메뉴 건너뛰기




Volumn 760, Issue , 2012, Pages 1-15

Frontiers Of Spinal Cord And Spine Repair: Experimental Approaches for Repair of Spinal Cord Injury

Author keywords

Axonal Growth; Axonal Regeneration; Dorsal Root Ganglion; Spinal Cord; Spinal Cord Injury

Indexed keywords

GROWTH FACTOR; HYALURONIC ACID; MYELIN; MYELIN ASSOCIATED GLYCOPROTEIN; OLIGODENDROCYTE MYELIN GLYCOPROTEIN; PROTEIN NOGO A; PROTEOCHONDROITIN SULFATE; TENASCIN;

EID: 84872790998     PISSN: 00652598     EISSN: 22148019     Source Type: Book Series    
DOI: 10.1007/978-1-4614-4090-1_1     Document Type: Chapter
Times cited : (16)

References (138)
  • 1
    • 58149512333 scopus 로고    scopus 로고
    • Spinal cord injury: Plasticity, regeneration and the challenge oftranslational drug development
    • Blesch A, Tuszynski MH. Spinal cord injury: plasticity, regeneration and the challenge oftranslational drug development. Trends Neurosci 2009; 32:41-47.
    • (2009) Trends Neurosci , vol.32 , pp. 41-47
    • Blesch, A.1    Tuszynski, M.H.2
  • 2
    • 42749096670 scopus 로고    scopus 로고
    • Axonal growth therapeutics: Regeneration or sprouting or plasticity?
    • Cafferty WB, McGee AW, Strittmatter SM. Axonal growth therapeutics: regeneration or sprouting or plasticity? Trends Neurosci 2008; 31:215-220.
    • (2008) Trends Neurosci , vol.31 , pp. 215-220
    • Cafferty, W.B.1    McGee, A.W.2    Strittmatter, S.M.3
  • 3
    • 0022397573 scopus 로고
    • Plasticity of hippocampal circuitry in Alzheimer's disease
    • Geddes JW, Monaghan DT, Cotman CW et al. Plasticity of hippocampal circuitry in Alzheimer's disease. Science 1985; 230: 1179-1181.
    • (1985) Science , vol.230 , pp. 1179-1181
    • Geddes, J.W.1    Monaghan, D.T.2    Cotman, C.W.3
  • 4
    • 33645967159 scopus 로고    scopus 로고
    • Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers
    • Ballermann M, Fouad K. Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers. Eur J Neurosci 2006; 23: 1988-1996.
    • (2006) Eur J Neurosci , vol.23 , pp. 1988-1996
    • Ballermann, M.1    Fouad, K.2
  • 5
    • 33646577781 scopus 로고    scopus 로고
    • Collateral sprouting as a target for improved function after spinal cord injury
    • Hagg T. Collateral sprouting as a target for improved function after spinal cord injury. J Neurotrauma 2006; 23:281-294.
    • (2006) J Neurotrauma , vol.23 , pp. 281-294
    • Hagg, T.1
  • 6
    • 78650217877 scopus 로고    scopus 로고
    • Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury
    • Rosenzweig ES, Courtine G, Jindrich DL et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 2010; 13: 1505-151 0.
    • (2010) Nat Neurosci , vol.13 , pp. 1505-2151
    • Rosenzweig, E.S.1    Courtine, G.2    Jindrich, D.L.3
  • 7
    • 0035853114 scopus 로고    scopus 로고
    • Salimi Net al. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury
    • Weidner N, Ner A, Salimi Net al. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci USA 2001; 98:3513-3518.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 3513-3518
    • Weidner, N.1    Ner, A.2
  • 8
    • 0035173635 scopus 로고    scopus 로고
    • New patterns of intracortical projections after focal cortical stroke
    • Carmichael ST, Wei L, Rovainen CM et al. New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis 2001; 8:910-922.
    • (2001) Neurobiol Dis , vol.8 , pp. 910-922
    • Carmichael, S.T.1    Wei, L.2    Rovainen, C.M.3
  • 9
    • 27744576336 scopus 로고    scopus 로고
    • Extensive cortical rewiring after brain injury
    • Dancause N, Barbay S, Frost SB et al. Extensive cortical rewiring after brain injury. J Neurosci 2005; 25:10167-10179.
    • (2005) J Neurosci , vol.25 , pp. 10167-10179
    • Dancause, N.1    Barbay, S.2    Frost, S.B.3
  • 10
    • 17444374896 scopus 로고    scopus 로고
    • The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury
    • Conner JM, Chiba AA, Tuszynski MH. The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 2005; 46: 173-179.
    • (2005) Neuron , vol.46 , pp. 173-179
    • Conner, J.M.1    Chiba, A.A.2    Tuszynski, M.H.3
  • 11
    • 39749099544 scopus 로고    scopus 로고
    • Adaptive plasticity in motor cortex: Implications for rehabilitation after brain injury
    • Nudo RJ. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med 2003:7-10.
    • (2003) J Rehabil Med , pp. 7-10
    • Nudo, R.J.1
  • 12
    • 33748997087 scopus 로고    scopus 로고
    • Sprouting, regeneration and circuit formation in the injured spinal cord: Factors and activity
    • Maier IC, Schwab ME. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans R Soc Lond B BioI Sci 2006; 361:1611-1634.
    • (2006) Philos Trans R Soc Lond B Bioi Sci , vol.361 , pp. 1611-1634
    • Maier, I.C.1    Schwab, M.E.2
  • 13
    • 9644259008 scopus 로고    scopus 로고
    • Inflammation and apoptosis: Linked therapeutic targets in spinal cord injury
    • Beattie MS. Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 2004; 10:580-583.
    • (2004) Trends Mol Med , vol.10 , pp. 580-583
    • Beattie, M.S.1
  • 14
    • 0031015075 scopus 로고    scopus 로고
    • Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys
    • Crowe MJ, Bresnahan JC, Shuman SL et al. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 1997; 3:73-76.
    • (1997) Nat Med , vol.3 , pp. 73-76
    • Crowe, M.J.1    Bresnahan, J.C.2    Shuman, S.L.3
  • 15
    • 33646571167 scopus 로고    scopus 로고
    • Pharmacological approaches to repair the injured spinal cord
    • Baptiste DC, Fehlings MG. Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 2006; 23:318-334.
    • (2006) J Neurotrauma , vol.23 , pp. 318-334
    • Baptiste, D.C.1    Fehlings, M.G.2
  • 16
    • 0018169593 scopus 로고
    • Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury
    • Balentine JD. Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 1978; 39:236-253.
    • (1978) Lab Invest , vol.39 , pp. 236-253
    • Balentine, J.D.1
  • 17
    • 0033216123 scopus 로고    scopus 로고
    • Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma
    • Fitch MT, Doller C, Combs CK et al. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 1999; 19:8182-8198.
