-
1
-
-
58149512333
-
Spinal cord injury: Plasticity, regeneration and the challenge oftranslational drug development
-
Blesch A, Tuszynski MH. Spinal cord injury: plasticity, regeneration and the challenge oftranslational drug development. Trends Neurosci 2009; 32:41-47.
-
(2009)
Trends Neurosci
, vol.32
, pp. 41-47
-
-
Blesch, A.1
Tuszynski, M.H.2
-
2
-
-
42749096670
-
Axonal growth therapeutics: Regeneration or sprouting or plasticity?
-
Cafferty WB, McGee AW, Strittmatter SM. Axonal growth therapeutics: regeneration or sprouting or plasticity? Trends Neurosci 2008; 31:215-220.
-
(2008)
Trends Neurosci
, vol.31
, pp. 215-220
-
-
Cafferty, W.B.1
McGee, A.W.2
Strittmatter, S.M.3
-
3
-
-
0022397573
-
Plasticity of hippocampal circuitry in Alzheimer's disease
-
Geddes JW, Monaghan DT, Cotman CW et al. Plasticity of hippocampal circuitry in Alzheimer's disease. Science 1985; 230: 1179-1181.
-
(1985)
Science
, vol.230
, pp. 1179-1181
-
-
Geddes, J.W.1
Monaghan, D.T.2
Cotman, C.W.3
-
4
-
-
33645967159
-
Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers
-
Ballermann M, Fouad K. Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers. Eur J Neurosci 2006; 23: 1988-1996.
-
(2006)
Eur J Neurosci
, vol.23
, pp. 1988-1996
-
-
Ballermann, M.1
Fouad, K.2
-
5
-
-
33646577781
-
Collateral sprouting as a target for improved function after spinal cord injury
-
Hagg T. Collateral sprouting as a target for improved function after spinal cord injury. J Neurotrauma 2006; 23:281-294.
-
(2006)
J Neurotrauma
, vol.23
, pp. 281-294
-
-
Hagg, T.1
-
6
-
-
78650217877
-
Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury
-
Rosenzweig ES, Courtine G, Jindrich DL et al. Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury. Nat Neurosci 2010; 13: 1505-151 0.
-
(2010)
Nat Neurosci
, vol.13
, pp. 1505-2151
-
-
Rosenzweig, E.S.1
Courtine, G.2
Jindrich, D.L.3
-
7
-
-
0035853114
-
Salimi Net al. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury
-
Weidner N, Ner A, Salimi Net al. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury. Proc Natl Acad Sci USA 2001; 98:3513-3518.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 3513-3518
-
-
Weidner, N.1
Ner, A.2
-
8
-
-
0035173635
-
New patterns of intracortical projections after focal cortical stroke
-
Carmichael ST, Wei L, Rovainen CM et al. New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis 2001; 8:910-922.
-
(2001)
Neurobiol Dis
, vol.8
, pp. 910-922
-
-
Carmichael, S.T.1
Wei, L.2
Rovainen, C.M.3
-
9
-
-
27744576336
-
Extensive cortical rewiring after brain injury
-
Dancause N, Barbay S, Frost SB et al. Extensive cortical rewiring after brain injury. J Neurosci 2005; 25:10167-10179.
-
(2005)
J Neurosci
, vol.25
, pp. 10167-10179
-
-
Dancause, N.1
Barbay, S.2
Frost, S.B.3
-
10
-
-
17444374896
-
The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury
-
Conner JM, Chiba AA, Tuszynski MH. The basal forebrain cholinergic system is essential for cortical plasticity and functional recovery following brain injury. Neuron 2005; 46: 173-179.
-
(2005)
Neuron
, vol.46
, pp. 173-179
-
-
Conner, J.M.1
Chiba, A.A.2
Tuszynski, M.H.3
-
11
-
-
39749099544
-
Adaptive plasticity in motor cortex: Implications for rehabilitation after brain injury
-
Nudo RJ. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med 2003:7-10.
-
(2003)
J Rehabil Med
, pp. 7-10
-
-
Nudo, R.J.1
-
12
-
-
33748997087
-
Sprouting, regeneration and circuit formation in the injured spinal cord: Factors and activity
-
Maier IC, Schwab ME. Sprouting, regeneration and circuit formation in the injured spinal cord: factors and activity. Philos Trans R Soc Lond B BioI Sci 2006; 361:1611-1634.
-
(2006)
Philos Trans R Soc Lond B Bioi Sci
, vol.361
, pp. 1611-1634
-
-
Maier, I.C.1
Schwab, M.E.2
-
13
-
-
9644259008
-
Inflammation and apoptosis: Linked therapeutic targets in spinal cord injury
-
Beattie MS. Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 2004; 10:580-583.
-
(2004)
Trends Mol Med
, vol.10
, pp. 580-583
-
-
Beattie, M.S.1
-
14
-
-
0031015075
-
Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys
-
Crowe MJ, Bresnahan JC, Shuman SL et al. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 1997; 3:73-76.
-
(1997)
Nat Med
, vol.3
, pp. 73-76
-
-
Crowe, M.J.1
Bresnahan, J.C.2
Shuman, S.L.3
-
15
-
-
33646571167
-
Pharmacological approaches to repair the injured spinal cord
-
Baptiste DC, Fehlings MG. Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 2006; 23:318-334.
-
(2006)
J Neurotrauma
, vol.23
, pp. 318-334
-
-
Baptiste, D.C.1
Fehlings, M.G.2
-
16
-
-
0018169593
-
Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury
-
Balentine JD. Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab Invest 1978; 39:236-253.
-
(1978)
Lab Invest
, vol.39
, pp. 236-253
-
-
Balentine, J.D.1
-
17
-
-
0033216123
-
Cellular and molecular mechanisms of glial scarring and progressive cavitation: In vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma
-
Fitch MT, Doller C, Combs CK et al. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 1999; 19:8182-8198.
-
(1999)
J Neurosci
, vol.19
, pp. 8182-8198
-
-
Fitch, M.T.1
Doller, C.2
Combs, C.K.3
-
18
-
-
0031426869
-
Silver 1. Activated macrophages and the blood-brain barrier: Inflammation after CNS injury leads to increases in putative inhibitory molecules
-
Fitch MT, Silver 1. Activated macrophages and the blood-brain barrier: inflammation after CNS injury leads to increases in putative inhibitory molecules. Exp Neurol 1997; 148:587-603.
-
(1997)
Exp Neurol
, vol.148
, pp. 587-603
-
-
Fitch, M.T.1
-
19
-
-
0031033377
-
Experimental analysis of progressive necrosis after spinal cord trauma in the rat: Etiological role ofthe inflammatory response
-
Zhang Z, Krebs CJ, Guth L. Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role ofthe inflammatory response. Exp Neurol 1997; 143: 141-152.
