메뉴 건너뛰기




Volumn 9, Issue 6, 2013, Pages 598-612

Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds

Author keywords

Bioethanol; Fermentation; Lignocellulolytic materials; Lignocellulosic inhibitors; Microbial physiology; Phenolics; Stress response

Indexed keywords

ALCOHOL; BIOETHANOL; LIGNIN; LIGNOCELLULOSE;

EID: 84879831025     PISSN: 14492288     EISSN: None     Source Type: Journal    
DOI: 10.7150/ijbs.6091     Document Type: Article
Times cited : (102)

References (194)
  • 2
    • 33746655320 scopus 로고    scopus 로고
    • Environmental, economic and energetic cost and benefits of biodiesel and ethanol biofuels
    • Hill J, Nelson E, Tilman D, et al. Environmental, economic and energetic cost and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA. 2006; 30: 11206-11210.
    • (2006) Proc Natl Acad Sci USA , vol.30 , pp. 11206-11210
    • Hill, J.1    Nelson, E.2    Tilman, D.3
  • 3
    • 80052046252 scopus 로고    scopus 로고
    • [Internet], International Energy Agency
    • [Internet] Technology Roadmap: Biofuels for Transport. International Energy Agency. 2011. http://www.iea.org/papers/2011/biofuels_roadmap.pdf.
    • (2011) Technology Roadmap: Biofuels For Transport
  • 5
    • 33847346317 scopus 로고    scopus 로고
    • Energy Supply: Its demand and security issues for developed and emerging economies
    • Asif M, Muneer T. Energy Supply: its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Rev. 2007; 11:1388-1413.
    • (2007) Renewable and Sustainable Energy Rev , vol.11 , pp. 1388-1413
    • Asif, M.1    Muneer, T.2
  • 6
    • 82455210960 scopus 로고    scopus 로고
    • Thermophilic, lignocellulolytic bacteria for ethanol production: Current state and perspectives
    • Chang T, Yao S. Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Appl Microbiol Biotechnol. 2011; 92:13-27.
    • (2011) Appl Microbiol Biotechnol , vol.92 , pp. 13-27
    • Chang, T.1    Yao, S.2
  • 7
    • 34548244498 scopus 로고    scopus 로고
    • Metabolic engineering of Bacillus subtilis for ethanol production: Lactate dehydrogenase plays a key role in fermentative metabolism
    • Romero S, Merino E, Bolivar F, et al. Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl Environ Microbiol. 2007; 16: 5190-5198.
    • (2007) Appl Environ Microbiol , vol.16 , pp. 5190-5198
    • Romero, S.1    Merino, E.2    Bolivar, F.3
  • 8
    • 52949139048 scopus 로고    scopus 로고
    • Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield
    • Shaw AJ, Podkaminer KK, Desai SG, et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA. 2008; 37: 13769-13774.
    • (2008) Proc Natl Acad Sci USA , vol.37 , pp. 13769-13774
    • Shaw, A.J.1    Podkaminer, K.K.2    Desai, S.G.3
  • 9
    • 70450221933 scopus 로고    scopus 로고
    • Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production
    • Cripps RE, Eley K, Leak DJ, et al. Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab Eng. 2009; 6: 398-408.
    • (2009) Metab Eng , vol.6 , pp. 398-408
    • Cripps, R.E.1    Eley, K.2    Leak, D.J.3
  • 10
    • 77955853857 scopus 로고    scopus 로고
    • Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii
    • Yao S, Mikkelsen MJ. Metabolic engineering to improve ethanol production in Thermoanaerobacter mathranii. Appl Microbiol Biotechnol. 2010; 1: 199-208.
    • (2010) Appl Microbiol Biotechnol , vol.1 , pp. 199-208
    • Yao, S.1    Mikkelsen, M.J.2
  • 11
    • 84894408697 scopus 로고    scopus 로고
    • Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals
    • Jarboe, LR, Liu P, Kautharapu K, Ingram LO. Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals. Comp & Struct Biotechnol J. 2012; 3(4): 1-8.
    • (2012) Comp & Struct Biotechnol J , vol.3 , Issue.4 , pp. 1-8
    • Jarboe, L.R.1    Liu, P.2    Kautharapu, K.3    Ingram, L.O.4
  • 12
    • 0036146772 scopus 로고    scopus 로고
    • A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum:Investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose
    • Zverlov VV, Velikodvorskaya GA, Schwarz WH. A newly described cellulosomal cellobiohydrolase, CelO, from Clostridium thermocellum:investigation of the exo-mode of hydrolysis, and binding capacity to crystalline cellulose. Microbiol. 2002; 148: 247-255.
    • (2002) Microbiol , vol.148 , pp. 247-255
    • Zverlov, V.V.1    Velikodvorskaya, G.A.2    Schwarz, W.H.3
  • 13
    • 14944381112 scopus 로고    scopus 로고
    • The Clostridium thermocellum cellulosome-the paradigm of a multienzyme complex
    • In: Ohmiya K, et al, eds., Tokyo, Japan: Uni Publishers
    • Zverlov VV, Schwarz WH. The Clostridium thermocellum cellulosome-the paradigm of a multienzyme complex. In: Ohmiya K, et al, eds. Biotechnology of lignocellulose degradation and biomass utilization. Tokyo, Japan: Uni Publishers. 2004: 137-147.
    • (2004) Biotechnology of Lignocellulose Degradation and Biomass Utilization , pp. 137-147
    • Zverlov, V.V.1    Schwarz, W.H.2
  • 15
    • 0028088841 scopus 로고
    • The biological degradation of cellulose
    • Béguin P, Aubert JP. The biological degradation of cellulose. FEMS Microbiol Rev. 1994; 13: 25-58.
    • (1994) FEMS Microbiol Rev , vol.13 , pp. 25-58
    • Béguin, P.1    Aubert, J.P.2
  • 16
    • 0032422232 scopus 로고    scopus 로고
    • Simultaneous bioconversion of cellulose and hemicellulose to ethanol
    • Chandrakant P, Bisaria VS. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol. 1998; 18: 295-331.
    • (1998) Crit Rev Biotechnol , vol.18 , pp. 295-331
    • Chandrakant, P.1    Bisaria, V.S.2
  • 17
    • 67649823734 scopus 로고    scopus 로고
    • Cradle-tograve' assessment of existing lignocellulose pretreatment technologies
    • Sousa LD, Chundawat SPS, Balan V, Dale BE. 'Cradle-tograve' assessment of existing lignocellulose pretreatment technologies. Curr Opin Biotechnol. 2009; 20: 339-347.
    • (2009) Curr Opin Biotechnol , vol.20 , pp. 339-347
    • Sousa, L.D.1    Chundawat, S.P.S.2    Balan, V.3    Dale, B.E.4
  • 18
    • 0036616389 scopus 로고    scopus 로고
    • Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview
    • Perez J, Muñoz-Dorado J, de la Rubia T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol. 2002; 5: 53-63.
    • (2002) Int Microbiol , vol.5 , pp. 53-63
    • Perez, J.1    Muñoz-Dorado, J.2    de la Rubia, T.3
  • 19
    • 3042528521 scopus 로고    scopus 로고
    • Lignocellulose biotechnology: Issues of bioconversion and enzyme production
    • Howard RL, Abotsi E, Jansen van Rensburg EL, et al. Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol. 2003; 2(12): 602-619.
    • (2003) Afr J Biotechnol , vol.2 , Issue.12 , pp. 602-619
    • Howard, R.L.1    Abotsi, E.2    Van Rensburg, J.E.L.3
  • 20
    • 0034922896 scopus 로고    scopus 로고
    • Fuel ethanol production from lignocellulose: A challenge for metabolic engineering and process integration
    • Zaldivar J, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001; 56: 17-34.
    • (2001) Appl Microbiol Biotechnol , vol.56 , pp. 17-34
    • Zaldivar, J.1    Nielsen, J.2    Olsson, L.3
  • 21
    • 79951843066 scopus 로고    scopus 로고
    • Biotechnological strategies to overcome inhibitors in lignocelluloses hydrolysates for ethanol production: Review
    • Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocelluloses hydrolysates for ethanol production: review. Crit Rev Biotechnol. 2011; 1: 20-31.
    • (2011) Crit Rev Biotechnol , vol.1 , pp. 20-31
    • Parawira, W.1    Tekere, M.2
  • 22
    • 51549109717 scopus 로고    scopus 로고
    • Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production
    • Okuda N, Soneura M, Ninomiya K, et al. Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng. 2008; 2: 128-133.
    • (2008) J Biosci Bioeng , vol.2 , pp. 128-133
    • Okuda, N.1    Soneura, M.2    Ninomiya, K.3
  • 23
    • 84881511613 scopus 로고    scopus 로고
    • Biomass ethanol inches forward
    • McCoy M. Biomass ethanol inches forward. Chemical Eng News. 1998; 76: 29-32.
    • (1998) Chemical Eng News , vol.76 , pp. 29-32
    • McCoy, M.1
  • 24
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004; 66: 10-26.
    • (2004) Appl Microbiol Biotechnol , vol.66 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 25
    • 9944252948 scopus 로고    scopus 로고
    • Features of promising technologies for pretreatment of lignocellulosic biomass
    • Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005; 96: 673-686.
    • (2005) Bioresour Technol , vol.96 , pp. 673-686
    • Mosier, N.1    Wyman, C.2    Dale, B.3
  • 26
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates
    • II: Inhibitors and mechanisms of inhibition
    • Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol. 2000; 74: 25-33.