    • (1999) J Neurosci , vol.19 , pp. 8182-8198
    • Fitch, M.T.1    Doller, C.2    Combs, C.K.3
  • 18
    • 0031426869 scopus 로고    scopus 로고
    • Silver 1. Activated macrophages and the blood-brain barrier: Inflammation after CNS injury leads to increases in putative inhibitory molecules
    • Fitch MT, Silver 1. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol 1997; 148:587-603.
    • (1997) Exp Neurol , vol.148 , pp. 587-603
    • Fitch, M.T.1
  • 19
    • 0031033377 scopus 로고    scopus 로고
    • Experimental analysis of progressive necrosis after spinal cord trauma in the rat: Etiological role ofthe inflammatory response
    • Zhang Z, Krebs CJ, Guth L. Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role ofthe inflammatory response. Exp Neurol 1997; 143: 141-152.
    • (1997) Exp Neurol , vol.143 , pp. 141-152
    • Zhang, Z.1    Krebs, C.J.2    Guth, L.3
  • 20
    • 0031427410 scopus 로고    scopus 로고
    • Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat
    • Bregman BS, McAtee M, Dai HN et al. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 1997; 148:475-494.
    • (1997) Exp Neurol , vol.148 , pp. 475-494
    • Bregman, B.S.1    McAtee, M.2    Dai, H.N.3
  • 21
    • 0034235758 scopus 로고    scopus 로고
    • Activation oflocomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level
    • Ribotta MG, Provencher J, Feraboli-Lohnherr D et al. Activation oflocomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level. J Neurosci 2000; 20:5144-5152.
    • (2000) J Neurosci , vol.20 , pp. 5144-5152
    • Ribotta, M.G.1    Provencher, J.2    Feraboli-Lohnherr, D.3
  • 22
    • 0036907505 scopus 로고    scopus 로고
    • Transplant mediated repair of the central nervous system: An imminent solution?
    • Lakatos A, Franklin RJ. Transplant mediated repair of the central nervous system: an imminent solution? Curr Opin Neuro12002; 15:701-705.
    • Curr Opin Neuro12002 , vol.15 , pp. 701-705
    • Lakatos, A.1    Franklin, R.J.2
  • 23
    • 2942720519 scopus 로고    scopus 로고
    • CAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury
    • Pearse DD, Pereira FC, Marcillo AE et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 2004; 10:610-616.
    • (2004) Nat Med , vol.10 , pp. 610-616
    • Pearse, D.D.1    Pereira, F.C.2    Marcillo, A.E.3
  • 24
    • 33746282112 scopus 로고    scopus 로고
    • Spinal cord repair strategies: Why do they work?
    • Bradbury EJ, McMahon SB. Spinal cord repair strategies: why do they work? Nat Rev Neurosci 2006; 7:644-653.
    • (2006) Nat Rev Neurosci , vol.7 , pp. 644-653
    • Bradbury, E.J.1    McMahon, S.B.2
  • 25
    • 3943082076 scopus 로고    scopus 로고
    • The Nogo signaling pathway for regeneration block
    • HeZ, Koprivica V. The Nogo signaling pathway for regeneration block. AnnuRev Neurosci2004; 27:341-368.
    • Annurev Neurosci2004 , vol.27 , pp. 341-368
  • 26
    • 33745438772 scopus 로고    scopus 로고
    • Regeneration following spinal cord injury, from experimental models to humans: Where are we?
    • Di Giovanni S. Regeneration following spinal cord injury, from experimental models to humans: where are we? Expert Dpin Ther Targets 2006; 10:363-376.
    • (2006) Expert Dpin Ther Targets , vol.10 , pp. 363-376
    • Di Giovanni, S.1
  • 27
    • 0026768108 scopus 로고
    • Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: Diflerent mechanisms are responsible for the regulation of BDNF and NGF mRNA
    • Meyer M, Matsuoka I, Wetmore C et al. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: diflerent mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell BioI 1992; 119:45-54.
    • (1992) J Cell Bioi , vol.119 , pp. 45-54
    • Meyer, M.1    Matsuoka, I.2    Wetmore, C.3
  • 28
    • 0026694239 scopus 로고
    • Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration
    • Sendtner M, Stockli KA, Thoenen H. Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration. J Cell BioI 1992; 118: 139-148.
    • (1992) J Cell Bioi , vol.118 , pp. 139-148
    • Sendtner, M.1    Stockli, K.A.2    Thoenen, H.3
  • 29
    • 0027264557 scopus 로고
    • Zhu Y et at. Retrograde axonal transport of ciliary neurotrophic factor is increased by peripheral nerve injury
    • Curtis R, Adryan KM, Zhu Y et at. Retrograde axonal transport of ciliary neurotrophic factor is increased by peripheral nerve injury. Nature 1993; 365:253-255.
    • (1993) Nature , vol.365 , pp. 253-255
    • Curtis, R.1    Adryan, K.M.2
  • 30
    • 0345490835 scopus 로고    scopus 로고
    • Expression ofneurotrophin mRNAs in the dorsal root ganglion after spinal nerve injury
    • Shen H, Chung JM, Chung K. Expression ofneurotrophin mRNAs in the dorsal root ganglion after spinal nerve injury. Brain Res Mol Brain Res 1999; 64: 186-192.
    • (1999) Brain Res Mol Brain Res , vol.64 , pp. 186-192
    • Shen, H.1    Chung, J.M.2    Chung, K.3
  • 31
    • 0034608339 scopus 로고    scopus 로고
    • Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats
    • Hoke A, Cheng C, Zochodne DW. Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport 2000; 11: 1651-1654.
    • (2000) Neuroreport , vol.11 , pp. 1651-1654
    • Hoke, A.1    Cheng, C.2    Zochodne, D.W.3
  • 32
    • 0037175326 scopus 로고    scopus 로고
    • Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury
    • Costigan M, Befort K, Karchewski L et al. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 2002; 3: 16.
    • (2002) BMC Neurosci , vol.3 , pp. 16
    • Costigan, M.1    Befort, K.2    Karchewski, L.3
  • 34
    • 0034439622 scopus 로고    scopus 로고
    • Neurotrophic factors and gene therapy in spinal cord injury
    • Lacroix S, Tuszynski MH. Neurotrophic factors and gene therapy in spinal cord injury. Neurorehabil Neural Repair 2000; 14:265-275.
    • (2000) Neurorehabil Neural Repair , vol.14 , pp. 265-275
    • Lacroix, S.1    Tuszynski, M.H.2
  • 35
    • 0034688281 scopus 로고    scopus 로고
    • Functional regeneration of sensory axons into the adult spinal cord
    • Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord. Nature 2000; 403:312-316.
    • (2000) Nature , vol.403 , pp. 312-316
    • Ramer, M.S.1    Priestley, J.V.2    McMahon, S.B.3
  • 36
    • 0032960457 scopus 로고    scopus 로고
    • Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism
    • Cai D, Shen Y, De Bellard M et al. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 1999; 22:89-101.
    • (1999) Neuron , vol.22 , pp. 89-101
    • Cai, D.1    Shen, Y.2    de Bellard, M.3
  • 37
    • 0028115777 scopus 로고
    • Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion
    • Schnell L, Schneider R, Kolbeck R et al. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 1994; 367: 170-173.