-
(1997)
Exp Neurol
, vol.143
, pp. 141-152
-
-
Zhang, Z.1
Krebs, C.J.2
Guth, L.3
-
20
-
-
0031427410
-
Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat
-
Bregman BS, McAtee M, Dai HN et al. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 1997; 148:475-494.
-
(1997)
Exp Neurol
, vol.148
, pp. 475-494
-
-
Bregman, B.S.1
McAtee, M.2
Dai, H.N.3
-
21
-
-
0034235758
-
Activation oflocomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level
-
Ribotta MG, Provencher J, Feraboli-Lohnherr D et al. Activation oflocomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level. J Neurosci 2000; 20:5144-5152.
-
(2000)
J Neurosci
, vol.20
, pp. 5144-5152
-
-
Ribotta, M.G.1
Provencher, J.2
Feraboli-Lohnherr, D.3
-
22
-
-
0036907505
-
Transplant mediated repair of the central nervous system: An imminent solution?
-
Lakatos A, Franklin RJ. Transplant mediated repair of the central nervous system: an imminent solution? Curr Opin Neuro12002; 15:701-705.
-
Curr Opin Neuro12002
, vol.15
, pp. 701-705
-
-
Lakatos, A.1
Franklin, R.J.2
-
23
-
-
2942720519
-
CAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury
-
Pearse DD, Pereira FC, Marcillo AE et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 2004; 10:610-616.
-
(2004)
Nat Med
, vol.10
, pp. 610-616
-
-
Pearse, D.D.1
Pereira, F.C.2
Marcillo, A.E.3
-
24
-
-
33746282112
-
Spinal cord repair strategies: Why do they work?
-
Bradbury EJ, McMahon SB. Spinal cord repair strategies: why do they work? Nat Rev Neurosci 2006; 7:644-653.
-
(2006)
Nat Rev Neurosci
, vol.7
, pp. 644-653
-
-
Bradbury, E.J.1
McMahon, S.B.2
-
25
-
-
3943082076
-
The Nogo signaling pathway for regeneration block
-
HeZ, Koprivica V. The Nogo signaling pathway for regeneration block. AnnuRev Neurosci2004; 27:341-368.
-
Annurev Neurosci2004
, vol.27
, pp. 341-368
-
-
-
26
-
-
33745438772
-
Regeneration following spinal cord injury, from experimental models to humans: Where are we?
-
Di Giovanni S. Regeneration following spinal cord injury, from experimental models to humans: where are we? Expert Dpin Ther Targets 2006; 10:363-376.
-
(2006)
Expert Dpin Ther Targets
, vol.10
, pp. 363-376
-
-
Di Giovanni, S.1
-
27
-
-
0026768108
-
Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: Diflerent mechanisms are responsible for the regulation of BDNF and NGF mRNA
-
Meyer M, Matsuoka I, Wetmore C et al. Enhanced synthesis of brain-derived neurotrophic factor in the lesioned peripheral nerve: diflerent mechanisms are responsible for the regulation of BDNF and NGF mRNA. J Cell BioI 1992; 119:45-54.
-
(1992)
J Cell Bioi
, vol.119
, pp. 45-54
-
-
Meyer, M.1
Matsuoka, I.2
Wetmore, C.3
-
28
-
-
0026694239
-
Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration
-
Sendtner M, Stockli KA, Thoenen H. Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration. J Cell BioI 1992; 118: 139-148.
-
(1992)
J Cell Bioi
, vol.118
, pp. 139-148
-
-
Sendtner, M.1
Stockli, K.A.2
Thoenen, H.3
-
29
-
-
0027264557
-
Zhu Y et at. Retrograde axonal transport of ciliary neurotrophic factor is increased by peripheral nerve injury
-
Curtis R, Adryan KM, Zhu Y et at. Retrograde axonal transport of ciliary neurotrophic factor is increased by peripheral nerve injury. Nature 1993; 365:253-255.
-
(1993)
Nature
, vol.365
, pp. 253-255
-
-
Curtis, R.1
Adryan, K.M.2
-
30
-
-
0345490835
-
Expression ofneurotrophin mRNAs in the dorsal root ganglion after spinal nerve injury
-
Shen H, Chung JM, Chung K. Expression ofneurotrophin mRNAs in the dorsal root ganglion after spinal nerve injury. Brain Res Mol Brain Res 1999; 64: 186-192.
-
(1999)
Brain Res Mol Brain Res
, vol.64
, pp. 186-192
-
-
Shen, H.1
Chung, J.M.2
Chung, K.3
-
31
-
-
0034608339
-
Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats
-
Hoke A, Cheng C, Zochodne DW. Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport 2000; 11: 1651-1654.
-
(2000)
Neuroreport
, vol.11
, pp. 1651-1654
-
-
Hoke, A.1
Cheng, C.2
Zochodne, D.W.3
-
32
-
-
0037175326
-
Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury
-
Costigan M, Befort K, Karchewski L et al. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 2002; 3: 16.
-
(2002)
BMC Neurosci
, vol.3
, pp. 16
-
-
Costigan, M.1
Befort, K.2
Karchewski, L.3
-
34
-
-
0034439622
-
Neurotrophic factors and gene therapy in spinal cord injury
-
Lacroix S, Tuszynski MH. Neurotrophic factors and gene therapy in spinal cord injury. Neurorehabil Neural Repair 2000; 14:265-275.
-
(2000)
Neurorehabil Neural Repair
, vol.14
, pp. 265-275
-
-
Lacroix, S.1
Tuszynski, M.H.2
-
35
-
-
0034688281
-
Functional regeneration of sensory axons into the adult spinal cord
-
Ramer MS, Priestley JV, McMahon SB. Functional regeneration of sensory axons into the adult spinal cord. Nature 2000; 403:312-316.
-
(2000)
Nature
, vol.403
, pp. 312-316
-
-
Ramer, M.S.1
Priestley, J.V.2
McMahon, S.B.3
-
36
-
-
0032960457
-
Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism
-
Cai D, Shen Y, De Bellard M et al. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 1999; 22:89-101.
-
(1999)
Neuron
, vol.22
, pp. 89-101
-
-
Cai, D.1
Shen, Y.2
de Bellard, M.3
-
37
-
-
0028115777
-
Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion
-
Schnell L, Schneider R, Kolbeck R et al. Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 1994; 367: 170-173.
-
(1994)
Nature
, vol.367
, pp. 170-173
-
-
Schnell, L.1
Schneider, R.2
Kolbeck, R.3
-
38
-
-
16944366150
-
Cellular delivery ofneurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury
-
Grill R, Murai K, Blesch A et al. Cellular delivery ofneurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 1997; 17:5560-5572.