    • (2000) Bioresour Technol , vol.74 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hagerdal, B.2
  • 27
    • 70449413186 scopus 로고    scopus 로고
    • Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli
    • Mills TY, Sandoval NR, Gill RT. Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol for Biofuels. 2009; 2 (1): 26-36.
    • (2009) Biotechnol For Biofuels , vol.2 , Issue.1 , pp. 26-36
    • Mills, T.Y.1    Sandoval, N.R.2    Gill, R.T.3
  • 28
    • 84865434614 scopus 로고    scopus 로고
    • Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors
    • Ding MZ, Wang X, Liu W, Cheng JS, Yang Y, and Yuan YJ. Proteomic research reveals the stress response and detoxification of yeast to combined inhibitors. PLoS One. 2012; 7(8): 43474.
    • (2012) PLoS One , vol.7 , Issue.8 , pp. 43474
    • Ding, M.Z.1    Wang, X.2    Liu, W.3    Cheng, J.S.4    Yang, Y.5    Yuan, Y.J.6
  • 29
    • 0343183325 scopus 로고    scopus 로고
    • Fermentation of lignocellulose hydrolysates
    • I: Inhibition and detoxification
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulose hydrolysates. I: inhibition and detoxification. Biores Technol. 2000; 74(1): 17-24
    • (2000) Biores Technol , vol.74 , Issue.1 , pp. 17-24
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 30
    • 1342265594 scopus 로고    scopus 로고
    • Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: A review
    • Mussatto SI, Roberto IC. Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresour Technol. 2004; 93: 1-10.
    • (2004) Bioresour Technol , vol.93 , pp. 1-10
    • Mussatto, S.I.1    Roberto, I.C.2
  • 31
    • 80053295209 scopus 로고    scopus 로고
    • Advances on biomass pretreatment using ionic liquids: An overview
    • Tadesse H, Luque R. Advances on biomass pretreatment using ionic liquids: An overview. Energy Environ Sci. 2011; 4: 3913-3929.
    • (2011) Energy Environ Sci , vol.4 , pp. 3913-3929
    • Tadesse, H.1    Luque, R.2
  • 32
    • 84867009241 scopus 로고    scopus 로고
    • PEG-functionalized ionic liquids for cellulose dissolution and saccharification
    • Tang S, Baker GA, Ravula S, Jones JE, Zhao H. PEG-functionalized ionic liquids for cellulose dissolution and saccharification. Green Chem. 2012; 14: 2922-2932.
    • (2012) Green Chem , vol.14 , pp. 2922-2932
    • Tang, S.1    Baker, G.A.2    Ravula, S.3    Jones, J.E.4    Zhao, H.5
  • 33
    • 84874487885 scopus 로고    scopus 로고
    • Deconstruction of lignocellulosic biomass with ionic liquids
    • Brandt A, Gräsvik J, Halletta JP, Welton T. Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem. 2013; 15: 550-583.
    • (2013) Green Chem , vol.15 , pp. 550-583
    • Brandt, A.1    Gräsvik, J.2    Halletta, J.P.3    Welton, T.4
  • 34
    • 18844392283 scopus 로고    scopus 로고
    • Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains
    • Liu ZL, Slininger PJ, Gorsich SW. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol. 2005; 2: 451-460.
    • (2005) Appl Biochem Biotechnol , vol.2 , pp. 451-460
    • Liu, Z.L.1    Slininger, P.J.2    Gorsich, S.W.3
  • 36
    • 79954648688 scopus 로고    scopus 로고
    • Molecular mechanisms of yeast tolerance and in situ detoxification of lignocelluloses hydrolysates
    • Liu ZL. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocelluloses hydrolysates. Appl Microbiol Biotechnol. 2011; 90(3): 809-825.
    • (2011) Appl Microbiol Biotechnol , vol.90 , Issue.3 , pp. 809-825
    • Liu, Z.L.1
  • 37
    • 59649112133 scopus 로고    scopus 로고
    • Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals
    • Li J, Gellerstedt G, Toven K. Steam explosion lignins; their extraction, structure and potential as feedstock for biodiesel and chemicals. Bioresour Technol. 2009; 100: 2556-2561.
    • (2009) Bioresour Technol , vol.100 , pp. 2556-2561
    • Li, J.1    Gellerstedt, G.2    Toven, K.3
  • 38
  • 39
    • 0036159062 scopus 로고    scopus 로고
    • Hydrolysis of lignocellulosic materials for ethanol production: A review
    • Sun Y, Chenj J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 2002; 83: 1-11.
    • (2002) Bioresour Technol , vol.83 , pp. 1-11
    • Sun, Y.1    Chenj, J.2
  • 40
    • 0034925186 scopus 로고    scopus 로고
    • Detoxification of dilute acid hydrolysate of lignocellulose with lime
    • Martinez A, Rodriguez ME, Wells ML, et al. Detoxification of dilute acid hydrolysate of lignocellulose with lime. Biotechnol Prog. 2001; 2: 287-293
    • (2001) Biotechnol Prog , vol.2 , pp. 287-293
    • Martinez, A.1    Rodriguez, M.E.2    Wells, M.L.3
  • 41
    • 51349153711 scopus 로고    scopus 로고
    • Pretreatments to enhance the digestibility of lignocellulosic biomass
    • Hendriks AT, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol. 2009; 1: 10-18.
    • (2009) Bioresour Technol , vol.1 , pp. 10-18
    • Hendriks, A.T.1    Zeeman, G.2
  • 42
    • 77949874216 scopus 로고    scopus 로고
    • Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review
    • Alvira P, Tomas-Pejo E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour Technol. 2010; 13: 4851-4861.
    • (2010) Bioresour Technol , vol.13 , pp. 4851-4861
    • Alvira, P.1    Tomas-Pejo, E.2    Ballesteros, M.3
  • 43
    • 9944252948 scopus 로고    scopus 로고
    • Features of promising technologies for pretreatment of lignocellulosic biomass
    • Mosier N, Wymanb C, Dalec B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 2005; 96: 673-686.
    • (2005) Biores Technol , vol.96 , pp. 673-686
    • Mosier, N.1    Wymanb, C.2    Dalec, B.3
  • 44
    • 0023328025 scopus 로고
    • Optimization of steam explosion as method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification
    • Morjanoff PJ, Gray PP. Optimization of steam explosion as method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification. Biotechnol Bioeng. 1987; 29: 733-741.
    • (1987) Biotechnol Bioeng , vol.29 , pp. 733-741
    • Morjanoff, P.J.1    Gray, P.P.2
  • 45
    • 73749087185 scopus 로고    scopus 로고
    • Lignocellulosic biomass pretreatment using Afex
    • Balan V, Bals B, Chundawat SP, et al. Lignocellulosic biomass pretreatment using Afex. Methods Mol Biol. 2009; 581: 61-77.
    • (2009) Methods Mol Biol , vol.581 , pp. 61-77
    • Balan, V.1    Bals, B.2    Chundawat, S.P.3
  • 46
    • 77953022341 scopus 로고    scopus 로고
    • A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals to biocatalysis and bioremediation
    • Nicolaou SA, Gaida SM, Papoutsakis ET. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals to biocatalysis and bioremediation. Metabolic Eng. 2010; 12: 307-331.
    • (2010) Metabolic Eng , vol.12 , pp. 307-331
    • Nicolaou, S.A.1    Gaida, S.M.2    Papoutsakis, E.T.3
  • 47
    • 80053172430 scopus 로고    scopus 로고
    • Engineering microbes for tolerance to next generation biofuels
    • Dunlop MJ. Engineering microbes for tolerance to next generation biofuels. Biotechnol for Biofuels. 2011; 4: 32-40.
    • (2011) Biotechnol For Biofuels , vol.4 , pp. 32-40
    • Dunlop, M.J.1
  • 48
    • 79955806186 scopus 로고    scopus 로고
    • Engineering microbial biofuel tolerance and export using efflux pumps
    • Dunlop MJ, Dossani ZY, Szmidt HL, et al. Engineering microbial biofuel tolerance and export using efflux pumps. Mol Syst Biol. 2011; 7: 487.
    • (2011) Mol Syst Biol , vol.7 , pp. 487
    • Dunlop, M.J.1    Dossani, Z.Y.2    Szmidt, H.L.3
  • 51
    • 0002220713 scopus 로고    scopus 로고
    • Ethanol production from lignocellulosic biomass: Overview
    • In: Wyman CE, ed., Washington, DC: Taylor and Francis
    • Wyman CE. Ethanol production from lignocellulosic biomass: overview. In: Wyman CE, ed. Handbook on bioethanol: production and utilization. Washington, DC: Taylor and Francis. 1996: 1-18.
    • (1996) Handbook On Bioethanol: Production and Utilization , pp. 1-18
    • Wyman, C.E.1
  • 52
    • 0012907093 scopus 로고    scopus 로고
    • Biomass burning and global change
    • In: Levine JS ed., Remote sensing and inventory development and biomass burning in Africa. Cambridge, Massachusetts, USA: The MIT Press
    • Levine JS. Biomass burning and global change. In: Levine JS ed. Biomass burning and global change vol 1: Remote sensing and inventory development and biomass burning in Africa. Cambridge, Massachusetts, USA: The MIT Press. 1996: 35.
    • (1996) Biomass Burning and Global Change , vol.1 , pp. 35
    • Levine, J.S.1
  • 53
    • 33645284482 scopus 로고    scopus 로고
    • Lignocellulose biodegradation: Fundamentals and application: A review
    • Malherbe S, Cloete TE. Lignocellulose biodegradation: fundamentals and application: A review. Environ Sci Biotechnol. 2003; 1: 105-114.