    • (1994) Nature , vol.367 , pp. 170-173
    • Schnell, L.1    Schneider, R.2    Kolbeck, R.3
  • 38
    • 16944366150 scopus 로고    scopus 로고
    • Cellular delivery ofneurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury
    • Grill R, Murai K, Blesch A et al. Cellular delivery ofneurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 1997; 17:5560-5572.
    • (1997) J Neurosci , vol.17 , pp. 5560-5572
    • Grill, R.1    Murai, K.2    Blesch, A.3
  • 39
    • 0033151593 scopus 로고    scopus 로고
    • Et at. Transplants of fibroblasts genetically modified to express BDNF promote regeneration ofadult rat rubrospinal axons and recovery offorelimb function
    • Liu Y, Kim D, Himes BT et at. Transplants of fibroblasts genetically modified to express BDNF promote regeneration ofadult rat rubrospinal axons and recovery offorelimb function. JNeurosci 1999; 19:4370-4387.
    • (1999) Jneurosci , vol.19 , pp. 4370-4387
    • Liu, Y.1    Kim, D.2    Himes, B.T.3
  • 40
    • 0034718896 scopus 로고    scopus 로고
    • Regenerating the damaged central nervous system
    • Horner P.I, Gage FH. Regenerating the damaged central nervous system. Nature 2000; 407:963-970.
    • (2000) Nature , vol.407 , pp. 963-970
    • Horner, P.I.1    Gage, F.H.2
  • 41
    • 0344737628 scopus 로고    scopus 로고
    • Diflerential gene expression profiles in embryonic, adult-injured and adult-uninjured rat spinal cords
    • Gris P, Murphy S, Jacob JE et al. Diflerential gene expression profiles in embryonic, adult-injured and adult-uninjured rat spinal cords. Mol Cell Neurosci 2003; 24:555-567.
    • (2003) Mol Cell Neurosci , vol.24 , pp. 555-567
    • Gris, P.1    Murphy, S.2    Jacob, J.E.3
  • 42
    • 0345731381 scopus 로고    scopus 로고
    • Plasticity following injury to the adult central nervous system: Is recapitulation of a developmental state worth promoting?
    • Emery DL, Royo NC, Fischer I et al. Plasticity following injury to the adult central nervous system: is recapitulation of a developmental state worth promoting?.I Neurotrauma 2003; 20: 1271-1292.
    • (2003) .I Neurotrauma , vol.20 , pp. 1271-1292
    • Emery, D.L.1    Royo, N.C.2    Fischer, I.3
  • 43
    • 38649126573 scopus 로고    scopus 로고
    • Growth factors and combinatorial therapies for CNS regeneration
    • Lu P, Tuszynski MH. Growth factors and combinatorial therapies for CNS regeneration. Exp Neuro12008; 209:313-320.
    • (2008) Exp Neuro1 , vol.209 , pp. 313-320
    • Lu, P.1    Tuszynski, M.H.2
  • 44
    • 33646572511 scopus 로고    scopus 로고
    • Designing cell-and gene-based regeneration strategies to repair the injured spinal cord
    • Pearse DD, Bunge MB. Designing cell-and gene-based regeneration strategies to repair the injured spinal cord..I Neurotrauma 2006; 23:438-452.
    • (2006) .I Neurotrauma , vol.23 , pp. 438-452
    • Pearse, D.D.1    Bunge, M.B.2
  • 45
    • 0037654372 scopus 로고    scopus 로고
    • Growth-factor gene therapy forneurodegenerative disorders
    • Tuszynski MH. Growth-factor gene therapy forneurodegenerative disorders. LancetNeurol2002; 1:51-57.
    • Lancetneurol , vol.2002 , pp. 51-57
    • Tuszynski, M.H.1
  • 46
    • 0742288565 scopus 로고    scopus 로고
    • Regeneration beyond the glial scar
    • Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004; 5: 146-156.
    • (2004) Nat Rev Neurosci , vol.5 , pp. 146-156
    • Silver, J.1    Miller, J.H.2
  • 47
    • 33646672406 scopus 로고    scopus 로고
    • 0vercoming inhibition in the damaged spinal cord
    • Fawcett JW. 0vercoming inhibition in the damaged spinal cord. J Neurotrauma 2006; 23:371-383.
    • (2006) J Neurotrauma , vol.23 , pp. 371-383
    • Fawcett, J.W.1
  • 48
    • 0033137077 scopus 로고    scopus 로고
    • Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury
    • Neumann S, Woolf C.I. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 1999; 23:83-91.
    • (1999) Neuron , vol.23 , pp. 83-91
    • Neumann, S.1    Woolf, C.I.2
  • 49
    • 0037071890 scopus 로고    scopus 로고
    • Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation
    • Neumann S, Bradke F, Tessier-Lavigne M et at. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 2002; 34:885-893.
    • (2002) Neuron , vol.34 , pp. 885-893
    • Neumann, S.1    Bradke, F.2    Tessier-Lavigne, M.3
  • 50
    • 0037071880 scopus 로고    scopus 로고
    • Spinal axon regeneration induced by elevation of cyclic AMP
    • Qiu I, Cai D, Dai H et at. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 2002; 34:895-903.
    • (2002) Neuron , vol.34 , pp. 895-903
    • Qiu, I.1    Cai, D.2    Dai, H.3
  • 51
    • 33847094740 scopus 로고    scopus 로고
    • Regulation of intrinsic neuronal properties for axon growth and regeneration
    • Rossi F, Gianola S, Corvetti L. Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol2007; 81: 1-28.
    • (2007) Prog Neurobiol , vol.81 , pp. 1-28
    • Rossi, F.1    Gianola, S.2    Corvetti, L.3
  • 52
    • 0036434324 scopus 로고    scopus 로고
    • Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury
    • Jin Y, Fischer I, Tessler A et at. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 2002; 177:265-275.
    • (2002) Exp Neurol , vol.177 , pp. 265-275
    • Jin, Y.1    Fischer, I.2    Tessler, A.3
  • 53
    • 0031814388 scopus 로고    scopus 로고
    • Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord
    • Menei P, Montero-Menei C, Whittemore SR et al. Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur.l Neurosci 1998; 10:607-621.
    • (1998) Eur.L Neurosci , vol.10 , pp. 607-621
    • Menei, P.1    Montero-Menei, C.2    Whittemore, S.R.3
  • 54
    • 0031013730 scopus 로고    scopus 로고
    • Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons
    • Ye JH, Houle JD. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol 1997; 143:70-81.
    • (1997) Exp Neurol , vol.143 , pp. 70-81
    • Ye, J.H.1    Houle, J.D.2
  • 55
    • 70350203996 scopus 로고    scopus 로고
    • Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury
    • Kadoya K, Tsukada S, Lu P et al. Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron 2009; 64: 165-172.