-
(1997)
J Neurosci
, vol.17
, pp. 5560-5572
-
-
Grill, R.1
Murai, K.2
Blesch, A.3
-
39
-
-
0033151593
-
Et at. Transplants of fibroblasts genetically modified to express BDNF promote regeneration ofadult rat rubrospinal axons and recovery offorelimb function
-
Liu Y, Kim D, Himes BT et at. Transplants of fibroblasts genetically modified to express BDNF promote regeneration ofadult rat rubrospinal axons and recovery offorelimb function. JNeurosci 1999; 19:4370-4387.
-
(1999)
Jneurosci
, vol.19
, pp. 4370-4387
-
-
Liu, Y.1
Kim, D.2
Himes, B.T.3
-
40
-
-
0034718896
-
Regenerating the damaged central nervous system
-
Horner P.I, Gage FH. Regenerating the damaged central nervous system. Nature 2000; 407:963-970.
-
(2000)
Nature
, vol.407
, pp. 963-970
-
-
Horner, P.I.1
Gage, F.H.2
-
41
-
-
0344737628
-
Diflerential gene expression profiles in embryonic, adult-injured and adult-uninjured rat spinal cords
-
Gris P, Murphy S, Jacob JE et al. Diflerential gene expression profiles in embryonic, adult-injured and adult-uninjured rat spinal cords. Mol Cell Neurosci 2003; 24:555-567.
-
(2003)
Mol Cell Neurosci
, vol.24
, pp. 555-567
-
-
Gris, P.1
Murphy, S.2
Jacob, J.E.3
-
42
-
-
0345731381
-
Plasticity following injury to the adult central nervous system: Is recapitulation of a developmental state worth promoting?
-
Emery DL, Royo NC, Fischer I et al. Plasticity following injury to the adult central nervous system: is recapitulation of a developmental state worth promoting?.I Neurotrauma 2003; 20: 1271-1292.
-
(2003)
.I Neurotrauma
, vol.20
, pp. 1271-1292
-
-
Emery, D.L.1
Royo, N.C.2
Fischer, I.3
-
43
-
-
38649126573
-
Growth factors and combinatorial therapies for CNS regeneration
-
Lu P, Tuszynski MH. Growth factors and combinatorial therapies for CNS regeneration. Exp Neuro12008; 209:313-320.
-
(2008)
Exp Neuro1
, vol.209
, pp. 313-320
-
-
Lu, P.1
Tuszynski, M.H.2
-
44
-
-
33646572511
-
Designing cell-and gene-based regeneration strategies to repair the injured spinal cord
-
Pearse DD, Bunge MB. Designing cell-and gene-based regeneration strategies to repair the injured spinal cord..I Neurotrauma 2006; 23:438-452.
-
(2006)
.I Neurotrauma
, vol.23
, pp. 438-452
-
-
Pearse, D.D.1
Bunge, M.B.2
-
45
-
-
0037654372
-
Growth-factor gene therapy forneurodegenerative disorders
-
Tuszynski MH. Growth-factor gene therapy forneurodegenerative disorders. LancetNeurol2002; 1:51-57.
-
Lancetneurol
, vol.2002
, pp. 51-57
-
-
Tuszynski, M.H.1
-
46
-
-
0742288565
-
Regeneration beyond the glial scar
-
Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004; 5: 146-156.
-
(2004)
Nat Rev Neurosci
, vol.5
, pp. 146-156
-
-
Silver, J.1
Miller, J.H.2
-
47
-
-
33646672406
-
0vercoming inhibition in the damaged spinal cord
-
Fawcett JW. 0vercoming inhibition in the damaged spinal cord. J Neurotrauma 2006; 23:371-383.
-
(2006)
J Neurotrauma
, vol.23
, pp. 371-383
-
-
Fawcett, J.W.1
-
48
-
-
0033137077
-
Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury
-
Neumann S, Woolf C.I. Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 1999; 23:83-91.
-
(1999)
Neuron
, vol.23
, pp. 83-91
-
-
Neumann, S.1
Woolf, C.I.2
-
49
-
-
0037071890
-
Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation
-
Neumann S, Bradke F, Tessier-Lavigne M et at. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 2002; 34:885-893.
-
(2002)
Neuron
, vol.34
, pp. 885-893
-
-
Neumann, S.1
Bradke, F.2
Tessier-Lavigne, M.3
-
50
-
-
0037071880
-
Spinal axon regeneration induced by elevation of cyclic AMP
-
Qiu I, Cai D, Dai H et at. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 2002; 34:895-903.
-
(2002)
Neuron
, vol.34
, pp. 895-903
-
-
Qiu, I.1
Cai, D.2
Dai, H.3
-
51
-
-
33847094740
-
Regulation of intrinsic neuronal properties for axon growth and regeneration
-
Rossi F, Gianola S, Corvetti L. Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol2007; 81: 1-28.
-
(2007)
Prog Neurobiol
, vol.81
, pp. 1-28
-
-
Rossi, F.1
Gianola, S.2
Corvetti, L.3
-
52
-
-
0036434324
-
Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury
-
Jin Y, Fischer I, Tessler A et at. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 2002; 177:265-275.
-
(2002)
Exp Neurol
, vol.177
, pp. 265-275
-
-
Jin, Y.1
Fischer, I.2
Tessler, A.3
-
53
-
-
0031814388
-
Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord
-
Menei P, Montero-Menei C, Whittemore SR et al. Schwann cells genetically modified to secrete human BDNF promote enhanced axonal regrowth across transected adult rat spinal cord. Eur.l Neurosci 1998; 10:607-621.
-
(1998)
Eur.L Neurosci
, vol.10
, pp. 607-621
-
-
Menei, P.1
Montero-Menei, C.2
Whittemore, S.R.3
-
54
-
-
0031013730
-
Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons
-
Ye JH, Houle JD. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons. Exp Neurol 1997; 143:70-81.
-
(1997)
Exp Neurol
, vol.143
, pp. 70-81
-
-
Ye, J.H.1
Houle, J.D.2
-
55
-
-
70350203996
-
Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury
-
Kadoya K, Tsukada S, Lu P et al. Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron 2009; 64: 165-172.
-
(2009)
Neuron
, vol.64
, pp. 165-172
-
-
Kadoya, K.1
Tsukada, S.2
Lu, P.3
-
56
-
-
65049086895
-
Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord
-
Fortun J, Hill CE, Bunge MB. Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett 2009; 456: 124-132.
-
(2009)
Neurosci Lett
, vol.456
, pp. 124-132
-
-
Fortun, J.1
Hill, C.E.2
Bunge, M.B.3
-
57
-
-
3242711266
-
Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury
-
Lu P, Yang H, Jones LL et al. Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury..I Neurosci 2004; 24:6402-6409.