    • (2003) Environ Sci Biotechnol , vol.1 , pp. 105-114
    • Malherbe, S.1    Cloete, T.E.2
  • 54
    • 17044443785 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates for ethanol production
    • Olsson L, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol.1996; 18: 312-331.
    • (1996) Enzyme Microb Technol , vol.18 , pp. 312-331
    • Olsson, L.1    Hahn-Hägerdal, B.2
  • 55
    • 0027852319 scopus 로고
    • Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass
    • Ghosh P, Singh A. Physicochemical and biological treatments for enzymatic/microbial conversion of lignocellulosic biomass. Adv Appl Microbiol. 1993; 39: 295-333.
    • (1993) Adv Appl Microbiol , vol.39 , pp. 295-333
    • Ghosh, P.1    Singh, A.2
  • 57
    • 0032171342 scopus 로고    scopus 로고
    • Biotechnological production of xylitol
    • Part 1: Interest of xylitol and fundamentals of its biosynthesis
    • Parajó JC, Domínquez HD, Domínquez JM. Biotechnological production of xylitol. Part 1: Interest of xylitol and fundamentals of its biosynthesis. Biores Technol. 1998; 65: 191-201.
    • (1998) Biores Technol , vol.65 , pp. 191-201
    • Parajó, J.C.1    Domínquez, H.D.2    Domínquez, J.M.3
  • 58
    • 33846781800 scopus 로고    scopus 로고
    • A rare sugar xylitol
    • Part II: Biotechnological production and future applications of xylitol
    • Granström TB, Izumori K, Leisola M. A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol. 2007; 74: 273-276.
    • (2007) Appl Microbiol Biotechnol , vol.74 , pp. 273-276
    • Granström, T.B.1    Izumori, K.2    Leisola, M.3
  • 59
    • 0020134357 scopus 로고
    • Phenolic components of the primary cell wall
    • Fry SC. Phenolic components of the primary cell wall. Biochem J. 1982; 203: 493-504.
    • (1982) Biochem J , vol.203 , pp. 493-504
    • Fry, S.C.1
  • 60
    • 0031876117 scopus 로고    scopus 로고
    • Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii
    • Alves LA, Felipe MGA, et al. Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Appl. Biochem. Biotechnol. 1998; 70: 89-98.
    • (1998) Appl. Biochem. Biotechnol , vol.70 , pp. 89-98
    • Alves, L.A.1    Felipe, M.G.A.2
  • 61
    • 4243064911 scopus 로고
    • Lignin chemistrypast, present and future
    • Adler E. Lignin chemistrypast, present and future. Wood Sci Technol. 1977; 11:169-218.
    • (1977) Wood Sci Technol , vol.11 , pp. 169-218
    • Adler, E.1
  • 62
    • 0025380342 scopus 로고
    • Degradation of lignin by bacteria
    • Zimmermann W. Degradation of lignin by bacteria. J Biotechnol. 1990; 13(2-3): 119-130.
    • (1990) J Biotechnol , vol.13 , Issue.2-3 , pp. 119-130
    • Zimmermann, W.1
  • 63
    • 22744441977 scopus 로고    scopus 로고
    • Glucose reactions with acid and base catalysts in hot compressed water at 473K
    • Watanabe M, Aizawa Y, Lida T, Aida TM, et al. Glucose reactions with acid and base catalysts in hot compressed water at 473K. Carbohydrate Res. 2005; 12: 1925-1930.
    • (2005) Carbohydrate Res , vol.12 , pp. 1925-1930
    • Watanabe, M.1    Aizawa, Y.2    Lida, T.3    Aida, T.M.4
  • 64
    • 42649085752 scopus 로고    scopus 로고
    • Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreatment distillerś grains at high solids loading
    • Kim Y, Hendrickson R, Mosier NS, et al. Enzyme hydrolysis and ethanol fermentation of liquid hot water and AFEX pretreatment distillerś grains at high solids loading. Bioresour Technol. 2008; 99(12): 5206-5215.
    • (2008) Bioresour Technol , vol.99 , Issue.12 , pp. 5206-5215
    • Kim, Y.1    Hendrickson, R.2    Mosier, N.S.3
  • 65
    • 60849102202 scopus 로고    scopus 로고
    • Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST)
    • Lau MW, Dale BE. Cellulosic ethanol production from AFEX-treated corn stover using Saccharomyces cerevisiae 424A(LNH-ST). Proc Natl Acad Sci U.S.A. 2009; 106 (5): 1368-1373.
    • (2009) Proc Natl Acad Sci U.S.A , vol.106 , Issue.5 , pp. 1368-1373
    • Lau, M.W.1    Dale, B.E.2
  • 66
    • 0034609270 scopus 로고    scopus 로고
    • On-line control of fed-batch fermentation of dilute-acid hydrolyzates
    • Taherzadeh MJ, Niklasson C, Liden G. On-line control of fed-batch fermentation of dilute-acid hydrolyzates. Biotechnol Bioeng. 2000; 69: 330-338.
    • (2000) Biotechnol Bioeng , vol.69 , pp. 330-338
    • Taherzadeh, M.J.1    Niklasson, C.2    Liden, G.3
  • 67
    • 69249214122 scopus 로고    scopus 로고
    • Evolutionary engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways
    • Liu ZL, Ma M, Song M. Evolutionary engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Mol Genet Genomics. 2009; 282(3): 233-244.
    • (2009) Mol Genet Genomics , vol.282 , Issue.3 , pp. 233-244
    • Liu, Z.L.1    Ma, M.2    Song, M.3
  • 68
    • 0033030735 scopus 로고    scopus 로고
    • Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce
    • Larsson S, Reimann A, Nilvebrant N-O, Jönsson LF. Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol. 1999; 77(1-3): 91-103.
    • (1999) Appl Biochem Biotechnol , vol.77 , Issue.1-3 , pp. 91-103
    • Larsson, S.1    Reimann, A.2    Nilvebrant, N.-O.3    Jönsson, L.F.4
  • 69
    • 73149086619 scopus 로고    scopus 로고
    • Microbial production host selection for converting second-generation feedstocks into bioproduct
    • Rumbold K, van Buijsen HJJ, Overkamp KM, et al. Microbial production host selection for converting second-generation feedstocks into bioproduct. Micro Cell Fact. 2009; 8: 64.
    • (2009) Micro Cell Fact , vol.8 , pp. 64
    • Rumbold, K.1    van Buijsen, H.J.J.2    Overkamp, K.M.3
  • 70
    • 0031106485 scopus 로고    scopus 로고
    • O-Feruloylated, O-acetylated oligosaccharides as side-chains of grass xylans
    • Wende G, Fry SC. O-feruloylated, O-acetylated oligosaccharides as side-chains of grass xylans. Phytochemistry. 1997; 6: 1011-1018.
    • (1997) Phytochemistry , vol.6 , pp. 1011-1018
    • Wende, G.1    Fry, S.C.2
  • 71
    • 0031882597 scopus 로고    scopus 로고
    • Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids
    • Roe AJ, McLaggan D, Davidson I, O'Byrne C, Booth IR. Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids. J Bacteriol. 1998; 180: 767-772.
    • (1998) J Bacteriol , vol.180 , pp. 767-772
    • Roe, A.J.1    McLaggan, D.2    Davidson, I.3    O'Byrne, C.4    Booth, I.R.5
  • 72
    • 0025978423 scopus 로고
    • Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid
    • Viegas CA, Sá-Correiq I. Activation of plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J Gen Microbiol. 1991; 137: 645-651.
    • (1991) J Gen Microbiol , vol.137 , pp. 645-651
    • Viegas, C.A.1    Sá-Correiq, I.2
  • 73
    • 0025264582 scopus 로고
    • Comparison of growth, acetate production and acetateinhibition of Escherichia coli strains in batch and fed-batch fermentations
    • Luli GW, Stohl WR. Comparison of growth, acetate production and acetateinhibition of Escherichia coli strains in batch and fed-batch fermentations. Appl Environ Microbiol. 1990; 56: 1004-1011.
    • (1990) Appl Environ Microbiol , vol.56 , pp. 1004-1011
    • Luli, G.W.1    Stohl, W.R.2
  • 74
    • 0030829959 scopus 로고    scopus 로고
    • Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor
    • Nakano K, Rischke M, Sato S, Markl H. Influence of acetic acid on the growth of Escherichia coli K12 during high-cell-density cultivation in a dialysis reactor. Appl Microbiol Biotechnol. 1997; 48: 597-601.
    • (1997) Appl Microbiol Biotechnol , vol.48 , pp. 597-601
    • Nakano, K.1    Rischke, M.2    Sato, S.3    Markl, H.4
  • 76
    • 0033395572 scopus 로고    scopus 로고
    • Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01
    • Zaldivar J, Ingram LO. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng. 1999; 66: 203-210.
    • (1999) Biotechnol Bioeng , vol.66 , pp. 203-210
    • Zaldivar, J.1    Ingram, L.O.2
  • 78
    • 0036566476 scopus 로고    scopus 로고
    • Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase
    • Modig T, Liden G, Taherzadeh MJ. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J. 2002; 363:769-776.
    • (2002) Biochem J , vol.363 , pp. 769-776
    • Modig, T.1    Liden, G.2    Taherzadeh, M.J.3
  • 79
    • 0024546351 scopus 로고
    • Specificity of the interaction of furfural with DNA
    • Hadi SM, Shahabuddin H, Rehman A. Specificity of the interaction of furfural with DNA. Mutat Res. 1989; 225: 101-106
    • (1989) Mutat Res , vol.225 , pp. 101-106
    • Hadi, S.M.1    Shahabuddin, H.2    Rehman, A.3
  • 80
    • 0025992477 scopus 로고
    • Reaction of furfural and methylfurfural with DNA: Use of single-strand-specific nucleases
    • Shahabuddin H, Rahman A, Hadi SM. Reaction of furfural and methylfurfural with DNA: Use of single-strand-specific nucleases. Food Chem Toxicol. 1991; 29: 719-721.
