메뉴 건너뛰기




Volumn 163, Issue 2, 2013, Pages 204-216

Development of microbial cell factories for bio-refinery through synthetic bioengineering

Author keywords

Gene manipulation technique; Metabolic simulation; Metabolome analysis; Saccharomyces cerevisiae; Synthetic bioengineering; Transcriptome analysis

Indexed keywords

ADVANCED TECHNOLOGY; BIOLOGICAL FUNCTIONS; BIOREFINERIES; CELL SURFACE DISPLAYS; CELLULAR PROCESS; COMMODITY CHEMICALS; CURRENT STATUS; DETAILED MODELING; DNA FRAGMENT; EMERGING TECHNOLOGIES; EXPRESSION SYSTEM; FUTURE PROSPECTS; GENE DELETION; GENE MANIPULATION; GLUTATHIONES; LIGNOCELLULOSIC BIOMASS; METABOLIC FUNCTION; METABOLIC PATHWAYS; METABOLIC SIMULATION; METABOLOME ANALYSIS; METABOLOMICS; MICROBIAL CELLS; MICROBIAL STRAIN; NOVEL FUNCTIONS; PROTEIN ENGINEERING; STRAIN DEVELOPMENT; TRANSCRIPTOME ANALYSIS; TRANSCRIPTOMICS; YEAST METABOLISM; YEAST SACCHAROMYCES CEREVISIAE;

EID: 84872189552     PISSN: 01681656     EISSN: 18734863     Source Type: Journal    
DOI: 10.1016/j.jbiotec.2012.05.021     Document Type: Article
Times cited : (52)

References (174)
  • 2
    • 0027551942 scopus 로고
    • Fuzzy control of ethanol concentration its application to maximum glutathione production in yeast fed-batch culture
    • Alfafara C.G., Miura K., Shimizu H., Shioya S., Suga K., Suzuki K. Fuzzy control of ethanol concentration its application to maximum glutathione production in yeast fed-batch culture. Biotechnology and Bioengineering 1993, 41:493-501.
    • (1993) Biotechnology and Bioengineering , vol.41 , pp. 493-501
    • Alfafara, C.G.1    Miura, K.2    Shimizu, H.3    Shioya, S.4    Suga, K.5    Suzuki, K.6
  • 5
    • 70449592325 scopus 로고    scopus 로고
    • Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering
    • Asadollahi M.A., Maury J., Patil K.R., Schalk M., Clark A., Nielsen J. Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. Metabolic Engineering 2009, 11:328-334.
    • (2009) Metabolic Engineering , vol.11 , pp. 328-334
    • Asadollahi, M.A.1    Maury, J.2    Patil, K.R.3    Schalk, M.4    Clark, A.5    Nielsen, J.6
  • 7
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Atsumi S., Hanai T., Liao J.C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89.
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 8
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • Atsumi S., Higashide W., Liao J.C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnology 2009, 27:1177-1180.
    • (2009) Nature Biotechnology , vol.27 , pp. 1177-1180
    • Atsumi, S.1    Higashide, W.2    Liao, J.C.3
  • 11
    • 79955164750 scopus 로고    scopus 로고
    • Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli
    • Bastian S., Liu X., Meyerowitz J.T., Snow C.D., Chen M.M., Arnold F.H. Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metabolic Engineering 2011, 13:345-352.
    • (2011) Metabolic Engineering , vol.13 , pp. 345-352
    • Bastian, S.1    Liu, X.2    Meyerowitz, J.T.3    Snow, C.D.4    Chen, M.M.5    Arnold, F.H.6
  • 13
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288 C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Brachmann C.B., Davies A., Cost G.J., Caputo E., Li J., Hieter P., Boeke J.D. Designer deletion strains derived from Saccharomyces cerevisiae S288 C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 1998, 14:115-132.
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.5    Hieter, P.6    Boeke, J.D.7
  • 14
    • 33644832381 scopus 로고    scopus 로고
    • In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production
    • Bro C., Regenberg B., Forster J., Nielsen J. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metabolic Engineering 2006, 8:102-111.
    • (2006) Metabolic Engineering , vol.8 , pp. 102-111
    • Bro, C.1    Regenberg, B.2    Forster, J.3    Nielsen, J.4
  • 15
    • 80053178761 scopus 로고    scopus 로고
    • An intuitive graphical visualization technique for the interrogation of transcriptome data
    • Bushati N., Smith J., Briscoe J., Watkins C. An intuitive graphical visualization technique for the interrogation of transcriptome data. Nucleic Acids Research 2011, 39:7380-7389.
    • (2011) Nucleic Acids Research , vol.39 , pp. 7380-7389
    • Bushati, N.1    Smith, J.2    Briscoe, J.3    Watkins, C.4
  • 17
  • 20
    • 67649771820 scopus 로고    scopus 로고
    • Microbial production of advanced transportation fuels in non-natural hosts
    • Connor M.R., Liao J.C. Microbial production of advanced transportation fuels in non-natural hosts. Current Opinion in Biotechnology 2009, 20:307-315.
    • (2009) Current Opinion in Biotechnology , vol.20 , pp. 307-315
    • Connor, M.R.1    Liao, J.C.2
  • 22
    • 5444251009 scopus 로고    scopus 로고
    • DNA microarrays: experimental issues, data analysis, and application to bacterial systems
    • Dharmadi Y., Gonzalez R. DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnology Progress 2004, 20:1309-1324.
    • (2004) Biotechnology Progress , vol.20 , pp. 1309-1324
    • Dharmadi, Y.1    Gonzalez, R.2
  • 23
    • 0032475934 scopus 로고    scopus 로고
    • An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae
    • Dickinson J.R., Harrison S.J., Hewlins M.J. An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae. Journal of Biological Chemistry 1998, 273:25751-25756.