-
(2004)
.I Neurosci
, vol.24
, pp. 6402-6409
-
-
Lu, P.1
Yang, H.2
Jones, L.L.3
-
58
-
-
0020040379
-
Peripheral nerve autografts to the rat spinal cord: Studies with axonal tracing methods
-
Richardson PM, McGuinness UM, Aguayo AJ. Peripheral nerve autografts to the rat spinal cord: studies with axonal tracing methods. Brain Res 1982; 237:147-162.
-
(1982)
Brain Res
, vol.237
, pp. 147-162
-
-
Richardson, P.M.1
McGuinness, U.M.2
Aguayo, A.J.3
-
59
-
-
0031467240
-
BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talphal-tubulin mRNA expression, and promote axonal regeneration
-
Kobayashi NR, Fan DP, Giehl KM et al. BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talphal-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 1997; 17:9583-9595.
-
(1997)
J Neurosci
, vol.17
, pp. 9583-9595
-
-
Kobayashi, N.R.1
Fan, D.P.2
Giehl, K.M.3
-
60
-
-
0035910932
-
Axotomy alters neurotrophin and neurotrophin receptor mRNAs in the vagus nerve and nodose ganglion ofthe rat
-
Lee P, Zhuo H, Helke CJ. Axotomy alters neurotrophin and neurotrophin receptor mRNAs in the vagus nerve and nodose ganglion ofthe rat. Brain Res Mol Brain Res 2001; 87:31-41.
-
(2001)
Brain Res Mol Brain Res
, vol.87
, pp. 31-41
-
-
Lee, P.1
Zhuo, H.2
Helke, C.J.3
-
61
-
-
24144441717
-
Comparing the function ofthe corticospinal system in diflerent species: Organizational differences for motor specialization?
-
Lemon RN, Grifliths J. Comparing the function ofthe corticospinal system in diflerent species: organizational differences for motor specialization? Muscle Nerve 2005; 32:261-279.
-
(2005)
Muscle Nerve
, vol.32
, pp. 261-279
-
-
Lemon, R.N.1
Grifliths, J.2
-
62
-
-
0035817425
-
Neurotrophism without neurotropism: BDNF promotes survival but not growth oflesioned corticospinal neurons
-
Lu P, Blesch A, Tuszynski MH. Neurotrophism without neurotropism: BDNF promotes survival but not growth oflesioned corticospinal neurons. J Comp Neuro12001; 436:456-470.
-
J Comp Neuro
, vol.12001
, pp. 456-470
-
-
Lu, P.1
Blesch, A.2
Tuszynski, M.H.3
-
63
-
-
66349113194
-
Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation
-
Hollis ER 2nd, Jamshidi P, Low K et al. Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation. Proc Natl Acad Sci USA 2009; 106:7215-7220.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 7215-7220
-
-
Hollis, E.R.1
Jamshidi, P.2
Low, K.3
-
64
-
-
0037403572
-
NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection
-
Tuszynski MH, Grill R, Jones LL et al. NT-3 gene delivery elicits growth of chronically injured corticospinal axons and modestly improves functional deficits after chronic scar resection. Exp Neurol 2003; 181:47-56.
-
(2003)
Exp Neurol
, vol.181
, pp. 47-56
-
-
Tuszynski, M.H.1
Grill, R.2
Jones, L.L.3
-
65
-
-
33748887028
-
Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord
-
Taylor L, Jones L, Tuszynski MH et al. Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci 2006; 26:9713-9721.
-
(2006)
J Neurosci
, vol.26
, pp. 9713-9721
-
-
Taylor, L.1
Jones, L.2
Tuszynski, M.H.3
-
66
-
-
69449094846
-
Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury
-
Alto LT, Havton LA, Conner JM et al. Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci 2009; 12: 1106-1113.
-
(2009)
Nat Neurosci
, vol.12
, pp. 1106-1113
-
-
Alto, L.T.1
Havton, L.A.2
Conner, J.M.3
-
67
-
-
0032722126
-
Von Ret al. NT-3 promotes growth oflesioned adult rat sensory axons ascending in the dorsal columns ofthe spinal cord
-
Bradbury EJ, Khemani S, Von Ret al. NT-3 promotes growth oflesioned adult rat sensory axons ascending in the dorsal columns ofthe spinal cord. Eur J Neurosci 1999; 11:3873-3883.
-
(1999)
Eur J Neurosci
, vol.11
, pp. 3873-3883
-
-
Bradbury, E.J.1
Khemani, S.2
-
68
-
-
0023896592
-
Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading
-
Caroni P, Schwab ME. Two membrane protein fractions from rat central myelin with inhibitory properties for neurite growth and fibroblast spreading. J Cell Bioi 1988; 106: 1281-1288.
-
(1988)
J Cell Bioi
, vol.106
, pp. 1281-1288
-
-
Caroni, P.1
Schwab, M.E.2
-
69
-
-
0032563211
-
Identification and characterization of a bovine neurite growth inhibitor (BNI-220)
-
Spillmann AA, Bandtlow CE, Lottspeich F et al. Identification and characterization of a bovine neurite growth inhibitor (bNI-220). J Bioi Chern 1998; 273: 19283-19293.
-
(1998)
J Bioi Chern
, vol.273
, pp. 19283-19293
-
-
Spillmann, A.A.1
Bandtlow, C.E.2
Lottspeich, F.3
-
70
-
-
10744222190
-
LINGO-l is a component of the Nogo-66 receptor/p75 signaling complex
-
Mi S, Lee X, Shao Z et al. LINGO-l is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 2004; 7:221-228.
-
(2004)
Nat Neurosci
, vol.7
, pp. 221-228
-
-
Mi, S.1
Lee, X.2
Shao, Z.3
-
71
-
-
13244255374
-
A TNF receptor family member, TROY, is acoreceptorwithNogo receptor in mediating the inhibitory activity of myelin inhibitors
-
Park JB, Yiu G, Kaneko S et al. A TNF receptor family member, TROY, is acoreceptorwithNogo receptor in mediating the inhibitory activity of myelin inhibitors. Neuron 2005; 45:345-351.
-
(2005)
Neuron
, vol.45
, pp. 345-351
-
-
Park, J.B.1
Yiu, G.2
Kaneko, S.3
-
72
-
-
19944432743
-
TAl/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor I and regulates axonal regeneration
-
Shao Z, Browning JL, Lee X et al. TAl/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor I and regulates axonal regeneration. Neuron 2005; 45:353-359.
-
(2005)
Neuron
, vol.45
, pp. 353-359
-
-
Shao, Z.1
Browning, J.L.2
Lee, X.3
-
73
-
-
0037038435
-
P75 interacts with the Nogo receptor as a coreceptor for Nogo, MAG and OMgp
-
Wang KC, Kim JA, Sivasankaran R et al. P75 interacts with the Nogo receptor as a coreceptor for Nogo, MAG and OMgp. Nature 2002; 420:74-78.