    • (2009) Neuron , vol.64 , pp. 165-172
    • Kadoya, K.1    Tsukada, S.2    Lu, P.3
  • 56
    • 65049086895 scopus 로고    scopus 로고
    • Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord
    • Fortun J, Hill CE, Bunge MB. Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett 2009; 456: 124-132.
    • (2009) Neurosci Lett , vol.456 , pp. 124-132
    • Fortun, J.1    Hill, C.E.2    Bunge, M.B.3
  • 57
    • 3242711266 scopus 로고    scopus 로고
    • Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury
    • Lu P, Yang H, Jones LL et al. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury..I Neurosci 2004; 24:6402-6409.
    • (2004) .I Neurosci , vol.24 , pp. 6402-6409
    • Lu, P.1    Yang, H.2    Jones, L.L.3
  • 58
    • 0020040379 scopus 로고
    • Peripheral nerve autografts to the rat spinal cord: Studies with axonal tracing methods
    • Richardson PM, McGuinness UM, Aguayo AJ. Peripheral nerve autografts to the rat spinal cord: studies with axonal tracing methods. Brain Res 1982; 237:147-162.
    • (1982) Brain Res , vol.237 , pp. 147-162
    • Richardson, P.M.1    McGuinness, U.M.2    Aguayo, A.J.3
  • 59
    • 0031467240 scopus 로고    scopus 로고
    • BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talphal-tubulin mRNA expression, and promote axonal regeneration
    • Kobayashi NR, Fan DP, Giehl KM et al. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talphal-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 1997; 17:9583-9595.
    • (1997) J Neurosci , vol.17 , pp. 9583-9595
    • Kobayashi, N.R.1    Fan, D.P.2    Giehl, K.M.3
  • 60
    • 0035910932 scopus 로고    scopus 로고
    • Axotomy alters neurotrophin and neurotrophin receptor mRNAs in the vagus nerve and nodose ganglion ofthe rat
    • Lee P, Zhuo H, Helke CJ. Axotomy alters neurotrophin and neurotrophin receptor mRNAs in the vagus nerve and nodose ganglion ofthe rat. Brain Res Mol Brain Res 2001; 87:31-41.
    • (2001) Brain Res Mol Brain Res , vol.87 , pp. 31-41
    • Lee, P.1    Zhuo, H.2    Helke, C.J.3
  • 61
    • 24144441717 scopus 로고    scopus 로고
    • Comparing the function ofthe corticospinal system in diflerent species: Organizational differences for motor specialization?
    • Lemon RN, Grifliths J. Comparing the function ofthe corticospinal system in diflerent species: organizational differences for motor specialization? Muscle Nerve 2005; 32:261-279.
    • (2005) Muscle Nerve , vol.32 , pp. 261-279
    • Lemon, R.N.1    Grifliths, J.2
  • 62
    • 0035817425 scopus 로고    scopus 로고
    • Neurotrophism without neurotropism: BDNF promotes survival but not growth oflesioned corticospinal neurons
    • Lu P, Blesch A, Tuszynski MH. Neurotrophism without neurotropism: BDNF promotes survival but not growth oflesioned corticospinal neurons. J Comp Neuro12001; 436:456-470.
    • J Comp Neuro , vol.12001 , pp. 456-470
    • Lu, P.1    Blesch, A.2    Tuszynski, M.H.3
  • 63
    • 66349113194 scopus 로고    scopus 로고
    • Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation
    • Hollis ER 2nd, Jamshidi P, Low K et al. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci USA 2009; 106:7215-7220.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 7215-7220
    • Hollis, E.R.1    Jamshidi, P.2    Low, K.3
  • 64
    • 0037403572 scopus 로고    scopus 로고
    • NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection
    • Tuszynski MH, Grill R, Jones LL et al. NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Exp Neurol 2003; 181:47-56.
    • (2003) Exp Neurol , vol.181 , pp. 47-56
    • Tuszynski, M.H.1    Grill, R.2    Jones, L.L.3
  • 65
    • 33748887028 scopus 로고    scopus 로고
    • Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord
    • Taylor L, Jones L, Tuszynski MH et al. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci 2006; 26:9713-9721.
    • (2006) J Neurosci , vol.26 , pp. 9713-9721
    • Taylor, L.1    Jones, L.2    Tuszynski, M.H.3
  • 66
    • 69449094846 scopus 로고    scopus 로고
    • Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury
    • Alto LT, Havton LA, Conner JM et al. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci 2009; 12: 1106-1113.
    • (2009) Nat Neurosci , vol.12 , pp. 1106-1113
    • Alto, L.T.1    Havton, L.A.2    Conner, J.M.3
  • 67
    • 0032722126 scopus 로고    scopus 로고
    • Von Ret al. NT-3 promotes growth oflesioned adult rat sensory axons ascending in the dorsal columns ofthe spinal cord
    • Bradbury EJ, Khemani S, Von Ret al. NT-3 promotes growth oflesioned adult rat sensory axons ascending in the dorsal columns ofthe spinal cord. Eur J Neurosci 1999; 11:3873-3883.
    • (1999) Eur J Neurosci , vol.11 , pp. 3873-3883
    • Bradbury, E.J.1    Khemani, S.2
  • 68
    • 0023896592 scopus 로고
    • Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading
    • Caroni P, Schwab ME. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Bioi 1988; 106: 1281-1288.
    • (1988) J Cell Bioi , vol.106 , pp. 1281-1288
    • Caroni, P.1    Schwab, M.E.2
  • 69
    • 0032563211 scopus 로고    scopus 로고
    • Identification and characterization of a bovine neurite growth inhibitor (BNI-220)
    • Spillmann AA, Bandtlow CE, Lottspeich F et al. Identification and characterization of a bovine neurite growth inhibitor (bNI-220). J Bioi Chern 1998; 273: 19283-19293.
    • (1998) J Bioi Chern , vol.273 , pp. 19283-19293
    • Spillmann, A.A.1    Bandtlow, C.E.2    Lottspeich, F.3
  • 70
    • 10744222190 scopus 로고    scopus 로고
    • LINGO-l is a component of the Nogo-66 receptor/p75 signaling complex
    • Mi S, Lee X, Shao Z et al. LINGO-l is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 2004; 7:221-228.
    • (2004) Nat Neurosci , vol.7 , pp. 221-228
    • Mi, S.1    Lee, X.2    Shao, Z.3
  • 71
    • 13244255374 scopus 로고    scopus 로고
    • A TNF receptor family member, TROY, is acoreceptorwithNogo receptor in mediating the inhibitory activity of myelin inhibitors
    • Park JB, Yiu G, Kaneko S et al. A TNF receptor family member, TROY, is acoreceptorwithNogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 2005; 45:345-351.
    • (2005) Neuron , vol.45 , pp. 345-351
    • Park, J.B.1    Yiu, G.2    Kaneko, S.3
  • 72
    • 19944432743 scopus 로고    scopus 로고
    • TAl/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor I and regulates axonal regeneration
    • Shao Z, Browning JL, Lee X et al. TAl/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor I and regulates axonal regeneration. Neuron 2005; 45:353-359.