    • (1998) Journal of Biological Chemistry , vol.273 , pp. 25751-25756
    • Dickinson, J.R.1    Harrison, S.J.2    Hewlins, M.J.3
  • 26
    • 3843128481 scopus 로고    scopus 로고
    • Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
    • Duarte N.C., Herrgard M.J., Palsson B.O. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Research 2004, 14:1298-1309.
    • (2004) Genome Research , vol.14 , pp. 1298-1309
    • Duarte, N.C.1    Herrgard, M.J.2    Palsson, B.O.3
  • 27
    • 80053085575 scopus 로고    scopus 로고
    • Sample preparation related to the intracellular metabolome of yeast methods for quenching, extraction, and metabolite quantitation
    • Dunn W.B., Winder C.L. Sample preparation related to the intracellular metabolome of yeast methods for quenching, extraction, and metabolite quantitation. Methods in Enzymology 2011, 500:277-297.
    • (2011) Methods in Enzymology , vol.500 , pp. 277-297
    • Dunn, W.B.1    Winder, C.L.2
  • 29
    • 77952163407 scopus 로고    scopus 로고
    • Dicistronic regulation of fluorescent proteins in the budding yeast Saccharomyces cerevisiae
    • Edwards S.R., Wandless T.J. Dicistronic regulation of fluorescent proteins in the budding yeast Saccharomyces cerevisiae. Yeast 2010, 27:229-236.
    • (2010) Yeast , vol.27 , pp. 229-236
    • Edwards, S.R.1    Wandless, T.J.2
  • 30
    • 66149122635 scopus 로고    scopus 로고
    • High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format
    • Ewald J.C., Heux S., Zamboni N. High-throughput quantitative metabolomics: workflow for cultivation, quenching, and analysis of yeast in a multiwell format. Analytical Chemistry 2009, 81:3623-3629.
    • (2009) Analytical Chemistry , vol.81 , pp. 3623-3629
    • Ewald, J.C.1    Heux, S.2    Zamboni, N.3
  • 35
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Forster J., Famili I., Fu P., Palsson B.O., Nielsen J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Research 2003, 13:244-253.
    • (2003) Genome Research , vol.13 , pp. 244-253
    • Forster, J.1    Famili, I.2    Fu, P.3    Palsson, B.O.4    Nielsen, J.5
  • 36
    • 84858748257 scopus 로고    scopus 로고
    • Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
    • Fujitomi K., Sanda T., Hasunuma T., Kondo A. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresource Technology 2012, 111:161-166.
    • (2012) Bioresource Technology , vol.111 , pp. 161-166
    • Fujitomi, K.1    Sanda, T.2    Hasunuma, T.3    Kondo, A.4
  • 37
    • 0033564568 scopus 로고    scopus 로고
    • In vivo construction of cDNA libraries for use in the yeast two-hybrid system
    • Fusco C., Guidotti E., Zervos A.S. In vivo construction of cDNA libraries for use in the yeast two-hybrid system. Yeast 1999, 15:715-720.
    • (1999) Yeast , vol.15 , pp. 715-720
    • Fusco, C.1    Guidotti, E.2    Zervos, A.S.3
  • 38
    • 34249013063 scopus 로고    scopus 로고
    • The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae
    • Ganguli D., Kumar C., Bachhawat A.K. The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae. Genetics 2007, 175:1137-1151.
    • (2007) Genetics , vol.175 , pp. 1137-1151
    • Ganguli, D.1    Kumar, C.2    Bachhawat, A.K.3
  • 39
    • 80455156250 scopus 로고    scopus 로고
    • Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae
    • Ghosh A., Zhao H., Price N.D. Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. PLoS ONE 2011, 6:e27316.
    • (2011) PLoS ONE , vol.6
    • Ghosh, A.1    Zhao, H.2    Price, N.D.3
  • 42
    • 29044444888 scopus 로고    scopus 로고
    • Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains
    • Grotkjaer T., Christakopoulos P., Nielsen J., Olsson L. Comparative metabolic network analysis of two xylose fermenting recombinant Saccharomyces cerevisiae strains. Metabolic Engineering 2005, 7:437-444.
    • (2005) Metabolic Engineering , vol.7 , pp. 437-444
    • Grotkjaer, T.1    Christakopoulos, P.2    Nielsen, J.3    Olsson, L.4
  • 46
    • 84863848076 scopus 로고    scopus 로고
    • Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae
    • Hara K.Y., Kiriyama K., Inagaki A., Nakayama H., Kondo A. Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2012, 94:1313-1319.
    • (2012) Applied Microbiology and Biotechnology , vol.94 , pp. 1313-1319
    • Hara, K.Y.1    Kiriyama, K.2    Inagaki, A.3    Nakayama, H.4    Kondo, A.5
  • 47
    • 84860288348 scopus 로고    scopus 로고
    • An energy-saving glutathione production method from low-temperature cooked rice using amylase-expressing Saccharomyces cerevisiae
    • Hara K.Y., Kim S., Kiriyama K., Yoshida H., Arai S., Ishii J., Ogino C., Fukuda H., Kondo A. An energy-saving glutathione production method from low-temperature cooked rice using amylase-expressing Saccharomyces cerevisiae. Biotechnology Journal 2012, 7:686-689.
    • (2012) Biotechnology Journal , vol.7 , pp. 686-689
    • Hara, K.Y.1    Kim, S.2    Kiriyama, K.3    Yoshida, H.4    Arai, S.5    Ishii, J.6    Ogino, C.7    Fukuda, H.8    Kondo, A.9
  • 48
    • 34547152263 scopus 로고    scopus 로고
    • Efficient multicistronic expression of a transgene in human embryonic stem cells
    • Hasegawa K., Cowan A.B., Nakatsuji N., Suemori H. Efficient multicistronic expression of a transgene in human embryonic stem cells. Stem Cells 2007, 25:1707-1712.
    • (2007) Stem Cells , vol.25 , pp. 1707-1712
    • Hasegawa, K.1    Cowan, A.B.2    Nakatsuji, N.3    Suemori, H.4
  • 49
    • 84857236104 scopus 로고    scopus 로고
    • Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
    • Hasunuma T., Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnology Advances 2011.