    • (1991) Food Chem Toxicol , vol.29 , pp. 719-721
    • Shahabuddin, H.1    Rahman, A.2    Hadi, S.M.3
  • 81
    • 0027294943 scopus 로고
    • Effects of furfural on plasmid DNA
    • Khan QA, Hadi SM. Effects of furfural on plasmid DNA. Biochem Mol Biol Int. 1993; 29(6): 1153-1160.
    • (1993) Biochem Mol Biol Int , vol.29 , Issue.6 , pp. 1153-1160
    • Khan, Q.A.1    Hadi, S.M.2
  • 82
    • 0028934391 scopus 로고
    • Reactions of furfural and methylfurfural with DNA
    • Uddin S, Hadi SM. Reactions of furfural and methylfurfural with DNA. Biochem Mol Biol Int. 1995; 35(1): 185-195.
    • (1995) Biochem Mol Biol Int , vol.35 , Issue.1 , pp. 185-195
    • Uddin, S.1    Hadi, S.M.2
  • 83
    • 0033527357 scopus 로고    scopus 로고
    • Effect of selected aldehyde on the growth and fermentation of ethanologenic Escherichia coli LY01
    • Zaldivar J, Martinez A, Ingram LO. Effect of selected aldehyde on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng. 1999; 65: 24-33.
    • (1999) Biotechnol Bioeng , vol.65 , pp. 24-33
    • Zaldivar, J.1    Martinez, A.2    Ingram, L.O.3
  • 84
    • 0025260659 scopus 로고
    • Effect of short-chain organic acids on macromolecular synthesis in Escherichia coli
    • Cherrington CA, Hinton M, Chopra I. Effect of short-chain organic acids on macromolecular synthesis in Escherichia coli. J Appl Bacteriol. 1990; 68: 69-74.
    • (1990) J Appl Bacteriol , vol.68 , pp. 69-74
    • Cherrington, C.A.1    Hinton, M.2    Chopra, I.3
  • 85
    • 0022525218 scopus 로고
    • Toxicity of organic acids for repair-deficient strains of Escherichia coli
    • Sinha RP. Toxicity of organic acids for repair-deficient strains of Escherichia coli. Appl Environ Microbiol. 1986; 51: 1364-1366.
    • (1986) Appl Environ Microbiol , vol.51 , pp. 1364-1366
    • Sinha, R.P.1
  • 86
    • 0028519066 scopus 로고
    • Mechanism of resistance of whole cell to toxic organic solvent
    • Heipieper HJ, Weber FJ, Sikkema J, et al. Mechanism of resistance of whole cell to toxic organic solvent. TIBTECH 1994; 12: 409-415.
    • (1994) TIBTECH , vol.12 , pp. 409-415
    • Heipieper, H.J.1    Weber, F.J.2    Sikkema, J.3
  • 87
    • 0025551301 scopus 로고
    • Influence of phenolics on biomass production by Candida utilis and Candida albicans
    • Mikuláasová M, Vodny S, Pekarovicová A. Influence of phenolics on biomass production by Candida utilis and Candida albicans. Biomass. 1990; 23: 149-154.
    • (1990) Biomass , vol.23 , pp. 149-154
    • Mikuláasová, M.1    Vodny, S.2    Pekarovicová, A.3
  • 88
    • 68149124672 scopus 로고    scopus 로고
    • Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates
    • Philip TP, Zhang M. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose. 2009; 16: 743-762.
    • (2009) Cellulose , vol.16 , pp. 743-762
    • Philip, T.P.1    Zhang, M.2
  • 90
    • 84879811663 scopus 로고    scopus 로고
    • [Internet]
    • [Internet] Partition coefficient. http://en.wikipedia.org/wiki/Partition_coefficient
    • Partition Coefficient
  • 91
    • 0028679436 scopus 로고
    • Predicting models of toxic action from chemical structure: An overview
    • Bradley SP. Predicting models of toxic action from chemical structure: an overview. SAR QSAR Environ RES.1994; 2: 89-104.
    • (1994) SAR QSAR Environ RES , vol.2 , pp. 89-104
    • Bradley, S.P.1
  • 93
    • 28544441042 scopus 로고    scopus 로고
    • Cellular apoptosis and cytotoxicity of phenolic compounds: A quantitative structure-activity relationship study
    • Selassie CD, Kapur S, Verma RP, Rosario M. Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structure-activity relationship study. J Med Chem. 2005; 48(23): 7234-7242.
    • (2005) J Med Chem , vol.48 , Issue.23 , pp. 7234-7242
    • Selassie, C.D.1    Kapur, S.2    Verma, R.P.3    Rosario, M.4
  • 96
    • 0032485897 scopus 로고    scopus 로고
    • Metabolic engineering of bacteria for ethanol production
    • Ingram LO, Gomez PF, Lai X, et al. Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng. 1998; 58: 204-214.
    • (1998) Biotechnol Bioeng , vol.58 , pp. 204-214
    • Ingram, L.O.1    Gomez, P.F.2    Lai, X.3
  • 99
    • 0030029962 scopus 로고    scopus 로고
    • Analysis of Streptococcus salivarius urease expression using continuous chemostat culture
    • Chen YY, Burne RA. Analysis of Streptococcus salivarius urease expression using continuous chemostat culture. FEMS Microbiol Lett. 1996; 135: 223-229.
    • (1996) FEMS Microbiol Lett , vol.135 , pp. 223-229
    • Chen, Y.Y.1    Burne, R.A.2
  • 100
    • 0022531132 scopus 로고
    • Biosynthesis and metabolism of arginine in bacteria
    • Cunin R, Glansdorff N, Pierard A, et al. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev. 1986; 50: 314-352.
    • (1986) Microbiol Rev , vol.50 , pp. 314-352
    • Cunin, R.1    Glansdorff, N.2    Pierard, A.3
  • 101
    • 0038782170 scopus 로고    scopus 로고
    • YjdE (AdiC) is the arginine:Agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli
    • Gong S, Richard H, Foster JW. YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 2003; 185: 4402-4409.
    • (2003) J Bacteriol , vol.185 , pp. 4402-4409
    • Gong, S.1    Richard, H.2    Foster, J.W.3
  • 102
    • 0025571476 scopus 로고
    • The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment
    • Hazel JR, Williams EE. The role of alterations in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res. 1990; 29: 167-227.
    • (1990) Prog Lipid Res , vol.29 , pp. 167-227
    • Hazel, J.R.1    Williams, E.E.2
  • 103
    • 0022505895 scopus 로고
    • Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholera: Increase in the trans/cis ratio and proportions of cyclopropyl fatty acids
    • Guckert JB, Hood MA, White DC. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholera: increase in the trans/cis ratio and proportions of cyclopropyl fatty acids. Appl Environ Microbiol. 1986; 52: 794-801.
    • (1986) Appl Environ Microbiol , vol.52 , pp. 794-801
    • Guckert, J.B.1    Hood, M.A.2    White, D.C.3
  • 104
    • 0034569695 scopus 로고    scopus 로고
    • Physical properties of lipid bilayer membranes: Relevance to membrane biological function
    • Subczynski WK, Wisniewska A. Physical properties of lipid bilayer membranes: relevance to membrane biological function. Acta Biochimica Polonica. 2000; 47(3): 613-625.
    • (2000) Acta Biochimica Polonica , vol.47 , Issue.3 , pp. 613-625
    • Subczynski, W.K.1    Wisniewska, A.2
  • 105
    • 0026467088 scopus 로고
    • The conversion of cis into trans unsaturated fatty acids in Pseudomonas putida P8: Evidence for a role in the regulation of membrane fluidity
    • Diefenbach R, Heipieper HJ, Keweloh H. The conversion of cis into trans unsaturated fatty acids in Pseudomonas putida P8: evidence for a role in the regulation of membrane fluidity. Appl Microbiol Biotechnol. 1992; 38: 382-387
    • (1992) Appl Microbiol Biotechnol , vol.38 , pp. 382-387
    • Diefenbach, R.1    Heipieper, H.J.2    Keweloh, H.3
  • 106
    • 0345490758 scopus 로고    scopus 로고
    • The cis-trans isomerise of unsaturated fatty acids in Pseudomonas and Vibrio: Biochemistry, molecular biology and psychological function of a unique stress adaptive mechanism
    • Hiepieper HJ, Meinhardt F, Segura A. The cis-trans isomerise of unsaturated fatty acids in Pseudomonas and Vibrio: biochemistry, molecular biology and psychological function of a unique stress adaptive mechanism. FEMS Microbiol Lett. 2003; 229(1): 1-7.
    • (2003) FEMS Microbiol Lett , vol.229 , Issue.1 , pp. 1-7
    • Hiepieper, H.J.1    Meinhardt, F.2    Segura, A.3
  • 107
    • 0019362431 scopus 로고
    • The effect of alterations in the fluidity and phase state of the membrane lipids on the passive permeation and facilitated diffusion of glycerol in Escherichia coli
    • Eze Mo, McElhaney RN. The effect of alterations in the fluidity and phase state of the membrane lipids on the passive permeation and facilitated diffusion of glycerol in Escherichia coli. J Gen Microbiol. 1981; 124: 299-307.