-
(2002)
Nature
, vol.420
, pp. 74-78
-
-
Wang, K.C.1
Kim, J.A.2
Sivasankaran, R.3
-
74
-
-
55849086190
-
PirB is a fimctional receptor for myelin inhibitors of axonal regeneration
-
Atwal JK, Pinkston-Gosse J, Syken J et al. PirB is a fimctional receptor for myelin inhibitors of axonal regeneration. Science 2008; 322:967-970.
-
(2008)
Science
, vol.322
, pp. 967-970
-
-
Atwal, J.K.1
Pinkston-Gosse, J.2
Syken, J.3
-
75
-
-
34548772338
-
ROCK and Rho: Biochemistry and neuronal functions of Rho-associated protein kinases
-
Schmandke A, Strittmatter SM. ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 2007; 13:454-469.
-
(2007)
Neuroscientist
, vol.13
, pp. 454-469
-
-
Schmandke, A.1
Strittmatter, S.M.2
-
77
-
-
7044246002
-
Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury
-
Kim JE, Liu BP, Park JH et al. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 2004; 44:439-451.
-
(2004)
Neuron
, vol.44
, pp. 439-451
-
-
Kim, J.E.1
Liu, B.P.2
Park, J.H.3
-
78
-
-
12844272145
-
Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo
-
USA
-
Zheng B, Atwal J, Ho C et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo. Proc Natl Acad Sci USA 2005; 102: 1205-121 0.
-
(2005)
Proc Natl Acad Sci
, vol.102
, pp. 1205-2121
-
-
Zheng, B.1
Atwal, J.2
Ho, C.3
-
79
-
-
77953653088
-
Assessing spinal axon regeneration and sprouting in Nogo-, MAG-and OMgp-deficient mice
-
Lee JK, Geoflroy CG, Chan AF et al. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-and OMgp-deficient mice. Neuron 2010; 66:663-670.
-
(2010)
Neuron
, vol.66
, pp. 663-670
-
-
Lee, J.K.1
Geoflroy, C.G.2
Chan, A.F.3
-
80
-
-
0037198689
-
Nogo-66 receptor antagonist peptide promotes axonal regeneration
-
GrandPre T, Li S, Strittmatter SM. Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 2002; 417:547-551.
-
(2002)
Nature
, vol.417
, pp. 547-551
-
-
Grandpre, T.1
Li, S.2
Strittmatter, S.M.3
-
81
-
-
20844439022
-
Blockade ofNogo-66, myelin-associated glycoprotein and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury
-
Li S, Liu BP, Bude1 S et al. Blockade ofNogo-66, myelin-associated glycoprotein and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci 2004; 24: 10511-10520.
-
(2004)
J Neurosci
, vol.24
, pp. 10511-10520
-
-
Li, S.1
Liu, B.P.2
Bude1, S.3
-
82
-
-
79958849486
-
A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats
-
Sharp K, Flanagan L, Yee KM et al. A re-assessment of a combinatorial treatment involving Schwann cell transplants and elevation of cyclic AMP on recovery of motor function following thoracic spinal cord injury in rats. Exp Neuro12010.
-
Exp Neuro
-
-
Sharp, K.1
Flanagan, L.2
Yee, K.M.3
-
83
-
-
0037443069
-
Rho kinase inhibition enhances axonal regeneration in the injured CNS
-
Fournier AE, Takizawa BT, Strittmatter SM. Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 2003; 23: 1416-1423.
-
(2003)
J Neurosci
, vol.23
, pp. 1416-1423
-
-
Fournier, A.E.1
Takizawa, B.T.2
Strittmatter, S.M.3
-
84
-
-
1442291888
-
Chondroitin sulphate proteoglycans: Preventing plasticity or protecting the CNS?
-
Rhodes KE, Fawcett JW. Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 2004; 204:33-48.
-
(2004)
J Anat
, vol.204
, pp. 33-48
-
-
Rhodes, K.E.1
Fawcett, J.W.2
-
85
-
-
13844275355
-
Chondroitin sulfate proteoglycans in neural development and regeneration
-
Carulli D, Laabs T, Geller HM et al. Chondroitin sulfate proteoglycans in neural development and regeneration. Curr Opin Neurobiol2005; 15:116-120.
-
(2005)
Curr Opin Neurobiol
, vol.15
, pp. 116-120
-
-
Carulli, D.1
Laabs, T.2
Geller, H.M.3
-
86
-
-
34447636242
-
How does chondroitinase promote functional recovery in the damaged CNS?
-
Crespo D, Asher RA, Lin R et al. How does chondroitinase promote functional recovery in the damaged CNS? Exp Neurol2007; 206:159-171.
-
(2007)
Exp Neurol
, vol.206
, pp. 159-171
-
-
Crespo, D.1
Asher, R.A.2
Lin, R.3
-
87
-
-
0035784404
-
Reduction in CNS scar formation without concomitant increase in axon regeneration following treatment of adult rat brain with a combination of antibodies to TGFbetal and beta2
-
Moon LD, Fawcett JW. Reduction in CNS scar formation without concomitant increase in axon regeneration following treatment of adult rat brain with a combination of antibodies to TGFbetal and beta2. Eur J Neurosci 2001; 14:1667-1677.
-
(2001)
Eur J Neurosci
, vol.14
, pp. 1667-1677
-
-
Moon, L.D.1
Fawcett, J.W.2
-
88
-
-
0037061426
-
Chondroitinase ABC promotes functional recovery after spinal cord injury
-
Bradbury EJ, Moon LD, Popat RJ et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 2002; 416:636-640.
-
(2002)
Nature
, vol.416
, pp. 636-640
-
-
Bradbury, E.J.1
Moon, L.D.2
Popat, R.J.3
-
89
-
-
0037356723
-
Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates
-
BorisofI JF, Chan CC, Hiebert GW et al. Suppression of Rho-kinase activity promotes axonal growth on inhibitory CNS substrates. Mol Cell Neurosci 2003; 22:405-416.
-
(2003)
Mol Cell Neurosci
, vol.22
, pp. 405-416
-
-
Borisofi, J.F.1
Chan, C.C.2
Hiebert, G.W.3
-
90
-
-
0037356722
-
The Rho/R0CK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans ofthe CNS glial scar
-
Monnier PP, Sierra A, Schwab JM et al. The Rho/R0CK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans ofthe CNS glial scar. Mol Cell Neurosci 2003; 22:319-330.
-
(2003)
Mol Cell Neurosci
, vol.22
, pp. 319-330
-
-
Monnier, P.P.1
Sierra, A.2
Schwab, J.M.3
-
91
-
-
33847385827
-
Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans
-
Cafferty WB, Yang SH, Duffy PJ et al. Functional axonal regeneration through astrocytic scar genetically modified to digest chondroitin sulfate proteoglycans. J Neurosci 2007; 27:2176-2185.