    • (2005) Neuron , vol.45 , pp. 353-359
    • Shao, Z.1    Browning, J.L.2    Lee, X.3
  • 73
    • 0037038435 scopus 로고    scopus 로고
    • P75 interacts with the Nogo receptor as a coreceptor for Nogo, MAG and OMgp
    • Wang KC, Kim JA, Sivasankaran R et al. P75 interacts with the Nogo receptor as a coreceptor for Nogo, MAG and OMgp. Nature 2002; 420:74-78.
    • (2002) Nature , vol.420 , pp. 74-78
    • Wang, K.C.1    Kim, J.A.2    Sivasankaran, R.3
  • 74
    • 55849086190 scopus 로고    scopus 로고
    • PirB is a fimctional receptor for myelin inhibitors of axonal regeneration
    • Atwal JK, Pinkston-Gosse J, Syken J et al. PirB is a fimctional receptor for myelin inhibitors of axonal regeneration. Science 2008; 322:967-970.
    • (2008) Science , vol.322 , pp. 967-970
    • Atwal, J.K.1    Pinkston-Gosse, J.2    Syken, J.3
  • 75
    • 34548772338 scopus 로고    scopus 로고
    • ROCK and Rho: Biochemistry and neuronal functions of Rho-associated protein kinases
    • Schmandke A, Strittmatter SM. ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 2007; 13:454-469.
    • (2007) Neuroscientist , vol.13 , pp. 454-469
    • Schmandke, A.1    Strittmatter, S.M.2
  • 77
    • 7044246002 scopus 로고    scopus 로고
    • Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury
    • Kim JE, Liu BP, Park JH et al. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 2004; 44:439-451.
    • (2004) Neuron , vol.44 , pp. 439-451
    • Kim, J.E.1    Liu, B.P.2    Park, J.H.3
  • 78
    • 12844272145 scopus 로고    scopus 로고
    • Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo
    • USA
    • Zheng B, Atwal J, Ho C et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci USA 2005; 102: 1205-121 0.
    • (2005) Proc Natl Acad Sci , vol.102 , pp. 1205-2121
    • Zheng, B.1    Atwal, J.2    Ho, C.3
  • 79
    • 77953653088 scopus 로고    scopus 로고
    • Assessing spinal axon regeneration and sprouting in Nogo-, MAG-and OMgp-deficient mice
    • Lee JK, Geoflroy CG, Chan AF et al. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-and OMgp-deficient mice. Neuron 2010; 66:663-670.
    • (2010) Neuron , vol.66 , pp. 663-670
    • Lee, J.K.1    Geoflroy, C.G.2    Chan, A.F.3
  • 80
    • 0037198689 scopus 로고    scopus 로고
    • Nogo-66 receptor antagonist peptide promotes axonal regeneration
    • GrandPre T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 2002; 417:547-551.
    • (2002) Nature , vol.417 , pp. 547-551
    • Grandpre, T.1    Li, S.2    Strittmatter, S.M.3
  • 81
    • 20844439022 scopus 로고    scopus 로고
    • Blockade ofNogo-66, myelin-associated glycoprotein and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury
    • Li S, Liu BP, Bude1 S et al. Blockade ofNogo-66, myelin-associated glycoprotein and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci 2004; 24: 10511-10520.
    • (2004) J Neurosci , vol.24 , pp. 10511-10520
    • Li, S.1    Liu, B.P.2    Bude1, S.3
  • 82
    • 79958849486 scopus 로고    scopus 로고
    • A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats
    • Sharp K, Flanagan L, Yee KM et al. A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats. Exp Neuro12010.
    • Exp Neuro
    • Sharp, K.1    Flanagan, L.2    Yee, K.M.3
  • 83
    • 0037443069 scopus 로고    scopus 로고
    • Rho kinase inhibition enhances axonal regeneration in the injured CNS
    • Fournier AE, Takizawa BT, Strittmatter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 2003; 23: 1416-1423.
    • (2003) J Neurosci , vol.23 , pp. 1416-1423
    • Fournier, A.E.1    Takizawa, B.T.2    Strittmatter, S.M.3
  • 84
    • 1442291888 scopus 로고    scopus 로고
    • Chondroitin sulphate proteoglycans: Preventing plasticity or protecting the CNS?
    • Rhodes KE, Fawcett JW. Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 2004; 204:33-48.
    • (2004) J Anat , vol.204 , pp. 33-48
    • Rhodes, K.E.1    Fawcett, J.W.2
  • 85
    • 13844275355 scopus 로고    scopus 로고
    • Chondroitin sulfate proteoglycans in neural development and regeneration
    • Carulli D, Laabs T, Geller HM et al. Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol2005; 15:116-120.
    • (2005) Curr Opin Neurobiol , vol.15 , pp. 116-120
    • Carulli, D.1    Laabs, T.2    Geller, H.M.3
  • 86
    • 34447636242 scopus 로고    scopus 로고
    • How does chondroitinase promote functional recovery in the damaged CNS?
    • Crespo D, Asher RA, Lin R et al. How does chondroitinase promote functional recovery in the damaged CNS? Exp Neurol2007; 206:159-171.
    • (2007) Exp Neurol , vol.206 , pp. 159-171
    • Crespo, D.1    Asher, R.A.2    Lin, R.3
  • 87
    • 0035784404 scopus 로고    scopus 로고
    • Reduction in CNS scar formation without concomitant increase in axon regeneration following treatment of adult rat brain with a combination of antibodies to TGFbetal and beta2
    • Moon LD, Fawcett JW. Reduction in CNS scar formation without concomitant increase in axon regeneration following treatment of adult rat brain with a combination of antibodies to TGFbetal and beta2. Eur J Neurosci 2001; 14:1667-1677.
    • (2001) Eur J Neurosci , vol.14 , pp. 1667-1677
    • Moon, L.D.1    Fawcett, J.W.2
  • 88
    • 0037061426 scopus 로고    scopus 로고
    • Chondroitinase ABC promotes functional recovery after spinal cord injury
    • Bradbury EJ, Moon LD, Popat RJ et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002; 416:636-640.
    • (2002) Nature , vol.416 , pp. 636-640
    • Bradbury, E.J.1    Moon, L.D.2    Popat, R.J.3
  • 89
    • 0037356723 scopus 로고    scopus 로고
    • Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates
    • BorisofI JF, Chan CC, Hiebert GW et al. Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates. Mol Cell Neurosci 2003; 22:405-416.
    • (2003) Mol Cell Neurosci , vol.22 , pp. 405-416
    • Borisofi, J.F.1    Chan, C.C.2    Hiebert, G.W.3
  • 90
    • 0037356722 scopus 로고    scopus 로고
    • The Rho/R0CK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans ofthe CNS glial scar
    • Monnier PP, Sierra A, Schwab JM et al. The Rho/R0CK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans ofthe CNS glial scar. Mol Cell Neurosci 2003; 22:319-330.