    • (1981) J Gen Microbiol , vol.124 , pp. 299-307
    • Mo, E.1    McElhaney, R.N.2
  • 108
    • 0041462889 scopus 로고    scopus 로고
    • Proteomics analysis of the Escherichia coli outer membrane
    • Molloy MP, Herbert BR, Slade MB, et al. Proteomics analysis of the Escherichia coli outer membrane. Eur J Biochem. 2000; 267: 2871-2881
    • (2000) Eur J Biochem , vol.267 , pp. 2871-2881
    • Molloy, M.P.1    Herbert, B.R.2    Slade, M.B.3
  • 109
    • 0347479229 scopus 로고    scopus 로고
    • Molecular basis of bacteria outer membrane permeability revisited
    • Nikaido H. Molecular basis of bacteria outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003; 67: 593-656.
    • (2003) Microbiol Mol Biol Rev , vol.67 , pp. 593-656
    • Nikaido, H.1
  • 110
    • 2942564158 scopus 로고    scopus 로고
    • The simulation approach to bacterial outer membrane proteins (Review)
    • Bond PJ, Sansom MSP. The simulation approach to bacterial outer membrane proteins (Review). Mol Memb Biol. 2004; 21: 151-161.
    • (2004) Mol Memb Biol , vol.21 , pp. 151-161
    • Bond, P.J.1    Sansom, M.S.P.2
  • 111
    • 34648827772 scopus 로고    scopus 로고
    • Mechanistic insights into the global response to phenol in the phenol-biodegrading strain Pseudomonas sp. M1 revealed by quantitative proteomics
    • Santos PM, Roma V, Benndorf D, et al. Mechanistic insights into the global response to phenol in the phenol-biodegrading strain Pseudomonas sp. M1 revealed by quantitative proteomics. OMICS. 2007; 11(3): 233-251.
    • (2007) OMICS , vol.11 , Issue.3 , pp. 233-251
    • Santos, P.M.1    Roma, V.2    Benndorf, D.3
  • 112
    • 77953122046 scopus 로고    scopus 로고
    • Response of Pseudomonas putida KT2440 to phenol at the level of membrane proteome
    • Roma-Rodrigues C, Santos PM, Benndorf D, et al. Response of Pseudomonas putida KT2440 to phenol at the level of membrane proteome. J Proteomics. 2010; 73(8): 1461-1478.
    • (2010) J Proteomics , vol.73 , Issue.8 , pp. 1461-1478
    • Roma-Rodrigues, C.1    Santos, P.M.2    Benndorf, D.3
  • 113
    • 79954428720 scopus 로고    scopus 로고
    • Characterization of outer membrane proteins of Escherichia coli in response to phenol stress
    • Zhang DF, Li H, Li XM, et al. Characterization of outer membrane proteins of Escherichia coli in response to phenol stress. Curr Microbiol. 2011; 3: 777-783.
    • (2011) Curr Microbiol , vol.3 , pp. 777-783
    • Zhang, D.F.1    Li, H.2    Li, X.M.3
  • 114
    • 0001009491 scopus 로고
    • Novel RNA polymerase sigma factor from Bacillus subtilis
    • Haldenwang W G, Losick R. Novel RNA polymerase sigma factor from Bacillus subtilis. Proc Natl Acad Sci USA. 1980; 77: 7000-7004.
    • (1980) Proc Natl Acad Sci USA , vol.77 , pp. 7000-7004
    • Haldenwang, W.G.1    Losick, R.2
  • 115
    • 0026748430 scopus 로고
    • Activation of Bacillus subtilis transcription factor sigma B by a regulatory pathway responsive to stationary-phase signals
    • Boylan SA, Rutherford A, Thomas SM, et al. Activation of Bacillus subtilis transcription factor sigma B by a regulatory pathway responsive to stationary-phase signals. J Bacteriol. 1992; 174: 3695-3706.
    • (1992) J Bacteriol , vol.174 , pp. 3695-3706
    • Boylan, S.A.1    Rutherford, A.2    Thomas, S.M.3
  • 116
    • 0032586856 scopus 로고    scopus 로고
    • Expression of the sigmaB dependent general stress regulon confers multiple stress resistance in Bacillus subtilis
    • Voelker U, Maul B, Hecker M. Expression of the sigmaB dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J Bacteriol. 1999; 181: 3942-3948.
    • (1999) J Bacteriol , vol.181 , pp. 3942-3948
    • Voelker, U.1    Maul, B.2    Hecker, M.3
  • 117
    • 9344261804 scopus 로고    scopus 로고
    • Stress and how bacteria cope with death and survival
    • Aertsen A, Michiels CW. Stress and how bacteria cope with death and survival. Crit Rev Microbiol. 2004; 30: 263-273.
    • (2004) Crit Rev Microbiol , vol.30 , pp. 263-273
    • Aertsen, A.1    Michiels, C.W.2
  • 118
    • 0029892790 scopus 로고    scopus 로고
    • DNA excision repair
    • Sancar A. DNA excision repair. Annu Rev Biochem. 1996; 65: 43-81.
    • (1996) Annu Rev Biochem , vol.65 , pp. 43-81
    • Sancar, A.1
  • 119
    • 0034595010 scopus 로고    scopus 로고
    • The importance of repairing stalled replication forks
    • Cox MM, Goodman MF, Kreuzer KN, et al. The importance of repairing stalled replication forks. Nature. 2000; 404: 37-41.
    • (2000) Nature , vol.404 , pp. 37-41
    • Cox, M.M.1    Goodman, M.F.2    Kreuzer, K.N.3
  • 120
    • 0033931002 scopus 로고    scopus 로고
    • Identification of stress inducible proteins in Lactobacillus delbrueckii subsp
    • Lim EM, Ehrlich SD, Maguin E. Identification of stress inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis. 2000; 21: 2557-2561.
    • (2000) Bulgaricus. Electrophoresis , vol.21 , pp. 2557-2561
    • Lim, E.M.1    Ehrlich, S.D.2    Maguin, E.3
  • 121
    • 0032557562 scopus 로고    scopus 로고
    • Involvement of molecular chaperonins in nucleotide excision repair
    • DNaK leads to increased thermal stability of UvrA, catalytic UvrB loading, enhanced repair, and increased UV resistance
    • Zou, Y, Crowley DJ, Van Houten B. Involvement of molecular chaperonins in nucleotide excision repair. DNaK leads to increased thermal stability of UvrA, catalytic UvrB loading, enhanced repair, and increased UV resistance. J. Biol. Chem. 1998; 273: 12887-12892.
    • (1998) J. Biol. Chem , vol.273 , pp. 12887-12892
    • Zou, Y.1    Crowley, D.J.2    van Houten, B.3
  • 122
    • 61949193780 scopus 로고    scopus 로고
    • Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations
    • Yang S, Tschaplinski TJ, Engle NL, et al. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics. 2009; 10:34.
    • (2009) BMC Genomics , vol.10 , pp. 34
    • Yang, S.1    Tschaplinski, T.J.2    Engle, N.L.3
  • 123
    • 85028122323 scopus 로고    scopus 로고
    • The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors
    • Yang S, Pelletier DA, Lu TY, et al. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiol. 2010; 10: 135.
    • (2010) BMC Microbiol , vol.10 , pp. 135
    • Yang, S.1    Pelletier, D.A.2    Lu, T.Y.3
  • 125
    • 0029795374 scopus 로고    scopus 로고
    • The β-ketoadipate pathway and the biology of self-identity
    • Harwood CS, Parales RE. The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996; 50: 553-590.
    • (1996) Annu Rev Microbiol , vol.50 , pp. 553-590
    • Harwood, C.S.1    Parales, R.E.2
  • 126
    • 33846485037 scopus 로고    scopus 로고
    • Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds
    • Masai E, Katayama Y, Fukuda M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem. 2007; 71: 1-15.
    • (2007) Biosci Biotechnol Biochem , vol.71 , pp. 1-15
    • Masai, E.1    Katayama, Y.2    Fukuda, M.3
  • 128
    • 0029433868 scopus 로고
    • Biocatalytic transformation of ferulic acid: An abundant aromatic natural product
    • Rosazza JPN, Huang Z, Dostal L, et al. Biocatalytic transformation of ferulic acid: an abundant aromatic natural product. J Ind Microbiol. 1995; 15: 457-471.
    • (1995) J Ind Microbiol , vol.15 , pp. 457-471
    • Rosazza, J.P.N.1    Huang, Z.2    Dostal, L.3
  • 129
    • 0001221855 scopus 로고
    • Enzyme reaction with phenolic compounds: Formation of hydroxystyrenes through the decarboxylation of 4-hydroxycinnamic acids by Aerobacter
    • Finkle BJ, Lewis JC, Corse JW, et al. Enzyme reaction with phenolic compounds: Formation of hydroxystyrenes through the decarboxylation of 4-hydroxycinnamic acids by Aerobacter. J Biol Chem. 1962; 237: 2926-2931.
    • (1962) J Biol Chem , vol.237 , pp. 2926-2931
    • Finkle, B.J.1    Lewis, J.C.2    Corse, J.W.3
  • 130
    • 0034991776 scopus 로고    scopus 로고
    • Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B
    • Eaton RW. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol. 2001; 183: 3689-3703.
    • (2001) J Bacteriol , vol.183 , pp. 3689-3703
    • Eaton, R.W.1
  • 131
    • 0016433894 scopus 로고
    • Novel pathway for degradation of protocatechuic acid in Bacillus species
    • Crawford RL. Novel pathway for degradation of protocatechuic acid in Bacillus species. J Bacteriol; 1975; 121: 531-536.