    • (2011) Biotechnology Advances
    • Hasunuma, T.1    Kondo, A.2
  • 50
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T., Sanda T., Yamada R., Yoshimura K., Ishii J., Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microbial Cell Factories 2011, 10:2.
    • (2011) Microbial Cell Factories , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 51
    • 79954706261 scopus 로고    scopus 로고
    • Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae
    • Hasunuma T., Sung K.M., Sanda T., Yoshimura K., Matsuda F., Kondo A. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2011, 90:997-1004.
    • (2011) Applied Microbiology and Biotechnology , vol.90 , pp. 997-1004
    • Hasunuma, T.1    Sung, K.M.2    Sanda, T.3    Yoshimura, K.4    Matsuda, F.5    Kondo, A.6
  • 53
    • 73249132552 scopus 로고    scopus 로고
    • Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases
    • Heer D., Heine D., Sauer U. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Applied and Environment Microbiology 2009, 75:7631-7638.
    • (2009) Applied and Environment Microbiology , vol.75 , pp. 7631-7638
    • Heer, D.1    Heine, D.2    Sauer, U.3
  • 55
    • 79955611428 scopus 로고    scopus 로고
    • Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose
    • Higashide W., Li Y., Yang Y., Liao J.C. Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Applied and Environment Microbiology 2011, 77:2727-2733.
    • (2011) Applied and Environment Microbiology , vol.77 , pp. 2727-2733
    • Higashide, W.1    Li, Y.2    Yang, Y.3    Liao, J.C.4
  • 57
    • 77953081255 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology?
    • Hirasawa T., Furusawa C., Shimizu H. Saccharomyces cerevisiae and DNA microarray analyses: what did we learn from it for a better understanding and exploitation of yeast biotechnology?. Applied Microbiology and Biotechnology 2010, 87:391-400.
    • (2010) Applied Microbiology and Biotechnology , vol.87 , pp. 391-400
    • Hirasawa, T.1    Furusawa, C.2    Shimizu, H.3
  • 59
    • 34447620451 scopus 로고    scopus 로고
    • Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae
    • Hou J., Shen Y., Li X.P., Bao X.M. Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Letters in Applied Microbiology 2007, 45:184-189.
    • (2007) Letters in Applied Microbiology , vol.45 , pp. 184-189
    • Hou, J.1    Shen, Y.2    Li, X.P.3    Bao, X.M.4
  • 61
    • 77953707787 scopus 로고    scopus 로고
    • Control of signalling properties of human somatostatin receptor subtype-5 by additional signal sequences on its amino-terminus in yeast
    • Iguchi Y., Ishii J., Nakayama H., Ishikura A., Izawa K., Tanaka T., Ogino C., Kondo A. Control of signalling properties of human somatostatin receptor subtype-5 by additional signal sequences on its amino-terminus in yeast. Journal of Biochemistry 2010, 147:875-884.
    • (2010) Journal of Biochemistry , vol.147 , pp. 875-884
    • Iguchi, Y.1    Ishii, J.2    Nakayama, H.3    Ishikura, A.4    Izawa, K.5    Tanaka, T.6    Ogino, C.7    Kondo, A.8
  • 62
    • 33644956334 scopus 로고    scopus 로고
    • Highly efficient yeast-based in vivo DNA cloning of multiple DNA fragments and the simultaneous construction of yeast/Escherichia coli shuttle vectors
    • Iizasa E., Nagano Y. Highly efficient yeast-based in vivo DNA cloning of multiple DNA fragments and the simultaneous construction of yeast/Escherichia coli shuttle vectors. Biotechniques 2006, 40:79-83.
    • (2006) Biotechniques , vol.40 , pp. 79-83
    • Iizasa, E.1    Nagano, Y.2
  • 65
    • 79957476633 scopus 로고    scopus 로고
    • Construction and manipulation of giant DNA by a genome vector
    • Itaya M., Tsuge K. Construction and manipulation of giant DNA by a genome vector. Methods in Enzymology 2011, 498:427-447.
    • (2011) Methods in Enzymology , vol.498 , pp. 427-447
    • Itaya, M.1    Tsuge, K.2
  • 66
    • 29144502422 scopus 로고    scopus 로고
    • Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach
    • Jin Y.S., Alper H., Yang Y.T., Stephanopoulos G. Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Applied and Environment Microbiology 2005, 71:8249-8256.
    • (2005) Applied and Environment Microbiology , vol.71 , pp. 8249-8256
    • Jin, Y.S.1    Alper, H.2    Yang, Y.T.3    Stephanopoulos, G.4
  • 67
    • 3242658291 scopus 로고    scopus 로고
    • Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae
    • Jin Y.S., Jeffries T.W. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metabolic Engineering 2004, 6:229-238.
    • (2004) Metabolic Engineering , vol.6 , pp. 229-238
    • Jin, Y.S.1    Jeffries, T.W.2
  • 68
    • 0036053504 scopus 로고    scopus 로고
    • The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001
    • Johansson B., Hahn-Hagerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Research 2002, 2:277-282.
    • (2002) FEMS Yeast Research , vol.2 , pp. 277-282
    • Johansson, B.1    Hahn-Hagerdal, B.2
  • 69
    • 0036187741 scopus 로고    scopus 로고
    • Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae
    • Johansson B., Hahn-Hagerdal B. Overproduction of pentose phosphate pathway enzymes using a new CRE-loxP expression vector for repeated genomic integration in Saccharomyces cerevisiae. Yeast 2002, 19:225-231.
    • (2002) Yeast , vol.19 , pp. 225-231
    • Johansson, B.1    Hahn-Hagerdal, B.2
  • 71
    • 77953700833 scopus 로고    scopus 로고
    • Designed horizontal transfer of stable giant DNA released from Escherichia coli
    • Kaneko S., Itaya M. Designed horizontal transfer of stable giant DNA released from Escherichia coli. Journal of Biochemistry 2010, 147:819-822.