    • (2003) Mol Cell Neurosci , vol.22 , pp. 319-330
    • Monnier, P.P.1    Sierra, A.2    Schwab, J.M.3
  • 91
    • 33847385827 scopus 로고    scopus 로고
    • Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans
    • Cafferty WB, Yang SH, Duffy PJ et al. Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci 2007; 27:2176-2185.
    • (2007) J Neurosci , vol.27 , pp. 2176-2185
    • Cafferty, W.B.1    Yang, S.H.2    Duffy, P.J.3
  • 92
    • 70350502060 scopus 로고    scopus 로고
    • PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration
    • Shen Y, Tenney AP, Busch SA et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 2009; 326:592-596.
    • (2009) Science , vol.326 , pp. 592-596
    • Shen, Y.1    Tenney, A.P.2    Busch, S.A.3
  • 93
    • 31944442910 scopus 로고    scopus 로고
    • Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat
    • Hendriks WT, Eggers R, Ruitenberg MJ et al. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat. J Neurotrauma 2006; 23: 18-35.
    • (2006) J Neurotrauma , vol.23 , pp. 18-35
    • Hendriks, W.T.1    Eggers, R.2    Ruitenberg, M.J.3
  • 94
    • 0038076001 scopus 로고    scopus 로고
    • Axon regeneration in young adult mice lacking Nogo-AiB
    • Kim JE, Li S, GrandPre T et al. Axon regeneration in young adult mice lacking Nogo-AiB. Neuron 2003; 38:187-199.
    • (2003) Neuron , vol.38 , pp. 187-199
    • Kim, J.E.1    Li, S.2    Grandpre, T.3
  • 95
    • 1542297688 scopus 로고    scopus 로고
    • Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats
    • Lee YS, Lin CY, Robertson RT et al. Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats. J Neuropathol Exp Neurol 2004; 63:233-245.
    • (2004) J Neuropathol Exp Neurol , vol.63 , pp. 233-245
    • Lee, Y.S.1    Lin, C.Y.2    Robertson, R.T.3
  • 96
    • 0345227300 scopus 로고    scopus 로고
    • Delayed grafting ofBDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration
    • Tobias CA, Shumsky JS, Shibata M et al. Delayed grafting ofBDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp NeuroI2003; 184:97-113.
    • (2003) Exp Neuroi , vol.184 , pp. 97-113
    • Tobias, C.A.1    Shumsky, J.S.2    Shibata, M.3
  • 97
    • 0032703535 scopus 로고    scopus 로고
    • Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: Differential regulation of GAP-43, tubulins and neurofilament-M
    • Fernandes KJ, Fan DP, Tsui BJ et al. Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins and neurofilament-M. J Comp Neurol 1999; 414:495-510.
    • (1999) J Comp Neurol , vol.414 , pp. 495-510
    • Fernandes, K.J.1    Fan, D.P.2    Tsui, B.J.3
  • 98
    • 0026014670 scopus 로고
    • Response offacial and rubrospinal neurons to axotomy: Changes in mRNA expression for cytoskeletal proteins and GAP-43
    • Tetzlaff W, Alexander SW, Miller FD et al. Response offacial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 1991; 11:2528-2544.
    • (1991) J Neurosci , vol.11 , pp. 2528-2544
    • Tetzlaff, W.1    Alexander, S.W.2    Miller, F.D.3
  • 99
    • 0024560036 scopus 로고
    • Rapid induction of the major embryonic alpha-tubulin mRNA, T alpha I, during nerve regeneration in adult rats
    • Miller FD, Tetzlaff W, Bisby MA et al. Rapid induction of the major embryonic alpha-tubulin mRNA, T alpha I, during nerve regeneration in adult rats. J Neurosci 1989; 9: 1452-1463.
    • (1989) J Neurosci , vol.9 , pp. 1452-1463
    • Miller, F.D.1    Tetzlaff, W.2    Bisby, M.A.3
  • 100
    • 4644329002 scopus 로고    scopus 로고
    • Galectin-l expression correlates with the regenerative potential of rubrospinal and spinal motoneurons
    • McGraw J, 0schipok LW, Liu J et al. Galectin-l expression correlates with the regenerative potential of rubrospinal and spinal motoneurons. Neuroscience 2004; 128:713-719.
    • (2004) Neuroscience , vol.128 , pp. 713-719
    • McGraw, J.1    0Schipok, L.W.2    Liu, J.3
  • 101
    • 0027173147 scopus 로고
    • Expression of c-Jun as a response to dorsal root and peripheral nerve section in damaged and adjacent intact primary sensory neurons in the rat
    • Jenkins R, McMahon SB, Bond AB et al. Expression of c-Jun as a response to dorsal root and peripheral nerve section in damaged and adjacent intact primary sensory neurons in the rat. Eur J Neurosci 1993; 5:751-759.
    • (1993) Eur J Neurosci , vol.5 , pp. 751-759
    • Jenkins, R.1    McMahon, S.B.2    Bond, A.B.3
  • 102
    • 0242299286 scopus 로고    scopus 로고
    • Treatment of chronically injured spinal cord with neurotrophic factors stimulates betalI-tubulin and GAP-43 expression in rubrospinal tract neurons
    • Storer PD, Dolbeare D, Houle JD. Treatment of chronically injured spinal cord with neurotrophic factors stimulates betalI-tubulin and GAP-43 expression in rubrospinal tract neurons. J Neurosci Res 2003; 74:502-511.
    • (2003) J Neurosci Res , vol.74 , pp. 502-511
    • Storer, P.D.1    Dolbeare, D.2    Houle, J.D.3
  • 103
    • 9144273965 scopus 로고    scopus 로고
    • Axoplasmic importins enable retrograde injury signaling in lesioned nerve
    • Hanz S, Perl son E, Willis D et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 2003; 40: I 095-11 04.
    • (2003) Neuron , vol.40 , Issue.I
    • Hanz, S.1    Perl Son, E.2    Willis, D.3
  • 104
    • 0027232466 scopus 로고
    • Injury-associated induction ofGAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons
    • Schreyer DJ, Skene JH. Injury-associated induction ofGAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons. J Neurobiol 1993; 24:959-970.
    • (1993) J Neurobiol , vol.24 , pp. 959-970
    • Schreyer, D.J.1    Skene, J.H.2
  • 105
    • 8844263909 scopus 로고    scopus 로고
    • Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo
    • Gao Y, Deng K, Hou J et al. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 2004; 44:609-621.
    • (2004) Neuron , vol.44 , pp. 609-621
    • Gao, Y.1    Deng, K.2    Hou, J.3
  • 106
    • 0037444630 scopus 로고    scopus 로고
    • Macrophage-derived factors stimulate optic nerve regeneration
    • Yin Y, Cui Q, Li Y et al. Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 2003; 23:2284-2293.
    • (2003) J Neurosci , vol.23 , pp. 2284-2293
    • Yin, Y.1    Cui, Q.2    Li, Y.3
  • 107
    • 33745712928 scopus 로고    scopus 로고
    • 0ncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells
    • Yin Y, Henzl MT, Lorber B et al. 0ncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 2006; 9:843-852.