-
(2007)
J Neurosci
, vol.27
, pp. 2176-2185
-
-
Cafferty, W.B.1
Yang, S.H.2
Duffy, P.J.3
-
92
-
-
70350502060
-
PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration
-
Shen Y, Tenney AP, Busch SA et al. PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 2009; 326:592-596.
-
(2009)
Science
, vol.326
, pp. 592-596
-
-
Shen, Y.1
Tenney, A.P.2
Busch, S.A.3
-
93
-
-
31944442910
-
Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat
-
Hendriks WT, Eggers R, Ruitenberg MJ et al. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat. J Neurotrauma 2006; 23: 18-35.
-
(2006)
J Neurotrauma
, vol.23
, pp. 18-35
-
-
Hendriks, W.T.1
Eggers, R.2
Ruitenberg, M.J.3
-
94
-
-
0038076001
-
Axon regeneration in young adult mice lacking Nogo-AiB
-
Kim JE, Li S, GrandPre T et al. Axon regeneration in young adult mice lacking Nogo-AiB. Neuron 2003; 38:187-199.
-
(2003)
Neuron
, vol.38
, pp. 187-199
-
-
Kim, J.E.1
Li, S.2
Grandpre, T.3
-
95
-
-
1542297688
-
Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats
-
Lee YS, Lin CY, Robertson RT et al. Motor recovery and anatomical evidence of axonal regrowth in spinal cord-repaired adult rats. J Neuropathol Exp Neurol 2004; 63:233-245.
-
(2004)
J Neuropathol Exp Neurol
, vol.63
, pp. 233-245
-
-
Lee, Y.S.1
Lin, C.Y.2
Robertson, R.T.3
-
96
-
-
0345227300
-
Delayed grafting ofBDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration
-
Tobias CA, Shumsky JS, Shibata M et al. Delayed grafting ofBDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp NeuroI2003; 184:97-113.
-
(2003)
Exp Neuroi
, vol.184
, pp. 97-113
-
-
Tobias, C.A.1
Shumsky, J.S.2
Shibata, M.3
-
97
-
-
0032703535
-
Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: Differential regulation of GAP-43, tubulins and neurofilament-M
-
Fernandes KJ, Fan DP, Tsui BJ et al. Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins and neurofilament-M. J Comp Neurol 1999; 414:495-510.
-
(1999)
J Comp Neurol
, vol.414
, pp. 495-510
-
-
Fernandes, K.J.1
Fan, D.P.2
Tsui, B.J.3
-
98
-
-
0026014670
-
Response offacial and rubrospinal neurons to axotomy: Changes in mRNA expression for cytoskeletal proteins and GAP-43
-
Tetzlaff W, Alexander SW, Miller FD et al. Response offacial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 1991; 11:2528-2544.
-
(1991)
J Neurosci
, vol.11
, pp. 2528-2544
-
-
Tetzlaff, W.1
Alexander, S.W.2
Miller, F.D.3
-
99
-
-
0024560036
-
Rapid induction of the major embryonic alpha-tubulin mRNA, T alpha I, during nerve regeneration in adult rats
-
Miller FD, Tetzlaff W, Bisby MA et al. Rapid induction of the major embryonic alpha-tubulin mRNA, T alpha I, during nerve regeneration in adult rats. J Neurosci 1989; 9: 1452-1463.
-
(1989)
J Neurosci
, vol.9
, pp. 1452-1463
-
-
Miller, F.D.1
Tetzlaff, W.2
Bisby, M.A.3
-
100
-
-
4644329002
-
Galectin-l expression correlates with the regenerative potential of rubrospinal and spinal motoneurons
-
McGraw J, 0schipok LW, Liu J et al. Galectin-l expression correlates with the regenerative potential of rubrospinal and spinal motoneurons. Neuroscience 2004; 128:713-719.
-
(2004)
Neuroscience
, vol.128
, pp. 713-719
-
-
McGraw, J.1
0Schipok, L.W.2
Liu, J.3
-
101
-
-
0027173147
-
Expression of c-Jun as a response to dorsal root and peripheral nerve section in damaged and adjacent intact primary sensory neurons in the rat
-
Jenkins R, McMahon SB, Bond AB et al. Expression of c-Jun as a response to dorsal root and peripheral nerve section in damaged and adjacent intact primary sensory neurons in the rat. Eur J Neurosci 1993; 5:751-759.
-
(1993)
Eur J Neurosci
, vol.5
, pp. 751-759
-
-
Jenkins, R.1
McMahon, S.B.2
Bond, A.B.3
-
102
-
-
0242299286
-
Treatment of chronically injured spinal cord with neurotrophic factors stimulates betalI-tubulin and GAP-43 expression in rubrospinal tract neurons
-
Storer PD, Dolbeare D, Houle JD. Treatment of chronically injured spinal cord with neurotrophic factors stimulates betalI-tubulin and GAP-43 expression in rubrospinal tract neurons. J Neurosci Res 2003; 74:502-511.
-
(2003)
J Neurosci Res
, vol.74
, pp. 502-511
-
-
Storer, P.D.1
Dolbeare, D.2
Houle, J.D.3
-
103
-
-
9144273965
-
Axoplasmic importins enable retrograde injury signaling in lesioned nerve
-
Hanz S, Perl son E, Willis D et al. Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 2003; 40: I 095-11 04.
-
(2003)
Neuron
, vol.40
, Issue.I
-
-
Hanz, S.1
Perl Son, E.2
Willis, D.3
-
104
-
-
0027232466
-
Injury-associated induction ofGAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons
-
Schreyer DJ, Skene JH. Injury-associated induction ofGAP-43 expression displays axon branch specificity in rat dorsal root ganglion neurons. J Neurobiol 1993; 24:959-970.
-
(1993)
J Neurobiol
, vol.24
, pp. 959-970
-
-
Schreyer, D.J.1
Skene, J.H.2
-
105
-
-
8844263909
-
Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo
-
Gao Y, Deng K, Hou J et al. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 2004; 44:609-621.
-
(2004)
Neuron
, vol.44
, pp. 609-621
-
-
Gao, Y.1
Deng, K.2
Hou, J.3
-
106
-
-
0037444630
-
Macrophage-derived factors stimulate optic nerve regeneration
-
Yin Y, Cui Q, Li Y et al. Macrophage-derived factors stimulate optic nerve regeneration. J Neurosci 2003; 23:2284-2293.
-
(2003)
J Neurosci
, vol.23
, pp. 2284-2293
-
-
Yin, Y.1
Cui, Q.2
Li, Y.3
-
107
-
-
33745712928
-
0ncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells
-
Yin Y, Henzl MT, Lorber B et al. 0ncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci 2006; 9:843-852.