    • (2010) Journal of Biochemistry , vol.147 , pp. 819-822
    • Kaneko, S.1    Itaya, M.2
  • 72
    • 33845807902 scopus 로고    scopus 로고
    • High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K., Fromanger R., Hahn-Hagerdal B., Gorwa-Grauslund M.F. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2007, 73:1039-1046.
    • (2007) Applied Microbiology and Biotechnology , vol.73 , pp. 1039-1046
    • Karhumaa, K.1    Fromanger, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 73
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K., Garcia Sanchez R., Hahn-Hagerdal B., Gorwa-Grauslund M.F. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microbial Cell Factories 2007, 6:5.
    • (2007) Microbial Cell Factories , vol.6 , pp. 5
    • Karhumaa, K.1    Garcia Sanchez, R.2    Hahn-Hagerdal, B.3    Gorwa-Grauslund, M.F.4
  • 74
    • 44449171842 scopus 로고    scopus 로고
    • Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via exression of glucose transporter Sut1
    • Katahira S., Ito M., Takema H., Fujita Y., Tanino T., Tanaka T., Fukuda H., Kondo A. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via exression of glucose transporter Sut1. Enzyme and Microbial Technology 2008, 43:115-119.
    • (2008) Enzyme and Microbial Technology , vol.43 , pp. 115-119
    • Katahira, S.1    Ito, M.2    Takema, H.3    Fujita, Y.4    Tanino, T.5    Tanaka, T.6    Fukuda, H.7    Kondo, A.8
  • 76
    • 78649716727 scopus 로고    scopus 로고
    • Manufacturing molecules through metabolic engineering
    • Keasling J.D. Manufacturing molecules through metabolic engineering. Science 2010, 330:1355-1358.
    • (2010) Science , vol.330 , pp. 1355-1358
    • Keasling, J.D.1
  • 77
    • 70350443611 scopus 로고    scopus 로고
    • Systems-level engineering of nonfermentative metabolism in yeast
    • Kennedy C.J., Boyle P.M., Waks Z., Silver P.A. Systems-level engineering of nonfermentative metabolism in yeast. Genetics 2009, 183:385-397.
    • (2009) Genetics , vol.183 , pp. 385-397
    • Kennedy, C.J.1    Boyle, P.M.2    Waks, Z.3    Silver, P.A.4
  • 78
    • 84857058761 scopus 로고    scopus 로고
    • A systems-level approach for metabolic engineering of yeast cell factories
    • Kim I.K., Roldao A., Siewers V., Nielsen J. A systems-level approach for metabolic engineering of yeast cell factories. FEMS Yeast Research 2012, 12:228-248.
    • (2012) FEMS Yeast Research , vol.12 , pp. 228-248
    • Kim, I.K.1    Roldao, A.2    Siewers, V.3    Nielsen, J.4
  • 79
    • 78149408574 scopus 로고    scopus 로고
    • Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass
    • Kim J.H., Block D.E., Mills D.A. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Applied Microbiology and Biotechnology 2010, 88:1077-1085.
    • (2010) Applied Microbiology and Biotechnology , vol.88 , pp. 1077-1085
    • Kim, J.H.1    Block, D.E.2    Mills, D.A.3
  • 81
    • 78649701348 scopus 로고    scopus 로고
    • Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis
    • Klimacek M., Krahulec S., Sauer U., Nidetzky B. Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Applied and Environment Microbiology 2010, 76:7566-7574.
    • (2010) Applied and Environment Microbiology , vol.76 , pp. 7566-7574
    • Klimacek, M.1    Krahulec, S.2    Sauer, U.3    Nidetzky, B.4
  • 83
    • 84859499726 scopus 로고    scopus 로고
    • Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae
    • Kondo T., Tezuka H., Ishii J., Matsuda F., Ogino C., Kondo A. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. Journal of Biotechnology 2012, 159:32-37.
    • (2012) Journal of Biotechnology , vol.159 , pp. 32-37
    • Kondo, T.1    Tezuka, H.2    Ishii, J.3    Matsuda, F.4    Ogino, C.5    Kondo, A.6
  • 84
    • 77949451258 scopus 로고    scopus 로고
    • Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization
    • Krahulec S., Petschacher B., Wallner M., Longus K., Klimacek M., Nidetzky B. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microbial Cell Factories 2010, 9:16.
    • (2010) Microbial Cell Factories , vol.9 , pp. 16
    • Krahulec, S.1    Petschacher, B.2    Wallner, M.3    Longus, K.4    Klimacek, M.5    Nidetzky, B.6
  • 85
    • 79952123299 scopus 로고    scopus 로고
    • Opportunities for yeast metabolic engineering: lessons from synthetic biology
    • Krivoruchko A., Siewers V., Nielsen J. Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnology Journal 2011, 6:262-276.
    • (2011) Biotechnology Journal , vol.6 , pp. 262-276
    • Krivoruchko, A.1    Siewers, V.2    Nielsen, J.3
  • 88
    • 77952876202 scopus 로고    scopus 로고
    • Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
    • Li B.Z., Yuan Y.J. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2010, 86:1915-1924.
    • (2010) Applied Microbiology and Biotechnology , vol.86 , pp. 1915-1924
    • Li, B.Z.1    Yuan, Y.J.2
  • 90
    • 38649127524 scopus 로고    scopus 로고
    • Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing
    • Liang L., Zhang J., Lin Z. Altering coenzyme specificity of Pichia stipitis xylose reductase by the semi-rational approach CASTing. Microbial Cell Factories 2007, 6:36.
    • (2007) Microbial Cell Factories , vol.6 , pp. 36
    • Liang, L.1    Zhang, J.2    Lin, Z.3
  • 91
    • 69249214122 scopus 로고    scopus 로고
    • Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways
    • Liu Z.L., Ma M., Song M. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways. Molecular Genetics and Genomics 2009, 282:233-244.