    • (2006) Nat Neurosci , vol.9 , pp. 843-852
    • Yin, Y.1    Henzl, M.T.2    Lorber, B.3
  • 108
    • 0037083631 scopus 로고    scopus 로고
    • Small proline-rich repeat protein IA is expressed by axotomized neurons and promotes axonal outgrowth
    • Bonilla IE, Tanabe K, Strittmatter SM. Small proline-rich repeat protein IA is expressed by axotomized neurons and promotes axonal outgrowth. J Neurosci 2002; 22: 1303-1315.
    • (2002) J Neurosci , vol.22 , pp. 1303-1315
    • Bonilla, I.E.1    Tanabe, K.2    Strittmatter, S.M.3
  • 109
    • 19044374577 scopus 로고    scopus 로고
    • Early changes in gene expression in the dorsal root ganglia after transection of the sciatic nerve; effects of amphiregulin and PAl-Ion regeneration
    • Nilsson A, Moller K, Dahlin L et al. Early changes in gene expression in the dorsal root ganglia after transection of the sciatic nerve; effects of amphiregulin and PAl-Ion regeneration. Brain Res Mol Brain Res 2005; 136:65-74.
    • (2005) Brain Res Mol Brain Res , vol.136 , pp. 65-74
    • Nilsson, A.1    Moller, K.2    Dahlin, L.3
  • 110
    • 0142151019 scopus 로고    scopus 로고
    • Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth
    • Tanabe K, Bonilla I, Winkles JA et al. Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. J Neurosci 2003; 23:9675-9686.
    • (2003) J Neurosci , vol.23 , pp. 9675-9686
    • Tanabe, K.1    Bonilla, I.2    Winkles, J.A.3
  • 111
    • 5444270047 scopus 로고    scopus 로고
    • Switching mature retinal ganglion cells to a robust growth state in vivo: Gene expression and synergy with RhoA inactivation
    • Fischer D, Petkova V, Thanos S et al. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J Neurosci 2004; 24:8726-8740.
    • (2004) J Neurosci , vol.24 , pp. 8726-8740
    • Fischer, D.1    Petkova, V.2    Thanos, S.3
  • 112
    • 70349884323 scopus 로고    scopus 로고
    • KLF family members regulate intrinsic axon regeneration ability
    • Moore DL, Blackmore MG, Hu Y et al. KLF family members regulate intrinsic axon regeneration ability. Science 2009; 326:298-301.
    • (2009) Science , vol.326 , pp. 298-301
    • Moore, D.L.1    Blackmore, M.G.2    Hu, Y.3
  • 113
    • 3242730442 scopus 로고    scopus 로고
    • The AP-l transcription factor c-Jun is required for eflicient axonal regeneration
    • Raivich G, Bohatschek M, Da Costa C et al. The AP-l transcription factor c-Jun is required for eflicient axonal regeneration. Neuron 2004; 43:57-67.
    • (2004) Neuron , vol.43 , pp. 57-67
    • Raivich, G.1    Bohatschek, M.2    da Costa, C.3
  • 114
    • 22144444856 scopus 로고    scopus 로고
    • A transcriptional role for C/EBP beta in the neuronal response to axonal injury
    • Nadeau S, Hein P, Fernandes KJ et al. A transcriptional role for C/EBP beta in the neuronal response to axonal injury. Mol Cell Neurosci 2005; 29:525-535.
    • (2005) Mol Cell Neurosci , vol.29 , pp. 525-535
    • Nadeau, S.1    Hein, P.2    Fernandes, K.J.3
  • 115
    • 33745001188 scopus 로고    scopus 로고
    • The transcription factor ATF-3 promotes neurite outgrowth
    • Seijffers R, Allchorne AJ, Woolf CJ. The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 2006; 32:143-154.
    • (2006) Mol Cell Neurosci , vol.32 , pp. 143-154
    • Seijffers, R.1    Allchorne, A.J.2    Woolf, C.J.3
  • 116
    • 0033956898 scopus 로고    scopus 로고
    • Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: Anovel neuronal marker ofnerve injury
    • Tsujino H, Kondo E, Fukuoka T et al. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: Anovel neuronal marker ofnerve injury. Mol Cell Neurosci 2000; 15: 170-182.
    • (2000) Mol Cell Neurosci , vol.15 , pp. 170-182
    • Tsujino, H.1    Kondo, E.2    Fukuoka, T.3
  • 117
    • 33750921806 scopus 로고    scopus 로고
    • SRY-box containing gene II (Sox II) transcription factor is required for neuron survival and neurite growth
    • Jankowski MP, Cornuet PK, Mcllwrath S et al. SRY-box containing gene II (Sox II) transcription factor is required for neuron survival and neurite growth. Neuroscience 2006; 143:501-514.
    • (2006) Neuroscience , vol.143 , pp. 501-514
    • Jankowski, M.P.1    Cornuet, P.K.2    McLlwrath, S.3
  • 118
    • 66749182241 scopus 로고    scopus 로고
    • Axotomy-induced Smadl activation promotes axonal growth in adult sensory neurons
    • Zou H, Ho C, Wong K et al. Axotomy-induced Smadl activation promotes axonal growth in adult sensory neurons. JNeurosci2009; 29:7116-7123.
    • (2009) Jneurosci , vol.29 , pp. 7116-7123
    • Zou, H.1    Ho, C.2    Wong, K.3
  • 119
    • 34547484768 scopus 로고    scopus 로고
    • 3 increases the intrinsic growth state ofDRG neurons to enhance peripheral nerve regeneration
    • Seijffers R, Mills CD, WoolfCJ. ATF3 increases the intrinsic growth state ofDRG neurons to enhance peripheral nerve regeneration. J Neurosci 2007; 27:7911-7920.
    • (2007) J Neurosci , vol.27 , pp. 7911-7920
    • Seijffers, R.1    Mills, C.D.2    Woolfcj, A.T.F.3
  • 120
    • 0035156362 scopus 로고    scopus 로고
    • Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons
    • Bomze HM, Bulsara KR, Iskandar BJ et al. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci 2001; 4:38-43.
    • (2001) Nat Neurosci , vol.4 , pp. 38-43
    • Bomze, H.M.1    Bulsara, K.R.2    Iskandar, B.J.3
  • 121
    • 0034652102 scopus 로고    scopus 로고
    • A role for nuclear PTEN in neuronal differentiation
    • Lachyankar MB, Sultana N, Schonhoff CM et al. A role for nuclear PTEN in neuronal differentiation. J Neurosci 2000; 20: 1404-1413.
    • (2000) J Neurosci , vol.20 , pp. 1404-1413
    • Lachyankar, M.B.1    Sultana, N.2    Schonhoff, C.M.3
  • 122
    • 1542723390 scopus 로고    scopus 로고
    • Inhibition of neuronal phenotype by PTEN in PCI2 cells. Proc Nat!
    • Musatov S, Roberts I, Brooks AL et al. Inhibition of neuronal phenotype by PTEN in PCI2 cells. Proc Nat! Acad Sci USA 2004; 101:3627-3631.