-
(2006)
Nat Neurosci
, vol.9
, pp. 843-852
-
-
Yin, Y.1
Henzl, M.T.2
Lorber, B.3
-
108
-
-
0037083631
-
Small proline-rich repeat protein IA is expressed by axotomized neurons and promotes axonal outgrowth
-
Bonilla IE, Tanabe K, Strittmatter SM. Small proline-rich repeat protein IA is expressed by axotomized neurons and promotes axonal outgrowth. J Neurosci 2002; 22: 1303-1315.
-
(2002)
J Neurosci
, vol.22
, pp. 1303-1315
-
-
Bonilla, I.E.1
Tanabe, K.2
Strittmatter, S.M.3
-
109
-
-
19044374577
-
Early changes in gene expression in the dorsal root ganglia after transection of the sciatic nerve; effects of amphiregulin and PAl-Ion regeneration
-
Nilsson A, Moller K, Dahlin L et al. Early changes in gene expression in the dorsal root ganglia after transection of the sciatic nerve; effects of amphiregulin and PAl-Ion regeneration. Brain Res Mol Brain Res 2005; 136:65-74.
-
(2005)
Brain Res Mol Brain Res
, vol.136
, pp. 65-74
-
-
Nilsson, A.1
Moller, K.2
Dahlin, L.3
-
110
-
-
0142151019
-
Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth
-
Tanabe K, Bonilla I, Winkles JA et al. Fibroblast growth factor-inducible-14 is induced in axotomized neurons and promotes neurite outgrowth. J Neurosci 2003; 23:9675-9686.
-
(2003)
J Neurosci
, vol.23
, pp. 9675-9686
-
-
Tanabe, K.1
Bonilla, I.2
Winkles, J.A.3
-
111
-
-
5444270047
-
Switching mature retinal ganglion cells to a robust growth state in vivo: Gene expression and synergy with RhoA inactivation
-
Fischer D, Petkova V, Thanos S et al. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J Neurosci 2004; 24:8726-8740.
-
(2004)
J Neurosci
, vol.24
, pp. 8726-8740
-
-
Fischer, D.1
Petkova, V.2
Thanos, S.3
-
112
-
-
70349884323
-
KLF family members regulate intrinsic axon regeneration ability
-
Moore DL, Blackmore MG, Hu Y et al. KLF family members regulate intrinsic axon regeneration ability. Science 2009; 326:298-301.
-
(2009)
Science
, vol.326
, pp. 298-301
-
-
Moore, D.L.1
Blackmore, M.G.2
Hu, Y.3
-
113
-
-
3242730442
-
The AP-l transcription factor c-Jun is required for eflicient axonal regeneration
-
Raivich G, Bohatschek M, Da Costa C et al. The AP-l transcription factor c-Jun is required for eflicient axonal regeneration. Neuron 2004; 43:57-67.
-
(2004)
Neuron
, vol.43
, pp. 57-67
-
-
Raivich, G.1
Bohatschek, M.2
da Costa, C.3
-
114
-
-
22144444856
-
A transcriptional role for C/EBP beta in the neuronal response to axonal injury
-
Nadeau S, Hein P, Fernandes KJ et al. A transcriptional role for C/EBP beta in the neuronal response to axonal injury. Mol Cell Neurosci 2005; 29:525-535.
-
(2005)
Mol Cell Neurosci
, vol.29
, pp. 525-535
-
-
Nadeau, S.1
Hein, P.2
Fernandes, K.J.3
-
116
-
-
0033956898
-
Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: Anovel neuronal marker ofnerve injury
-
Tsujino H, Kondo E, Fukuoka T et al. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: Anovel neuronal marker ofnerve injury. Mol Cell Neurosci 2000; 15: 170-182.
-
(2000)
Mol Cell Neurosci
, vol.15
, pp. 170-182
-
-
Tsujino, H.1
Kondo, E.2
Fukuoka, T.3
-
117
-
-
33750921806
-
SRY-box containing gene II (Sox II) transcription factor is required for neuron survival and neurite growth
-
Jankowski MP, Cornuet PK, Mcllwrath S et al. SRY-box containing gene II (Sox II) transcription factor is required for neuron survival and neurite growth. Neuroscience 2006; 143:501-514.
-
(2006)
Neuroscience
, vol.143
, pp. 501-514
-
-
Jankowski, M.P.1
Cornuet, P.K.2
McLlwrath, S.3
-
118
-
-
66749182241
-
Axotomy-induced Smadl activation promotes axonal growth in adult sensory neurons
-
Zou H, Ho C, Wong K et al. Axotomy-induced Smadl activation promotes axonal growth in adult sensory neurons. JNeurosci2009; 29:7116-7123.
-
(2009)
Jneurosci
, vol.29
, pp. 7116-7123
-
-
Zou, H.1
Ho, C.2
Wong, K.3
-
119
-
-
34547484768
-
3 increases the intrinsic growth state ofDRG neurons to enhance peripheral nerve regeneration
-
Seijffers R, Mills CD, WoolfCJ. ATF3 increases the intrinsic growth state ofDRG neurons to enhance peripheral nerve regeneration. J Neurosci 2007; 27:7911-7920.
-
(2007)
J Neurosci
, vol.27
, pp. 7911-7920
-
-
Seijffers, R.1
Mills, C.D.2
Woolfcj, A.T.F.3
-
120
-
-
0035156362
-
Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons
-
Bomze HM, Bulsara KR, Iskandar BJ et al. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons. Nat Neurosci 2001; 4:38-43.
-
(2001)
Nat Neurosci
, vol.4
, pp. 38-43
-
-
Bomze, H.M.1
Bulsara, K.R.2
Iskandar, B.J.3
-
121
-
-
0034652102
-
A role for nuclear PTEN in neuronal differentiation
-
Lachyankar MB, Sultana N, Schonhoff CM et al. A role for nuclear PTEN in neuronal differentiation. J Neurosci 2000; 20: 1404-1413.
-
(2000)
J Neurosci
, vol.20
, pp. 1404-1413
-
-
Lachyankar, M.B.1
Sultana, N.2
Schonhoff, C.M.3
-
122
-
-
1542723390
-
Inhibition of neuronal phenotype by PTEN in PCI2 cells. Proc Nat!
-
Musatov S, Roberts I, Brooks AL et al. Inhibition of neuronal phenotype by PTEN in PCI2 cells. Proc Nat! Acad Sci USA 2004; 101:3627-3631.
-
(2004)
Acad Sci USA
, vol.101
, pp. 3627-3631
-
-
Musatov, S.1
Roberts, I.2
Brooks, A.L.3
-
123
-
-
33645237488
-
PTEN couples Sema3A signalling to growth cone collapse
-
Chadborn NH, Ahmed AI, Holt MR et al. PTEN couples Sema3A signalling to growth cone collapse. J Cell Sci 2006; 119:951-957.