    • (2009) Molecular Genetics and Genomics , vol.282 , pp. 233-244
    • Liu, Z.L.1    Ma, M.2    Song, M.3
  • 92
    • 79551524281 scopus 로고    scopus 로고
    • Comprehensive identification and quantification of microbial transcriptomes by genome-wide unbiased methods
    • Mader U., Nicolas P., Richard H., Bessieres P., Aymerich S. Comprehensive identification and quantification of microbial transcriptomes by genome-wide unbiased methods. Current Opinion in Biotechnology 2011, 22:32-41.
    • (2011) Current Opinion in Biotechnology , vol.22 , pp. 32-41
    • Mader, U.1    Nicolas, P.2    Richard, H.3    Bessieres, P.4    Aymerich, S.5
  • 93
  • 94
    • 33846667838 scopus 로고    scopus 로고
    • Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors
    • Martin C., Marcet M., Almazan O., Jonsson L.J. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresource Technology 2007, 98:1767-1773.
    • (2007) Bioresource Technology , vol.98 , pp. 1767-1773
    • Martin, C.1    Marcet, M.2    Almazan, O.3    Jonsson, L.J.4
  • 96
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • Matsushika A., Inoue H., Kodaki T., Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Applied Microbiology and Biotechnology 2009, 84:37-53.
    • (2009) Applied Microbiology and Biotechnology , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 97
    • 79955524639 scopus 로고    scopus 로고
    • Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase
    • Matsushika A., Sawayama S. Comparative study on a series of recombinant flocculent Saccharomyces cerevisiae strains with different expression levels of xylose reductase and xylulokinase. Enzyme and Microbial Technology 2011, 48:466-471.
    • (2011) Enzyme and Microbial Technology , vol.48 , pp. 466-471
    • Matsushika, A.1    Sawayama, S.2
  • 98
    • 41549099536 scopus 로고    scopus 로고
    • Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase
    • Matsushika A., Watanabe S., Kodaki T., Makino K., Sawayama S. Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP(+)-dependent xylitol dehydrogenase, and xylulokinase. Journal of Bioscience and Bioengineering 2008, 105:296-299.
    • (2008) Journal of Bioscience and Bioengineering , vol.105 , pp. 296-299
    • Matsushika, A.1    Watanabe, S.2    Kodaki, T.3    Makino, K.4    Sawayama, S.5
  • 99
    • 0035504267 scopus 로고    scopus 로고
    • Gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione
    • Mehdi K., Thierie J., Penninckx M.J. gamma-Glutamyl transpeptidase in the yeast Saccharomyces cerevisiae and its role in the vacuolar transport and metabolism of glutathione. Biochemical Journal 2001, 359:631-637.
    • (2001) Biochemical Journal , vol.359 , pp. 631-637
    • Mehdi, K.1    Thierie, J.2    Penninckx, M.J.3
  • 101
    • 77958135565 scopus 로고    scopus 로고
    • Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid
    • Mira N.P., Palma M., Guerreiro J.F., Sa-Correia I. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microbial Cell Factories 2010, 9:79.
    • (2010) Microbial Cell Factories , vol.9 , pp. 79
    • Mira, N.P.1    Palma, M.2    Guerreiro, J.F.3    Sa-Correia, I.4
  • 103
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast
    • Mo M.L., Palsson B.O., Herrgard M.J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Systems Biology 2009, 3:37.
    • (2009) BMC Systems Biology , vol.3 , pp. 37
    • Mo, M.L.1    Palsson, B.O.2    Herrgard, M.J.3
  • 104
    • 6044273857 scopus 로고    scopus 로고
    • Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments
    • Moreira dos Santos M., Raghevendran V., Kotter P., Olsson L., Nielsen J. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments. Metabolic Engineering 2004, 6:352-363.
    • (2004) Metabolic Engineering , vol.6 , pp. 352-363
    • Moreira dos Santos, M.1    Raghevendran, V.2    Kotter, P.3    Olsson, L.4    Nielsen, J.5
  • 105
    • 0024638464 scopus 로고
    • Yeast YAP1 encodes a novel form of the jun family of transcriptional activator proteins
    • Moye-Rowley W.S., Harshman K.D., Parker C.S. Yeast YAP1 encodes a novel form of the jun family of transcriptional activator proteins. Genes and Development 1989, 3:283-292.
    • (1989) Genes and Development , vol.3 , pp. 283-292
    • Moye-Rowley, W.S.1    Harshman, K.D.2    Parker, C.S.3
  • 106
    • 0028953840 scopus 로고
    • Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds
    • Mumberg D., Muller R., Funk M. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 1995, 156:119-122.
    • (1995) Gene , vol.156 , pp. 119-122
    • Mumberg, D.1    Muller, R.2    Funk, M.3
  • 108
    • 77952915373 scopus 로고    scopus 로고
    • Construction and optimization of synthetic pathways in metabolic engineering
    • Na D., Kim T.Y., Lee S.Y. Construction and optimization of synthetic pathways in metabolic engineering. Current Opinion in Microbiology 2010, 13:363-370.
    • (2010) Current Opinion in Microbiology , vol.13 , pp. 363-370
    • Na, D.1    Kim, T.Y.2    Lee, S.Y.3
  • 109
    • 51949107835 scopus 로고    scopus 로고
    • Progress in metabolic engineering of Saccharomyces cerevisiae
    • Nevoigt E. Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews 2008, 72:379-412.
    • (2008) Microbiology and Molecular Biology Reviews , vol.72 , pp. 379-412
    • Nevoigt, E.1
  • 111
    • 38349164135 scopus 로고    scopus 로고
    • Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae
    • Nielsen J., Jewett M.C. Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae. FEMS Yeast Research 2008, 8:122-131.
    • (2008) FEMS Yeast Research , vol.8 , pp. 122-131
    • Nielsen, J.1    Jewett, M.C.2
  • 118
    • 55849117368 scopus 로고    scopus 로고
    • Generation of mouse induced pluripotent stem cells without viral vectors
    • Okita K., Nakagawa M., Hyenjong H., Ichisaka T., Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008, 322:949-953.