    • (1975) J Bacteriol , vol.121 , pp. 531-536
    • Crawford, R.L.1
  • 133
    • 0031957895 scopus 로고    scopus 로고
    • Gene cloning, transcriptional analysis, purification and characterization of phenolic acid decarboxylase from Bacillus subtilis
    • Cavin J-F, Dartois V, Diviès C. Gene cloning, transcriptional analysis, purification and characterization of phenolic acid decarboxylase from Bacillus subtilis. Appl Environ Microbiol. 1998; 64: 1466-1471.
    • (1998) Appl Environ Microbiol , vol.64 , pp. 1466-1471
    • Cavin, J.-F.1    Dartois, V.2    Diviès, C.3
  • 134
    • 0034647449 scopus 로고    scopus 로고
    • Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strains of Bacillus coagulans
    • Karmakar B, Vohra RM, Nandanwar H, et al. Rapid degradation of ferulic acid via 4-vinylguaiacol and vanillin by a newly isolated strains of Bacillus coagulans. J Biotechnol. 2000; 80: 195-202.
    • (2000) J Biotechnol , vol.80 , pp. 195-202
    • Karmakar, B.1    Vohra, R.M.2    Nandanwar, H.3
  • 135
    • 0027293730 scopus 로고
    • Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: A new extradiol catecholic dioxygenase
    • Wolgel SA, Dege JE, Perkins-Olson PE, et al. Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: a new extradiol catecholic dioxygenase. J Bacteriol. 1993; 175: 4414-4426.
    • (1993) J Bacteriol , vol.175 , pp. 4414-4426
    • Wolgel, S.A.1    Dege, J.E.2    Perkins-Olson, P.E.3
  • 136
    • 0031043754 scopus 로고    scopus 로고
    • Purification and characterization of an inducible P-coumaric acid decarboxylase from Lactobacillus plantarum
    • Cavin J-F, Barthelmebs L, Guzzo J, et al. Purification and characterization of an inducible P-coumaric acid decarboxylase from Lactobacillus plantarum. FEMS Microbiol Lett. 1997; 147: 291-295.
    • (1997) FEMS Microbiol Lett , vol.147 , pp. 291-295
    • Cavin, J.-F.1    Barthelmebs, L.2    Guzzo, J.3
  • 137
    • 0033860831 scopus 로고    scopus 로고
    • Knockout of the P-coumarate decarboxylated gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism
    • Barthelmebs L, Divies C, Cavin J-F. Knockout of the P-coumarate decarboxylated gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism. Appl Environ Microbiol. 2000; 66: 3368-3375.
    • (2000) Appl Environ Microbiol , vol.66 , pp. 3368-3375
    • Barthelmebs, L.1    Divies, C.2    Cavin, J.-F.3
  • 138
    • 0028002904 scopus 로고
    • Biotransformations catalysed by the genus Rhodococcus
    • Warhurst AM, Fewson CA. Biotransformations catalysed by the genus Rhodococcus. Crit Rev Biotechnol. 1994; 14: 29-73.
    • (1994) Crit Rev Biotechnol , vol.14 , pp. 29-73
    • Warhurst, A.M.1    Fewson, C.A.2
  • 139
    • 70350445534 scopus 로고    scopus 로고
    • Uncovering the protocatechuate 2,3-cleavage pathway genes
    • Kasai D, Fujinami T, Abe T, et al. Uncovering the protocatechuate 2,3-cleavage pathway genes. J Bacteriol. 2009; 191 (21): 6758-6768.
    • (2009) J Bacteriol , vol.191 , Issue.21 , pp. 6758-6768
    • Kasai, D.1    Fujinami, T.2    Abe, T.3
  • 140
    • 0031938056 scopus 로고    scopus 로고
    • PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter
    • Gerischer U, Segura A, Ornston LN. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter. J Bacteriol. 1998; 180: 1512-1524.
    • (1998) J Bacteriol , vol.180 , pp. 1512-1524
    • Gerischer, U.1    Segura, A.2    Ornston, L.N.3
  • 141
    • 0033944430 scopus 로고    scopus 로고
    • Bioaugmentation of activated sludge by an indigenous 3-chloroaniline degrading Comamonas testosteroni strain, 12gfp
    • Boon N, Goris J, de Vos P, et al. Bioaugmentation of activated sludge by an indigenous 3-chloroaniline degrading Comamonas testosteroni strain, 12gfp. Appl Environ Microbiol. 2000; 66(7): 2906-2913.
    • (2000) Appl Environ Microbiol , vol.66 , Issue.7 , pp. 2906-2913
    • Boon, N.1    Goris, J.2    de Vos, P.3
  • 142
    • 0034858327 scopus 로고    scopus 로고
    • Comamonas testosteroni BR6020 possessses a single genetic locus for extradiol cleavage of protocatechuate
    • Provident MA, Mampel J, MacSween S, et al. Comamonas testosteroni BR6020 possessses a single genetic locus for extradiol cleavage of protocatechuate. Microbiology 2001; 147:2157-2167.
    • (2001) Microbiology , vol.147 , pp. 2157-2167
    • Provident, M.A.1    Mampel, J.2    Macsween, S.3
  • 143
    • 0022348702 scopus 로고
    • Fermentation and oxidative transformation of ferulate by a facultatively anaerobic bacterium isolated from sewage sludge
    • Grbic-Galic D. Fermentation and oxidative transformation of ferulate by a facultatively anaerobic bacterium isolated from sewage sludge. Appl Environ Microbiol. 1995; 50:1052-2057.
    • (1995) Appl Environ Microbiol , vol.50 , pp. 1052-2057
    • Grbic-Galic, D.1
  • 144
    • 0019586966 scopus 로고
    • Identification and purification of distinct isomerise and decarboxylase enzymes involved in the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli
    • Garrido-Pertierra A, Cooper RA. Identification and purification of distinct isomerise and decarboxylase enzymes involved in the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli. Eur J Biochem. 1981; 117: 581-584.
    • (1981) Eur J Biochem , vol.117 , pp. 581-584
    • Garrido-Pertierra, A.1    Cooper, R.A.2
  • 145
    • 0023144345 scopus 로고
    • Isolation and genetic analysis of mutations allowing the degradation of furans and thiophenes by Escherichia coli
    • Abdulrashid N, Clark DP. Isolation and genetic analysis of mutations allowing the degradation of furans and thiophenes by Escherichia coli. J Bacteriol. 1987; 169: 1267-1271.
    • (1987) J Bacteriol , vol.169 , pp. 1267-1271
    • Abdulrashid, N.1    Clark, D.P.2
  • 146
    • 0025945328 scopus 로고
    • Molecular cloning and sequence of the thdF gene, which is involved in thiophene and furan oxidation by Escherichia coli
    • Alam KY, Clark DP. Molecular cloning and sequence of the thdF gene, which is involved in thiophene and furan oxidation by Escherichia coli. J Bacteriol. 1991; 173: 6018-6024.
    • (1991) J Bacteriol , vol.173 , pp. 6018-6024
    • Alam, K.Y.1    Clark, D.P.2
  • 147
    • 0035195086 scopus 로고    scopus 로고
    • Biodegradation of aromatic compounds by Escherichia coli
    • Diaz E, Ferrández A, Prieto MA, et al. Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev. 2001; 65(4): 523-569.
    • (2001) Microbiol Mol Biol Rev , vol.65 , Issue.4 , pp. 523-569
    • Diaz, E.1    Ferrández, A.2    Prieto, M.A.3
  • 148
    • 0028808722 scopus 로고
    • Cloning, sequencing and expression in Escherichia coli of the Bacillus pumilus gene for ferulic acid degradation
    • Zago A, Degrassi G, Bruschi CV. Cloning, sequencing and expression in Escherichia coli of the Bacillus pumilus gene for ferulic acid degradation. Appl Environ Microbiol. 1995; 61: 4484-4486.
    • (1995) Appl Environ Microbiol , vol.61 , pp. 4484-4486
    • Zago, A.1    Degrassi, G.2    Bruschi, C.V.3
  • 149
    • 0000756408 scopus 로고
    • Decarboxylative conversion of hydrocinnamic acids by Klebsiella oxytoca and Erwinia uredovora epiphytic bacteria of Polymnia sonchifolia leaf, possibly associated with formation of microflora on the damaged leaves
    • Hashikado Y, Urashima M, Yoshida T, et al. Decarboxylative conversion of hydrocinnamic acids by Klebsiella oxytoca and Erwinia uredovora epiphytic bacteria of Polymnia sonchifolia leaf, possibly associated with formation of microflora on the damaged leaves. Biosci Biotech Biochem. 1993; 57: 215-219.
    • (1993) Biosci Biotech Biochem , vol.57 , pp. 215-219
    • Hashikado, Y.1    Urashima, M.2    Yoshida, T.3
  • 150
    • 0014027945 scopus 로고
    • The conversion of catechol and protocatechuate to β-keto-adipate by Pseudomonas putida II. Enzymes of the protocatechuate pathway
    • Ornston LN. The conversion of catechol and protocatechuate to β-keto-adipate by Pseudomonas putida II. Enzymes of the protocatechuate pathway. J Biol Chem. 1966; 241: 3787-3794.
    • (1966) J Biol Chem , vol.241 , pp. 3787-3794
    • Ornston, L.N.1
  • 151
    • 0026654512 scopus 로고
    • Degradation of phenol and phenolic compounds by Pseudomonas putida EKII
    • Hinteregger C, Leitner R, Loidi M, et al. Degradation of phenol and phenolic compounds by Pseudomonas putida EKII. Appl Microbiol Biotechnol. 1992; 37: 252-259.