    • (2004) Acad Sci USA , vol.101 , pp. 3627-3631
    • Musatov, S.1    Roberts, I.2    Brooks, A.L.3
  • 123
    • 33645237488 scopus 로고    scopus 로고
    • PTEN couples Sema3A signalling to growth cone collapse
    • Chadborn NH, Ahmed AI, Holt MR et al. PTEN couples Sema3A signalling to growth cone collapse. J Cell Sci 2006; 119:951-957.
    • (2006) J Cell Sci , vol.119 , pp. 951-957
    • Chadborn, N.H.1    Ahmed, A.I.2    Holt, M.R.3
  • 124
    • 55849108858 scopus 로고    scopus 로고
    • Promoting axon regeneration in the adult CNS by modulation of the PTENI mT0R pathway
    • Park KK, Liu K, Hu Y et al. Promoting axon regeneration in the adult CNS by modulation of the PTENI mT0R pathway. Science 2008; 322:963-966.
    • (2008) Science , vol.322 , pp. 963-966
    • Park, K.K.1    Liu, K.2    Hu, Y.3
  • 125
    • 77956187905 scopus 로고    scopus 로고
    • PTEN deletion enhances the regenerative ability of adult corticospinal neurons
    • Liu K, Lu Y, Lee JK et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 2010; 13:1075-1081.
    • (2010) Nat Neurosci , vol.13 , pp. 1075-1081
    • Liu, K.1    Lu, Y.2    Lee, J.K.3
  • 126
    • 1442348904 scopus 로고    scopus 로고
    • The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats
    • Bareyre FM, Kerschensteiner M, Raineteau 0 et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 2004; 7:269-277.
    • (2004) Nat Neurosci , vol.7 , pp. 269-277
    • Bareyre, F.M.1    Kerschensteiner, M.2
  • 127
    • 38049056853 scopus 로고    scopus 로고
    • Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury
    • Courtine G, Song B, Roy RR et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 2008; 14:69-74.
    • (2008) Nat Med , vol.14 , pp. 69-74
    • Courtine, G.1    Song, B.2    Roy, R.R.3
  • 128
    • 0020572269 scopus 로고
    • Cellular morphology of chronic spinal cord injury in the cat: Analysis of myelinated axons by line-sampling
    • Blight AR. Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling. Neuroscience 1983; 10:521-543.
    • (1983) Neuroscience , vol.10 , pp. 521-543
    • Blight, A.R.1
  • 129
    • 0033000956 scopus 로고    scopus 로고
    • Sprouting and regeneration after pyramidotomy and blockade of the myelin-associated neurite growth inhibitors NI 35/250 in adult rats
    • Raineteau O, Z’Graggen WJ, Thallmair M et al. Sprouting and regeneration after pyramidotomy and blockade of the myelin-associated neurite growth inhibitors NI 35/250 in adult rats. Eur.I Neurosci 1999; 11:l486-1490.
    • (1999) Eur.I Neurosci , vol.11 , pp. l486-1490
    • Raineteau, O.1    Z’Graggen, W.J.2    Thallmair, M.3
  • 130
    • 33646442052 scopus 로고    scopus 로고
    • Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury
    • Massey.JM, Hubscher CH, Wagoner MR et al. Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. JNeurosci 2006; 26:4406-4414.
    • (2006) Jneurosci , vol.26 , pp. 4406-4414
    • Massey, J.M.1    Hubscher, C.H.2    Wagoner, M.R.3
  • 131
    • 33750932815 scopus 로고    scopus 로고
    • Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury
    • 0856-1 0867
    • Barritt AW, Davies M, Marchand F et al. Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury..I Neurosci 2006; 26: I 0856-1 0867.
    • (2006) I Neurosci , vol.26
    • Barritt, A.W.1    Davies, M.2    Marchand, F.3
  • 132
    • 25844477606 scopus 로고    scopus 로고
    • Autonomic dysreftexia after spinal cord injury: Central mechanisms and strategies for prevention
    • Weaver LC, Marsh DR, Gris D et al. Autonomic dysreftexia after spinal cord injury: central mechanisms and strategies for prevention. Prog Brain Res 2006; 152:245-263.
    • (2006) Prog Brain Res , vol.152 , pp. 245-263
    • Weaver, L.C.1    Marsh, D.R.2    Gris, D.3
  • 133
    • 0034660331 scopus 로고    scopus 로고
    • Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord
    • Romero MI, Rangappa N, Li L et al. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord..I Neurosci 2000; 20:4435-4445.
    • (2000) I Neurosci , vol.20 , pp. 4435-4445
    • Romero, M.I.1    Rangappa, N.2    Li, L.3
  • 134
    • 2942558484 scopus 로고    scopus 로고
    • The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery
    • Nikulina E, Tidwell JL, Dai HN et al. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci USA 2004; 101:8786-8790.
    • (2004) Proc Natl Acad Sci USA , vol.101 , pp. 8786-8790
    • Nikulina, E.1    Tidwell, J.L.2    Dai, H.N.3
  • 135
    • 33746094328 scopus 로고    scopus 로고
    • Combining an autologous peripheral nervous system “bridge“ and matrix modification by chondroitinase allows robust, functional regeneration beyond ahemisection lesion of the adult rat spinal cord
    • Houle JD, Tom VJ, Mayes D et al. Combining an autologous peripheral nervous system “bridge“ and matrix modification by chondroitinase allows robust, functional regeneration beyond ahemisection lesion of the adult rat spinal cord..I Neurosci 2006; 26:7405-7415.
    • (2006) .I Neurosci , vol.26 , pp. 7405-7415
    • Houle, J.D.1    Tom, V.J.2    Mayes, D.3
  • 136
    • 26044476588 scopus 로고    scopus 로고
    • Performance oflocomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta)
    • Courtine G, Roy RR, Raven J et al. Performance oflocomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta). Brain 2005; 128:2338-2358.
    • (2005) Brain , vol.128 , pp. 2338-2358
    • Courtine, G.1    Roy, R.R.2    Raven, J.3
  • 137
    • 33745879440 scopus 로고    scopus 로고
    • Nogo-A-specific antibody treatment enhances sprouting and fimctional recovery after cervical lesion in adult primates
    • Freund P, Schmidlin E, Wannier T et al. Nogo-A-specific antibody treatment enhances sprouting and fimctional recovery after cervical lesion in adult primates. Nat Med 2006; 12:790-792.
    • (2006) Nat Med , vol.12 , pp. 790-792
    • Freund, P.1    Schmidlin, E.2    Wannier, T.3
  • 138
    • 77954835104 scopus 로고    scopus 로고
    • Local and remote growth factor effects after primate spinal cord injury
    • Brock JH, Rosenzweig ES, Blesch A et al. Local and remote growth factor effects after primate spinal cord injury. J Neurosci 2010; 30:9728-9737.
    • (2010) J Neurosci , vol.30 , pp. 9728-9737
    • Brock, J.H.1    Rosenzweig, E.S.2    Blesch, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.