    • (2008) Science , vol.322 , pp. 949-953
    • Okita, K.1    Nakagawa, M.2    Hyenjong, H.3    Ichisaka, T.4    Yamanaka, S.5
  • 120
    • 84864932596 scopus 로고    scopus 로고
    • Fifteen years of large scale metabolic modeling of yeast: developments and impacts
    • in press.
    • Osterlund, T., Nookaew, I., Nielsen, J., 2012. Fifteen years of large scale metabolic modeling of yeast: developments and impacts. Biotechnology Advances, in press.
    • (2012) Biotechnology Advances
    • Osterlund, T.1    Nookaew, I.2    Nielsen, J.3
  • 122
    • 80052037221 scopus 로고    scopus 로고
    • Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae
    • Parachin N.S., Bergdahl B., van Niel E.W., Gorwa-Grauslund M.F. Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metabolic Engineering 2011, 13:508-517.
    • (2011) Metabolic Engineering , vol.13 , pp. 508-517
    • Parachin, N.S.1    Bergdahl, B.2    van Niel, E.W.3    Gorwa-Grauslund, M.F.4
  • 123
    • 0034213330 scopus 로고    scopus 로고
    • A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses
    • Penninckx M. A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme and Microbial Technology 2000, 26:737-742.
    • (2000) Enzyme and Microbial Technology , vol.26 , pp. 737-742
    • Penninckx, M.1
  • 124
    • 0038514106 scopus 로고    scopus 로고
    • Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture
    • Pitkanen J.P., Aristidou A., Salusjarvi L., Ruohonen L., Penttila M. Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metabolic Engineering 2003, 5:16-31.
    • (2003) Metabolic Engineering , vol.5 , pp. 16-31
    • Pitkanen, J.P.1    Aristidou, A.2    Salusjarvi, L.3    Ruohonen, L.4    Penttila, M.5
  • 125
    • 0036231116 scopus 로고    scopus 로고
    • Oxidant stress induces gamma-glutamylcysteine synthetase and glutathione synthesis in human bronchial epithelial NCI-H292 cells
    • Ray S., Watkins D.N., Misso N.L., Thompson P.J. Oxidant stress induces gamma-glutamylcysteine synthetase and glutathione synthesis in human bronchial epithelial NCI-H292 cells. Clinical and Experimental Allergy 2002, 32:571-577.
    • (2002) Clinical and Experimental Allergy , vol.32 , pp. 571-577
    • Ray, S.1    Watkins, D.N.2    Misso, N.L.3    Thompson, P.J.4
  • 129
    • 0037079931 scopus 로고    scopus 로고
    • Additive toxicity of limonene and 50% oxygen and the role of glutathione in detoxification in human lung cells
    • Rolseth V., Djurhuus R., Svardal A.M. Additive toxicity of limonene and 50% oxygen and the role of glutathione in detoxification in human lung cells. Toxicology 2002, 170:75-88.
    • (2002) Toxicology , vol.170 , pp. 75-88
    • Rolseth, V.1    Djurhuus, R.2    Svardal, A.M.3
  • 130
    • 58549084602 scopus 로고    scopus 로고
    • Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae
    • Runquist D., Fonseca C., Radstrom P., Spencer-Martins I., Hahn-Hagerdal B. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 2009, 82:123-130.
    • (2009) Applied Microbiology and Biotechnology , vol.82 , pp. 123-130
    • Runquist, D.1    Fonseca, C.2    Radstrom, P.3    Spencer-Martins, I.4    Hahn-Hagerdal, B.5
  • 131
    • 77951127992 scopus 로고    scopus 로고
    • Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
    • Runquist D., Hahn-Hagerdal B., Radstrom P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels 2010, 3:5.
    • (2010) Biotechnology for Biofuels , vol.3 , pp. 5
    • Runquist, D.1    Hahn-Hagerdal, B.2    Radstrom, P.3
  • 132
    • 37849020436 scopus 로고    scopus 로고
    • Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'
    • Saito K., Hirai M.Y., Yonekura-Sakakibara K. Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'. Trends in Plant Science 2008, 13:36-43.
    • (2008) Trends in Plant Science , vol.13 , pp. 36-43
    • Saito, K.1    Hirai, M.Y.2    Yonekura-Sakakibara, K.3
  • 133
    • 77951880802 scopus 로고    scopus 로고
    • Metabolomics for functional genomics, systems biology, and biotechnology
    • Saito K., Matsuda F. Metabolomics for functional genomics, systems biology, and biotechnology. Annual Review of Plant Biology 2010, 61:463-489.
    • (2010) Annual Review of Plant Biology , vol.61 , pp. 463-489
    • Saito, K.1    Matsuda, F.2
  • 134
    • 0025088739 scopus 로고
    • Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotransposon Ty
    • Sakai A., Shimizu Y., Hishinuma F. Integration of heterologous genes into the chromosome of Saccharomyces cerevisiae using a delta sequence of yeast retrotransposon Ty. Applied Microbiology and Biotechnology 1990, 33:302-306.
    • (1990) Applied Microbiology and Biotechnology , vol.33 , pp. 302-306
    • Sakai, A.1    Shimizu, Y.2    Hishinuma, F.3
  • 135
    • 33947192191 scopus 로고    scopus 로고
    • Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases
    • Saloheimo A., Rauta J., Stasyk O.V., Sibirny A.A., Penttila M., Ruohonen L. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Applied Microbiology and Biotechnology 2007, 74:1041-1052.
    • (2007) Applied Microbiology and Biotechnology , vol.74 , pp. 1041-1052
    • Saloheimo, A.1    Rauta, J.2    Stasyk, O.V.3    Sibirny, A.A.4    Penttila, M.5    Ruohonen, L.6
  • 136
    • 66149134426 scopus 로고    scopus 로고
    • Metabolic regulation and overproduction of primary metabolites
    • Sanchez S., Demain A.L. Metabolic regulation and overproduction of primary metabolites. Microbial Biotechnology 2008, 1:283-319.