    • (1992) Appl Microbiol Biotechnol , vol.37 , pp. 252-259
    • Hinteregger, C.1    Leitner, R.2    Loidi, M.3
  • 152
    • 0027272728 scopus 로고
    • Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens
    • Huang Z, Dostal L, Rosazza JP. Microbial transformations of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens. Appl Environ Microbiol. 1993; 59(7): 2244-2250.
    • (1993) Appl Environ Microbiol , vol.59 , Issue.7 , pp. 2244-2250
    • Huang, Z.1    Dostal, L.2    Rosazza, J.P.3
  • 153
    • 11244352142 scopus 로고    scopus 로고
    • Cloning and characterization of the genes encoding enzymes for the protocatechuate meta-degradation pathway of Pseudomonas ochraceae NGJ1
    • Maruyama K, Shibayama T, Ichikawa A, et al. Cloning and characterization of the genes encoding enzymes for the protocatechuate meta-degradation pathway of Pseudomonas ochraceae NGJ1. Biosci Biotechnol Biochem. 2004; 68: 1434-1441.
    • (2004) Biosci Biotechnol Biochem , vol.68 , pp. 1434-1441
    • Maruyama, K.1    Shibayama, T.2    Ichikawa, A.3
  • 154
    • 0031869637 scopus 로고    scopus 로고
    • Cloning of a Sphingomonas paucimobilis SYK-6 gene encoding a novel oxygenase that cleaves lignin-related biphenyl and characterization of the enzyme
    • Peng X, Egashira T, Hanashiro K, et al. Cloning of a Sphingomonas paucimobilis SYK-6 gene encoding a novel oxygenase that cleaves lignin-related biphenyl and characterization of the enzyme. Appl Environ Microbiol. 1998; 64(7): 2520-2527.
    • (1998) Appl Environ Microbiol , vol.64 , Issue.7 , pp. 2520-2527
    • Peng, X.1    Egashira, T.2    Hanashiro, K.3
  • 155
    • 0034459639 scopus 로고    scopus 로고
    • The 4-oxalomesaconate hydratase gene, involved in the protocatechuate 4,5-cleavage pathway, is essential to vanillate and syringate degradation in Sphingomonas paucimobilis SYK-6
    • Hara H, Masai E, Katayama Y, et al. The 4-oxalomesaconate hydratase gene, involved in the protocatechuate 4,5-cleavage pathway, is essential to vanillate and syringate degradation in Sphingomonas paucimobilis SYK-6. J Bacteriol. 2000; 182: 6950-6957.
    • (2000) J Bacteriol , vol.182 , pp. 6950-6957
    • Hara, H.1    Masai, E.2    Katayama, Y.3
  • 156
    • 1642399008 scopus 로고    scopus 로고
    • Nocardia sp. Carboxylic acid reductase: Cloning, expression and characterization of new aldehyde oxidoreductase family
    • He A, Li T, Daniels L, et al. Nocardia sp. Carboxylic acid reductase: cloning, expression and characterization of new aldehyde oxidoreductase family. Appl Environ Microbiol. 2004; 70(3): 1874-1881.
    • (2004) Appl Environ Microbiol , vol.70 , Issue.3 , pp. 1874-1881
    • He, A.1    Li, T.2    Daniels, L.3
  • 157
    • 76649108223 scopus 로고    scopus 로고
    • Analysis of aldehyde reductase from Gluconobacter oxydans 621H
    • Schweiger P, Deppenmeier U. Analysis of aldehyde reductase from Gluconobacter oxydans 621H. Appl Microbiol Biotechnol. 2010; 85(4): 1025-1031.
    • (2010) Appl Microbiol Biotechnol , vol.85 , Issue.4 , pp. 1025-1031
    • Schweiger, P.1    Deppenmeier, U.2
  • 158
    • 0036233986 scopus 로고    scopus 로고
    • Reduction of furfural to furfuryl alcohol by ethanologenic strain of bacteria and its effect on ethanol production from xylose
    • Gutierrez T, Buszko ML, Ingram LO, Preston JF. Reduction of furfural to furfuryl alcohol by ethanologenic strain of bacteria and its effect on ethanol production from xylose. Appl Biochem Biotechnol. 2002; 98-100: 327-340.
    • (2002) Appl Biochem Biotechnol , vol.98-100 , pp. 327-340
    • Gutierrez, T.1    Buszko, M.L.2    Ingram, L.O.3    Preston, J.F.4
  • 159
    • 0027590958 scopus 로고
    • Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria
    • Boopathy R, Bokang H, Daniels L. Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J Ind Microbiol 1993; 11: 147-150.
    • (1993) J Ind Microbiol , vol.11 , pp. 147-150
    • Boopathy, R.1    Bokang, H.2    Daniels, L.3
  • 160
    • 67649624927 scopus 로고    scopus 로고
    • Silencing of NADPH oxidoreductase genes (yqhD and dkgA) in furfural-resistance ethanologenic Escherichia coli
    • Miller EN, Jarboe LR, Yomano LP, et al. Silencing of NADPH oxidoreductase genes (yqhD and dkgA) in furfural-resistance ethanologenic Escherichia coli. Appl Environ Microbiol. 2009;75: 4315-4323.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 4315-4323
    • Miller, E.N.1    Jarboe, L.R.2    Yomano, L.P.3
  • 161
    • 77952242159 scopus 로고    scopus 로고
    • Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol producing Escherichia coli LY180
    • Miller EN, Turner PC, Jaboe LR, et al. Genetic changes that increase 5-hydroxymethyl furfural resistance in ethanol producing Escherichia coli LY180. Biotechnol Lett. 2010; 32: 661-667.
    • (2010) Biotechnol Lett , vol.32 , pp. 661-667
    • Miller, E.N.1    Turner, P.C.2    Jaboe, L.R.3
  • 162
    • 33745667335 scopus 로고    scopus 로고
    • Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
    • Gorsich SW, Dien BS, Nichols NN, et al. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006; 71: 339-349.
    • (2006) Appl Microbiol Biotechnol , vol.71 , pp. 339-349
    • Gorsich, S.W.1    Dien, B.S.2    Nichols, N.N.3
  • 163
    • 84874607522 scopus 로고    scopus 로고
    • Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals
    • Wang X, Yomano LP, Lee JY, York SW, Zheng H, Mullinnix MT, Shanmugam KT, Ingram LO. Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. PNAS. 2013; 110(10): 4021-4026.
    • (2013) PNAS , vol.110 , Issue.10 , pp. 4021-4026
    • Wang, X.1    Yomano, L.P.2    Lee, J.Y.3    York, S.W.4    Zheng, H.5    Mullinnix, M.T.6    Shanmugam, K.T.7    Ingram, L.O.8
  • 164
    • 0031864421 scopus 로고    scopus 로고
    • Detoxification of wood hydrolysate with lacasse and peroxidase from the white-rot fungus Trametes versicolor
    • Jönsson LJ, Palmqvist E, Nilverbrant NO, et al. Detoxification of wood hydrolysate with lacasse and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol. 1998; 49: 691-697.
    • (1998) Appl Microbiol Biotechnol , vol.49 , pp. 691-697
    • Jönsson, L.J.1    Palmqvist, E.2    Nilverbrant, N.O.3
  • 165
    • 0032934710 scopus 로고    scopus 로고
    • Emergence of laccase-positive variant of Azospirillum lipoferum occurs via a two-step phenotypic switching process
    • Alexandre G, Bally R. Emergence of laccase-positive variant of Azospirillum lipoferum occurs via a two-step phenotypic switching process. FEMS Microbiol Lett. 1999; 174: 371-378.
    • (1999) FEMS Microbiol Lett , vol.174 , pp. 371-378
    • Alexandre, G.1    Bally, R.2
  • 166
    • 0027417556 scopus 로고
    • Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: Evidence for laccase activity in non-motile strains of Azospirillum lipoferum
    • Givaudan A, Effosse A, Faure D, et al. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol Lett. 1993; 108: 205-210.
    • (1993) FEMS Microbiol Lett , vol.108 , pp. 205-210
    • Givaudan, A.1    Effosse, A.2    Faure, D.3
  • 167
    • 0034864186 scopus 로고    scopus 로고
    • CotA of Bacillus subtilis is a copper-dependent laccase
    • Hullo M.-F, Moszer I, Danchin A, et al. CotA of Bacillus subtilis is a copper-dependent laccase. J Bacteriol. 2001; 183: 5426-5430.
    • (2001) J Bacteriol , vol.183 , pp. 5426-5430
    • Hullo, M.-F.1    Moszer, I.2    Danchin, A.3
  • 168
    • 0037166265 scopus 로고    scopus 로고
    • Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat
    • Martins LO, Soares CM, Pereira MM, et al. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem. 2002; 277: 18849-18859.
    • (2002) J Biol Chem , vol.277 , pp. 18849-18859
    • Martins, L.O.1    Soares, C.M.2    Pereira, M.M.3
  • 169
    • 0035810685 scopus 로고    scopus 로고
    • Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea
    • Sánchez-Amat A, Lucas-Elío P, Fernández E, et al. Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta. 2001; 1547: 104-116.
    • (2001) Biochim Biophys Acta , vol.1547 , pp. 104-116
    • Sánchez-Amat, A.1    Lucas-Elío, P.2    Fernández, E.3
  • 170
    • 22144439034 scopus 로고    scopus 로고
    • Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea
    • Jimenez-Juarez N, Roman-Miranda R, Baeza A, et al. Alkali and halide-resistant catalysis by the multipotent oxidase from Marinomonas mediterranea. J Biotechnol. 2005; 117(1): 73-82.