-
(2006)
J Cell Sci
, vol.119
, pp. 951-957
-
-
Chadborn, N.H.1
Ahmed, A.I.2
Holt, M.R.3
-
124
-
-
55849108858
-
Promoting axon regeneration in the adult CNS by modulation of the PTENI mT0R pathway
-
Park KK, Liu K, Hu Y et al. Promoting axon regeneration in the adult CNS by modulation of the PTENI mT0R pathway. Science 2008; 322:963-966.
-
(2008)
Science
, vol.322
, pp. 963-966
-
-
Park, K.K.1
Liu, K.2
Hu, Y.3
-
125
-
-
77956187905
-
PTEN deletion enhances the regenerative ability of adult corticospinal neurons
-
Liu K, Lu Y, Lee JK et al. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 2010; 13:1075-1081.
-
(2010)
Nat Neurosci
, vol.13
, pp. 1075-1081
-
-
Liu, K.1
Lu, Y.2
Lee, J.K.3
-
126
-
-
1442348904
-
The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats
-
Bareyre FM, Kerschensteiner M, Raineteau 0 et al. The injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci 2004; 7:269-277.
-
(2004)
Nat Neurosci
, vol.7
, pp. 269-277
-
-
Bareyre, F.M.1
Kerschensteiner, M.2
-
127
-
-
38049056853
-
Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury
-
Courtine G, Song B, Roy RR et al. Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 2008; 14:69-74.
-
(2008)
Nat Med
, vol.14
, pp. 69-74
-
-
Courtine, G.1
Song, B.2
Roy, R.R.3
-
128
-
-
0020572269
-
Cellular morphology of chronic spinal cord injury in the cat: Analysis of myelinated axons by line-sampling
-
Blight AR. Cellular morphology of chronic spinal cord injury in the cat: analysis of myelinated axons by line-sampling. Neuroscience 1983; 10:521-543.
-
(1983)
Neuroscience
, vol.10
, pp. 521-543
-
-
Blight, A.R.1
-
129
-
-
0033000956
-
Sprouting and regeneration after pyramidotomy and blockade of the myelin-associated neurite growth inhibitors NI 35/250 in adult rats
-
Raineteau O, Z’Graggen WJ, Thallmair M et al. Sprouting and regeneration after pyramidotomy and blockade of the myelin-associated neurite growth inhibitors NI 35/250 in adult rats. Eur.I Neurosci 1999; 11:l486-1490.
-
(1999)
Eur.I Neurosci
, vol.11
, pp. l486-1490
-
-
Raineteau, O.1
Z’Graggen, W.J.2
Thallmair, M.3
-
130
-
-
33646442052
-
Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury
-
Massey.JM, Hubscher CH, Wagoner MR et al. Chondroitinase ABC digestion of the perineuronal net promotes functional collateral sprouting in the cuneate nucleus after cervical spinal cord injury. JNeurosci 2006; 26:4406-4414.
-
(2006)
Jneurosci
, vol.26
, pp. 4406-4414
-
-
Massey, J.M.1
Hubscher, C.H.2
Wagoner, M.R.3
-
131
-
-
33750932815
-
Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury
-
0856-1 0867
-
Barritt AW, Davies M, Marchand F et al. Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury..I Neurosci 2006; 26: I 0856-1 0867.
-
(2006)
I Neurosci
, vol.26
-
-
Barritt, A.W.1
Davies, M.2
Marchand, F.3
-
132
-
-
25844477606
-
Autonomic dysreftexia after spinal cord injury: Central mechanisms and strategies for prevention
-
Weaver LC, Marsh DR, Gris D et al. Autonomic dysreftexia after spinal cord injury: central mechanisms and strategies for prevention. Prog Brain Res 2006; 152:245-263.
-
(2006)
Prog Brain Res
, vol.152
, pp. 245-263
-
-
Weaver, L.C.1
Marsh, D.R.2
Gris, D.3
-
133
-
-
0034660331
-
Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord
-
Romero MI, Rangappa N, Li L et al. Extensive sprouting of sensory afferents and hyperalgesia induced by conditional expression of nerve growth factor in the adult spinal cord..I Neurosci 2000; 20:4435-4445.
-
(2000)
I Neurosci
, vol.20
, pp. 4435-4445
-
-
Romero, M.I.1
Rangappa, N.2
Li, L.3
-
134
-
-
2942558484
-
The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery
-
Nikulina E, Tidwell JL, Dai HN et al. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proc Natl Acad Sci USA 2004; 101:8786-8790.
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 8786-8790
-
-
Nikulina, E.1
Tidwell, J.L.2
Dai, H.N.3
-
135
-
-
33746094328
-
Combining an autologous peripheral nervous system “bridge“ and matrix modification by chondroitinase allows robust, functional regeneration beyond ahemisection lesion of the adult rat spinal cord
-
Houle JD, Tom VJ, Mayes D et al. Combining an autologous peripheral nervous system “bridge“ and matrix modification by chondroitinase allows robust, functional regeneration beyond ahemisection lesion of the adult rat spinal cord..I Neurosci 2006; 26:7405-7415.
-
(2006)
.I Neurosci
, vol.26
, pp. 7405-7415
-
-
Houle, J.D.1
Tom, V.J.2
Mayes, D.3
-
136
-
-
26044476588
-
Performance oflocomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta)
-
Courtine G, Roy RR, Raven J et al. Performance oflocomotion and foot grasping following a unilateral thoracic corticospinal tract lesion in monkeys (Macaca mulatta). Brain 2005; 128:2338-2358.
-
(2005)
Brain
, vol.128
, pp. 2338-2358
-
-
Courtine, G.1
Roy, R.R.2
Raven, J.3
-
137
-
-
33745879440
-
Nogo-A-specific antibody treatment enhances sprouting and fimctional recovery after cervical lesion in adult primates
-
Freund P, Schmidlin E, Wannier T et al. Nogo-A-specific antibody treatment enhances sprouting and fimctional recovery after cervical lesion in adult primates. Nat Med 2006; 12:790-792.
-
(2006)
Nat Med
, vol.12
, pp. 790-792
-
-
Freund, P.1
Schmidlin, E.2
Wannier, T.3
-
138
-
-
77954835104
-
Local and remote growth factor effects after primate spinal cord injury
-
Brock JH, Rosenzweig ES, Blesch A et al. Local and remote growth factor effects after primate spinal cord injury. J Neurosci 2010; 30:9728-9737.
-
(2010)
J Neurosci
, vol.30
, pp. 9728-9737
-
-
Brock, J.H.1
Rosenzweig, E.S.2
Blesch, A.3
|