    • (2008) Microbial Biotechnology , vol.1 , pp. 283-319
    • Sanchez, S.1    Demain, A.L.2
  • 137
    • 67651111980 scopus 로고    scopus 로고
    • Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase
    • Sawada Y., Kuwahara A., Nagano M., Narisawa T., Sakata A., Saito K., Hirai M.Y. Omics-based approaches to methionine side chain elongation in Arabidopsis: characterization of the genes encoding methylthioalkylmalate isomerase and methylthioalkylmalate dehydrogenase. Plant and Cell Physiology 2009, 50:1181-1190.
    • (2009) Plant and Cell Physiology , vol.50 , pp. 1181-1190
    • Sawada, Y.1    Kuwahara, A.2    Nagano, M.3    Narisawa, T.4    Sakata, A.5    Saito, K.6    Hirai, M.Y.7
  • 138
    • 33746083686 scopus 로고    scopus 로고
    • Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis
    • Schwartz J.M., Kanehisa M. Quantitative elementary mode analysis of metabolic pathways: the example of yeast glycolysis. BMC Bioinformatics 2006, 7:186.
    • (2006) BMC Bioinformatics , vol.7 , pp. 186
    • Schwartz, J.M.1    Kanehisa, M.2
  • 141
    • 54349114978 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways
    • Shen C.R., Liao J.C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metabolic Engineering 2008, 10:312-320.
    • (2008) Metabolic Engineering , vol.10 , pp. 312-320
    • Shen, C.R.1    Liao, J.C.2
  • 143
    • 0024669291 scopus 로고
    • A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae
    • Sikorski R.S., Hieter P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989, 122:19-27.
    • (1989) Genetics , vol.122 , pp. 19-27
    • Sikorski, R.S.1    Hieter, P.2
  • 145
    • 13244262861 scopus 로고    scopus 로고
    • Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics
    • Smedsgaard J., Nielsen J. Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. Journal of Experimental Botany 2005, 56:273-286.
    • (2005) Journal of Experimental Botany , vol.56 , pp. 273-286
    • Smedsgaard, J.1    Nielsen, J.2
  • 149
    • 0034903337 scopus 로고    scopus 로고
    • In vivo site-directed mutagenesis using oligonucleotides
    • Storici F., Lewis L.K., Resnick M.A. In vivo site-directed mutagenesis using oligonucleotides. Nature Biotechnology 2001, 19:773-776.
    • (2001) Nature Biotechnology , vol.19 , pp. 773-776
    • Storici, F.1    Lewis, L.K.2    Resnick, M.A.3
  • 153
    • 0026546494 scopus 로고
    • MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae
    • Thomas D., Jacquemin I., Surdin-Kerjan Y. MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Molecular and Cellular Biology 1992, 12:1719-1727.
    • (1992) Molecular and Cellular Biology , vol.12 , pp. 1719-1727
    • Thomas, D.1    Jacquemin, I.2    Surdin-Kerjan, Y.3
  • 154
    • 77953711307 scopus 로고    scopus 로고
    • Importance of asparagine residues at positions 13 and 26 on the amino-terminal domain of human somatostatin receptor subtype-5 in signalling
    • Togawa S., Ishii J., Ishikura A., Tanaka T., Ogino C., Kondo A. Importance of asparagine residues at positions 13 and 26 on the amino-terminal domain of human somatostatin receptor subtype-5 in signalling. Journal of Biochemistry 2010, 147:867-873.
    • (2010) Journal of Biochemistry , vol.147 , pp. 867-873
    • Togawa, S.1    Ishii, J.2    Ishikura, A.3    Tanaka, T.4    Ogino, C.5    Kondo, A.6
  • 155
    • 58149154663 scopus 로고    scopus 로고
    • Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism
    • Trinh C.T., Wlaschin A., Srienc F. Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Applied Microbiology and Biotechnology 2009, 81:813-826.
    • (2009) Applied Microbiology and Biotechnology , vol.81 , pp. 813-826
    • Trinh, C.T.1    Wlaschin, A.2    Srienc, F.3
  • 156
    • 33847073370 scopus 로고    scopus 로고
    • Expanding the metabolic engineering toolbox: more options to engineer cells
    • Tyo K.E., Alper H.S., Stephanopoulos G.N. Expanding the metabolic engineering toolbox: more options to engineer cells. Trends in Biotechnology 2007, 25:132-137.
    • (2007) Trends in Biotechnology , vol.25 , pp. 132-137
    • Tyo, K.E.1    Alper, H.S.2    Stephanopoulos, G.N.3
  • 157
    • 67649757165 scopus 로고    scopus 로고
    • Yeast metabolic engineering for hemicellulosic ethanol production
    • Van Vleet J.H., Jeffries T.W. Yeast metabolic engineering for hemicellulosic ethanol production. Current Opinion in Biotechnology 2009, 20:300-306.
    • (2009) Current Opinion in Biotechnology , vol.20 , pp. 300-306
    • Van Vleet, J.H.1    Jeffries, T.W.2
  • 158
    • 57049166496 scopus 로고    scopus 로고
    • Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose
    • Van Vleet J.H., Jeffries T.W., Olsson L. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metabolic Engineering 2008, 10:360-369.
    • (2008) Metabolic Engineering , vol.10 , pp. 360-369
    • Van Vleet, J.H.1    Jeffries, T.W.2    Olsson, L.3
  • 159
    • 0034166776 scopus 로고    scopus 로고
    • Changes in superoxide production rate and in superoxide dismutase and glutathione peroxidase activities in subcellular organelles in mouse liver under exposure to low doses of low-intensity radiation
    • Vartanyan L.S., Gurevich S.M., Kozachenko A.I., Nagler L.G., Lozovskaya E.L., Burlakova E.B. Changes in superoxide production rate and in superoxide dismutase and glutathione peroxidase activities in subcellular organelles in mouse liver under exposure to low doses of low-intensity radiation. Biochemistry 2000, 65:442-446.