    • (2005) J Biotechnol , vol.117 , Issue.1 , pp. 73-82
    • Jimenez-Juarez, N.1    Roman-Miranda, R.2    Baeza, A.3
  • 171
    • 0030883267 scopus 로고    scopus 로고
    • Solubilisation and mineralisation of [14C]lignocellulose from wheat straw by Streptomyces cyaneus CECT 3335 during growth in solid-state fermentation
    • Berrocal M, Rodríguez J, Ball AS, et al. Solubilisation and mineralisation of [14C]lignocellulose from wheat straw by Streptomyces cyaneus CECT 3335 during growth in solid-state fermentation. Appl Microbiol Biotechnol. 1997; 48: 379-384.
    • (1997) Appl Microbiol Biotechnol , vol.48 , pp. 379-384
    • Berrocal, M.1    Rodríguez, J.2    Ball, A.S.3
  • 172
    • 0035987267 scopus 로고    scopus 로고
    • A novel extracytoplasmatic phenol oxidase of Streptomyces: It's possible involvement in the onset of morphogenesis
    • Endo K, Hosono K, Beppu T, et al. A novel extracytoplasmatic phenol oxidase of Streptomyces: it's possible involvement in the onset of morphogenesis. Microbiol. 2002; 148: 1767-1776.
    • (2002) Microbiol , vol.148 , pp. 1767-1776
    • Endo, K.1    Hosono, K.2    Beppu, T.3
  • 173
    • 0037391271 scopus 로고    scopus 로고
    • Kraft pulp biobleaching and mediated oxidation of a non-phenolic substrate by laccase from Streptomyces cyaneus CECT 3335
    • Arias ME, Arenas M, Rodríguez J, et al. Kraft pulp biobleaching and mediated oxidation of a non-phenolic substrate by laccase from Streptomyces cyaneus CECT 3335. Appl Environ Microbiol. 2003; 69(4): 1953-1958.
    • (2003) Appl Environ Microbiol , vol.69 , Issue.4 , pp. 1953-1958
    • Arias, M.E.1    Arenas, M.2    Rodríguez, J.3
  • 174
    • 0000607694 scopus 로고
    • Fermentative performance of bacteria and yeasts in lignocellulosic hydrolysates
    • Olsson L, Hahn-Hägerdal B. Fermentative performance of bacteria and yeasts in lignocellulosic hydrolysates. Process Biochem. 1993; 28: 249-257.
    • (1993) Process Biochem , vol.28 , pp. 249-257
    • Olsson, L.1    Hahn-Hägerdal, B.2
  • 175
    • 0037357728 scopus 로고    scopus 로고
    • Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: Comparison of KO11 (parent) to LY01 (resistant mutant)
    • Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO: Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog. 2003; 19:612-623.
    • (2003) Biotechnol Prog , vol.19 , pp. 612-623
    • Gonzalez, R.1    Tao, H.2    Purvis, J.E.3    York, S.W.4    Shanmugam, K.T.5    Ingram, L.O.6
  • 178
    • 0031864421 scopus 로고    scopus 로고
    • Detoxification of wood hydrolysate with laccase and peroxidase from the white-rot fungus T. versicolor
    • Jonsson LJ, Palmqvist E, Nilvebrant N-O, Hahn-Hagerdal B. Detoxification of wood hydrolysate with laccase and peroxidase from the white-rot fungus T. versicolor. Appl Microb Biotechnol. 1998; 49: 691-697.
    • (1998) Appl Microb Biotechnol , vol.49 , pp. 691-697
    • Jonsson, L.J.1    Palmqvist, E.2    Nilvebrant, N.-O.3    Hahn-Hagerdal, B.4
  • 179
    • 0037008398 scopus 로고    scopus 로고
    • Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae
    • Martin C, Galbe M, Wahlbom CF, Hahn-Hagerdal B, Johnsson LJ. Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol. 2002; 31: 274-282.
    • (2002) Enzyme Microb Technol , vol.31 , pp. 274-282
    • Martin, C.1    Galbe, M.2    Wahlbom, C.F.3    Hahn-Hagerdal, B.4    Johnsson, L.J.5
  • 180
    • 33846884378 scopus 로고    scopus 로고
    • Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501
    • Chandel AK, Kapoor RK, Singh A, Kuhad RC. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol. 2007; 98: 1947-1950.
    • (2007) Bioresour Technol , vol.98 , pp. 1947-1950
    • Chandel, A.K.1    Kapoor, R.K.2    Singh, A.3    Kuhad, R.C.4
  • 181
    • 0025168353 scopus 로고
    • Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus
    • Kojima Y, Tsukuda Y, Kawai Y, Tsukamoto A, Sugiura J, Sakaino M, Kita Y. Cloning, sequence analysis, and expression of ligninolytic phenoloxidase genes of the white-rot basidiomycete Coriolus hirsutus. J Biol Chem. 1990; 265: 15224-15230.
    • (1990) J Biol Chem , vol.265 , pp. 15224-15230
    • Kojima, Y.1    Tsukuda, Y.2    Kawai, Y.3    Tsukamoto, A.4    Sugiura, J.5    Sakaino, M.6    Kita, Y.7
  • 183
    • 2442767028 scopus 로고    scopus 로고
    • Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature
    • Cassland P, Jönsson LJ. Characterization of a gene encoding Trametes versicolor laccase A and improved heterologous expression in Saccharomyces cerevisiae by decreased cultivation temperature. Appl Microbiol Biotechnol. 1999; 52: 393-400.
    • (1999) Appl Microbiol Biotechnol , vol.52 , pp. 393-400
    • Cassland, P.1    Jönsson, L.J.2
  • 184
    • 0346500440 scopus 로고    scopus 로고
    • Molecular cloning and expression in Saccharomyces cerevisiae of a laccase gene from the ascomycete Melanocarpus albomyces
    • Kiiskinen LL, Saloheimo M. Molecular cloning and expression in Saccharomyces cerevisiae of a laccase gene from the ascomycete Melanocarpus albomyces. Appl Environ Microbiol. 2004; 70: 137-144.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 137-144
    • Kiiskinen, L.L.1    Saloheimo, M.2
  • 185
    • 0035289692 scopus 로고    scopus 로고
    • Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase
    • Larsson S, Cassland P, Jönsson LJ. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol. 2001; 67: 1163-1170.
    • (2001) Appl Environ Microbiol , vol.67 , pp. 1163-1170
    • Larsson, S.1    Cassland, P.2    Jönsson, L.J.3
  • 186
    • 28444450472 scopus 로고    scopus 로고
    • Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae
    • Piscitelli A, Giardina P, Mazzoni C, Sannia G. Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2005; 69: 428-439.
    • (2005) Appl Microbiol Biotechnol , vol.69 , pp. 428-439
    • Piscitelli, A.1    Giardina, P.2    Mazzoni, C.3    Sannia, G.4
  • 187
    • 33745667335 scopus 로고    scopus 로고
    • Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
    • Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006; 71: 339-349.
    • (2006) Appl Microbiol Biotechnol , vol.71 , pp. 339-349
    • Gorsich, S.W.1    Dien, B.S.2    Nichols, N.N.3    Slininger, P.J.4    Liu, Z.L.5    Skory, C.D.6
  • 188
    • 29144443673 scopus 로고    scopus 로고
    • Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose
    • Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Lidén G. Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol. 2005; 71: 7866-7871.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 7866-7871
    • Nilsson, A.1    Gorwa-Grauslund, M.F.2    Hahn-Hägerdal, B.3    Lidén, G.4
  • 189
    • 0030982247 scopus 로고    scopus 로고
    • A molecular view of microbial diversity and the biosphere
    • Pace NR. A molecular view of microbial diversity and the biosphere. Sci. 1997; 276: 734-740.
    • (1997) Sci , vol.276 , pp. 734-740
    • Pace, N.R.1
  • 190
    • 18844481269 scopus 로고    scopus 로고
    • Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganism
    • Rondon MR, August PR, Bettermann AD et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganism. Appl Environ Microbiol. 2000; 66: 2541-2547
    • (2000) Appl Environ Microbiol , vol.66 , pp. 2541-2547
    • Rondon, M.R.1    August, P.R.2    Bettermann, A.D.3
  • 191
    • 77954511031 scopus 로고    scopus 로고
    • Relevance of microbial coculture fermentations in biotechnology
    • Bader J, Mast-Gerlach E, Popović MK, et al. Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol. 2010; 109: 371-387.
    • (2010) J Appl Microbiol , vol.109 , pp. 371-387
    • Bader, J.1    Mast-Gerlach, E.2    Popović, M.K.3
  • 192
    • 85097803256 scopus 로고    scopus 로고
    • [Internet]
    • [Internet] Energy development. http://en.wikipedia.org/wiki/Energy_development.
    • Energy Development
  • 193
    • 0026878361 scopus 로고
    • Product opportunities for biomass refining
    • Bungay H. Product opportunities for biomass refining. Enzyme Microb Technol. 1992; 14: 501-507.
    • (1992) Enzyme Microb Technol , vol.14 , pp. 501-507
    • Bungay, H.1
  • 194
    • 84879830348 scopus 로고    scopus 로고
    • [Internet], Brazil vs United States Ethanol Industries
    • [Internet] Sugar cane based ethanol production in Brazil. Brazil vs United States Ethanol Industries. http://www.soybeansandcorn.com/Brazil-US-Ethanol-Production.
    • Sugar Cane Based Ethanol Production In Brazil


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.