter , vol.7 , pp. 6151-6158
    • Tang, X.1    Bajaj, P.2    Bashir, R.3    Saif, T.A.4
  • 169
    • 79958808952 scopus 로고    scopus 로고
    • How matrix properties control the self-assembly and maintenance of tissues
    • Reinhart-King CA. 2011. How matrix properties control the self-assembly and maintenance of tissues. Ann. Biomed. Eng. 39:1849-56
    • (2011) Ann. Biomed. Eng. , vol.39 , pp. 1849-1856
    • Reinhart-King, C.A.1
  • 172
    • 84863344531 scopus 로고    scopus 로고
    • Three-dimensional analysis of the effect of epidermal growth factor on cell-cell adhesion in epithelial cell clusters
    • Notbohm J, Kirn JH, Asthagiri AR, Ravichandran G. 2012. Three-dimensional analysis of the effect of epidermal growth factor on cell-cell adhesion in epithelial cell clusters. Biophys. J. 102:1323-30
    • (2012) Biophys. J. , vol.102 , pp. 1323-1330
    • Notbohm, J.1    Kirn, J.H.2    Asthagiri, A.R.3    Ravichandran, G.4
  • 174
    • 39149130598 scopus 로고    scopus 로고
    • The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing
    • Farhadifar R, Roper JC, Aigouy B, Eaton S, Julicher F. 2007. The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr. Biol. 17:2095-104
    • (2007) Curr. Biol. , vol.17 , pp. 2095-2104
    • Farhadifar, R.1    Roper, J.C.2    Aigouy, B.3    Eaton, S.4    Julicher, F.5
  • 175
    • 84867886120 scopus 로고    scopus 로고
    • Cadherins in collective cell migration of mesenchymal cells
    • Theveneau E, Mayor R. 2012. Cadherins in collective cell migration of mesenchymal cells. Curr. Opin. Cell Biol. 24:677-78
    • (2012) Curr. Opin. Cell Biol. , vol.24 , pp. 677-678
    • Theveneau, E.1    Mayor, R.2
  • 176
    • 70350228491 scopus 로고    scopus 로고
    • Collective cell migration
    • Rorth P. 2009. Collective cell migration. Annu. Rev. Cell Dev. Biol. 25:407-29
    • (2009) Annu. Rev. Cell Dev. Biol. , vol.25 , pp. 407-429
    • Rorth, P.1
  • 177
    • 67651162169 scopus 로고    scopus 로고
    • Bioengineering challenges for heart valve tissue engineering
    • Sacks MS, Schoen FJ, Mayer JE. 2009. Bioengineering challenges for heart valve tissue engineering. Annu. Rev. Biomed. Eng. 11:289-313
    • (2009) Annu. Rev. Biomed. Eng. , vol.11 , pp. 289-313
    • Sacks, M.S.1    Schoen, F.J.2    Mayer, J.E.3
  • 178
    • 79959393378 scopus 로고    scopus 로고
    • Tissue engineering and regenerative medicine: History, progress, and challenges
    • Berthiaume F, Maguire TJ, Yarmush ML. 2011. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu. Rev. Chem. Biomol. Eng. 2:403-30
    • (2011) Annu. Rev. Chem. Biomol. Eng. , vol.2 , pp. 403-430
    • Berthiaume, F.1    Maguire, T.J.2    Yarmush, M.L.3
  • 180
    • 84867084476 scopus 로고    scopus 로고
    • Improving FRET dynamic range with bright green and red fluorescent proteins
    • Lam AJ, St-Pierre F, Gong Y, Marshall JD, Cranfill PJ, et al. 2012. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat. Methods 9:1005-12
    • (2012) Nat. Methods , vol.9 , pp. 1005-1012
    • Lam, A.J.1    St-Pierre, F.2    Gong, Y.3    Marshall, J.D.4    Cranfill, P.J.5
  • 182
    • 0141865704 scopus 로고    scopus 로고
    • Untangling desmosomal knots with electron tomography
    • He WZ, Cowin P, Stokes DL. 2003. Untangling desmosomal knots with electron tomography. Science 302:109-13
    • (2003) Science , vol.302 , pp. 109-113
    • He, W.Z.1    Cowin, P.2    Stokes, D.L.3
  • 183
    • 84872561011 scopus 로고    scopus 로고
    • Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions
    • Legant WR,Choi CK, Miller JS, Shao L,Gao L, et al. 2013. Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc. Natl. Acad. Sci. USA 110:881-86
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 881-886
    • Legant, W.R.1    Choi, C.K.2    Miller, J.S.3    Shao, L.4    Gao, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.