    • (2000) Biochemistry , vol.65 , pp. 442-446
    • Vartanyan, L.S.1    Gurevich, S.M.2    Kozachenko, A.I.3    Nagler, L.G.4    Lozovskaya, E.L.5    Burlakova, E.B.6
  • 160
    • 0035809032 scopus 로고    scopus 로고
    • Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations
    • Wahlbom C.F., Eliasson A., Hahn-Hagerdal B. Intracellular fluxes in a recombinant xylose-utilizing Saccharomyces cerevisiae cultivated anaerobically at different dilution rates and feed concentrations. Biotechnology and Bioengineering 2001, 72:289-296.
    • (2001) Biotechnology and Bioengineering , vol.72 , pp. 289-296
    • Wahlbom, C.F.1    Eliasson, A.2    Hahn-Hagerdal, B.3
  • 161
    • 34948882785 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis
    • Watanabe S., Abu Saleh A., Pack S.P., Annaluru N., Kodaki T., Makino K. Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 2007, 153:3044-3054.
    • (2007) Microbiology , vol.153 , pp. 3044-3054
    • Watanabe, S.1    Abu Saleh, A.2    Pack, S.P.3    Annaluru, N.4    Kodaki, T.5    Makino, K.6
  • 163
    • 7544219805 scopus 로고    scopus 로고
    • Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae
    • Wen S., Zhang T., Tan T. Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae. Enzyme and Microbial Technology 2004, 35:501-507.
    • (2004) Enzyme and Microbial Technology , vol.35 , pp. 501-507
    • Wen, S.1    Zhang, T.2    Tan, T.3
  • 164
    • 0346749524 scopus 로고    scopus 로고
    • Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors
    • Wheeler G.L., Trotter E.W., Dawes I.W., Grant C.M. Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors. Journal of Biological Chemistry 2003, 278:49920-49928.
    • (2003) Journal of Biological Chemistry , vol.278 , pp. 49920-49928
    • Wheeler, G.L.1    Trotter, E.W.2    Dawes, I.W.3    Grant, C.M.4
  • 166
    • 0034741983 scopus 로고    scopus 로고
    • 13C metabolic flux analysis
    • Wiechert W. 13C metabolic flux analysis. Metabolic Engineering 2001, 3:195-206.
    • (2001) Metabolic Engineering , vol.3 , pp. 195-206
    • Wiechert, W.1
  • 168
    • 0028168801 scopus 로고
    • GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation
    • Wu A.L., Moye-Rowley W.S. GSH1, which encodes gamma-glutamylcysteine synthetase, is a target gene for yAP-1 transcriptional regulation. Molecular and Cellular Biology 1994, 14:5832-5839.
    • (1994) Molecular and Cellular Biology , vol.14 , pp. 5832-5839
    • Wu, A.L.1    Moye-Rowley, W.S.2
  • 169
    • 77953675236 scopus 로고    scopus 로고
    • Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains
    • Yamada R., Taniguchi N., Tanaka T., Ogino C., Fukuda H., Kondo A. Cocktail delta-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microbial Cell Factories 2010, 9:32.
    • (2010) Microbial Cell Factories , vol.9 , pp. 32
    • Yamada, R.1    Taniguchi, N.2    Tanaka, T.3    Ogino, C.4    Fukuda, H.5    Kondo, A.6
  • 170
    • 85028099794 scopus 로고    scopus 로고
    • Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression
    • Yamada R., Taniguchi N., Tanaka T., Ogino C., Fukuda H., Kondo A. Direct ethanol production from cellulosic materials using a diploid strain of Saccharomyces cerevisiae with optimized cellulase expression. Biotechnology for Biofuels 2011, 4:8.
    • (2011) Biotechnology for Biofuels , vol.4 , pp. 8
    • Yamada, R.1    Taniguchi, N.2    Tanaka, T.3    Ogino, C.4    Fukuda, H.5    Kondo, A.6
  • 171
    • 85047689281 scopus 로고    scopus 로고
    • Metabolomics-based systematic prediction of yeast lifespan and its application for semi-rational screening of ageing-related mutants
    • Yoshida R., Tamura T., Takaoka C., Harada K., Kobayashi A., Mukai Y., Fukusaki E. Metabolomics-based systematic prediction of yeast lifespan and its application for semi-rational screening of ageing-related mutants. Aging Cell 2010, 9:616-625.
    • (2010) Aging Cell , vol.9 , pp. 616-625
    • Yoshida, R.1    Tamura, T.2    Takaoka, C.3    Harada, K.4    Kobayashi, A.5    Mukai, Y.6    Fukusaki, E.7
  • 173
    • 80052647009 scopus 로고    scopus 로고
    • Metabolic engineering of microbial pathways for advanced biofuels production
    • Zhang F., Rodriguez S., Keasling J.D. Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in Biotechnology 2011, 22:775-783.
    • (2011) Current Opinion in Biotechnology , vol.22 , pp. 775-783
    • Zhang, F.1    Rodriguez, S.2    Keasling, J.D.3
  • 174
    • 78650829210 scopus 로고    scopus 로고
    • Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance
    • Zheng D.Q., Wu X.C., Tao X.L., Wang P.M., Li P., Chi X.Q., Li Y.D., Yan Q.F., Zhao Y.H. Screening and construction of Saccharomyces cerevisiae strains with improved multi-tolerance and bioethanol fermentation performance. Bioresource Technology 2011, 102:3020-3027.
    • (2011) Bioresource Technology , vol.102 , pp. 3020-3027
    • Zheng, D.Q.1    Wu, X.C.2    Tao, X.L.3    Wang, P.M.4    Li, P.5    Chi, X.Q.6    Li, Y.D.7    Yan, Q.F.8    Zhao, Y.H.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.