-
1
-
-
0016664132
-
Adenylate energy charge in Saccharomyces cerevisiae during starvation
-
Ball, W. J., Jr., and D. E. Atkinson. 1975. Adenylate energy charge in Saccharomyces cerevisiae during starvation. J. Bacteriol. 121:975-982.
-
(1975)
J. Bacteriol.
, vol.121
, pp. 975-982
-
-
Ball Jr., W.J.1
Atkinson, D.E.2
-
2
-
-
58149347653
-
Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering
-
Bengtsson, O., M. Jeppsson, M. Sonderegger, N. S. Parachin, U. Sauer, B. Hahn-Hägerdal, and M. F. Gorwa-Grauslund. 2008. Identification of common traits in improved xylose-growing Saccharomyces cerevisiae for inverse metabolic engineering. Yeast 25:835-847.
-
(2008)
Yeast
, vol.25
, pp. 835-847
-
-
Bengtsson, O.1
Jeppsson, M.2
Sonderegger, M.3
Parachin, N.S.4
Sauer, U.5
Hahn-Hägerdal, B.6
Gorwa-Grauslund, M.F.7
-
3
-
-
0003717374
-
-
5th ed. W. H. Freeman and Company, New York, NY
-
Berg, J. M., J. L. Tymoczko, and L. Streyer. 2003. Biochemistry, 5th ed. W. H. Freeman and Company, New York, NY.
-
(2003)
Biochemistry
-
-
Berg, J.M.1
Tymoczko, J.L.2
Streyer, L.3
-
4
-
-
33845870439
-
Conservation of the metabolomic response to starvation across two divergent microbes
-
Brauer, M. J., J. Yuan, B. D. Bennett, W. Lu, E. Kimball, D. Botstein, and J. D. Rabinowitz. 2006. Conservation of the metabolomic response to starvation across two divergent microbes. Proc. Natl. Acad. Sci. U. S. A. 103: 19302-19307.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 19302-19307
-
-
Brauer, M.J.1
Yuan, J.2
Bennett, B.D.3
Lu, W.4
Kimball, E.5
Botstein, D.6
Rabinowitz, J.D.7
-
5
-
-
0026012220
-
Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: A model system for the regulation of a eukaryotic biosynthetic pathway
-
Braus, G. H. 1991. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: A model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol. Rev. 55:349-370.
-
(1991)
Microbiol. Rev.
, vol.55
, pp. 349-370
-
-
Braus, G.H.1
-
6
-
-
64649089947
-
Cross-platform comparison of methods for quantitative metabolomics of primary metabolism
-
Büscher, J. M., D. Czernik, J. C. Ewald, U. Sauer, and N. Zamboni. 2009. Cross-platform comparison of methods for quantitative metabolomics of primary metabolism. Anal. Chem. 81:2135-2143.
-
(2009)
Anal. Chem.
, vol.81
, pp. 2135-2143
-
-
Büscher, J.M.1
Czernik, D.2
Ewald, J.C.3
Sauer, U.4
Zamboni, N.5
-
7
-
-
34447286236
-
Genetic improvement of Saccharomyces cerevisiae for xylose fermentation
-
Chu, B. C., and H. Lee. 2007. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol. Adv. 25:425-441.
-
(2007)
Biotechnol. Adv.
, vol.25
, pp. 425-441
-
-
Chu, B.C.1
Lee, H.2
-
8
-
-
0018391488
-
Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae
-
Ciriacy, M., and I. Breitenbach. 1979. Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J. Bacteriol. 139:152-160.
-
(1979)
J. Bacteriol.
, vol.139
, pp. 152-160
-
-
Ciriacy, M.1
Breitenbach, I.2
-
9
-
-
2342577931
-
Principles of regulation and control in biochemistry: A paradigmatic, flux-oriented approach
-
Oxford University Press, New York, NY,In J. F. Hoffman and J. D. Jamieson (ed.)
-
Crabtree, B., E. A. Newsholme, and N. B. Reppas. 1997. Principles of regulation and control in biochemistry: A paradigmatic, flux-oriented approach, p. 117-180. In J. F. Hoffman and J. D. Jamieson (ed.), Handbook of physiology, vol. 14. Oxford University Press, New York, NY.
-
(1997)
Handbook of Physiology
, vol.14
, pp. 117-180
-
-
Crabtree, B.1
Newsholme, E.A.2
Reppas, N.B.3
-
10
-
-
0019890796
-
Phosphorus-31 nuclear magnetic resonance studies of the effect of oxygen upon glycolysis in yeast
-
den Hollander, J. A., K. Ugurbil, T. R. Brown, and R. G. Shulman. 1981. Phosphorus-31 nuclear magnetic resonance studies of the effect of oxygen upon glycolysis in yeast. Biochemistry 20:5871-5880.
-
(1981)
Biochemistry
, vol.20
, pp. 5871-5880
-
-
Den Hollander, J.A.1
Ugurbil, K.2
Brown, T.R.3
Shulman, R.G.4
-
11
-
-
0020564055
-
Nucleotide pools of growing, synchronized and stressed cultures of Saccharomyces cerevisiae
-
Ditzelmüller, G., W. Wöhrer, C. P. Kubicek, and M. Röhr. 1983. Nucleotide pools of growing, synchronized and stressed cultures of Saccharomyces cerevisiae. Arch. Microbiol. 135:63-67.
-
(1983)
Arch. Microbiol.
, vol.135
, pp. 63-67
-
-
Ditzelmüller, G.1
Wöhrer, W.2
Kubicek, C.P.3
Röhr, M.4
-
12
-
-
64049099490
-
Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism
-
Fuhrer, T., and U. Sauer. 2009. Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J. Bacteriol. 191:2112-2121.
-
(2009)
J. Bacteriol.
, vol.191
, pp. 2112-2121
-
-
Fuhrer, T.1
Sauer, U.2
-
13
-
-
0038363853
-
Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae
-
Gárdonyi, M., M. Jeppsson, G. Lidén, M. F. Gorwa-Grauslund, and B. Hahn-Hägerdal. 2003. Control of xylose consumption by xylose transport in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 82:818-824.
-
(2003)
Biotechnol. Bioeng.
, vol.82
, pp. 818-824
-
-
Gárdonyi, M.1
Jeppsson, M.2
Lidén, G.3
Gorwa-Grauslund, M.F.4
Hahn-Hägerdal, B.5
-
14
-
-
0016416692
-
Phosphoglycerate mutase from yeast,chicken breast muscle, and kidney (2,3-PGA-dependent)
-
Grisolia, S., and J. Carreras. 1975. Phosphoglycerate mutase from yeast, chicken breast muscle, and kidney (2,3-PGA-dependent). Methods Enzymol. 42:435-450.
-
(1975)
Methods Enzymol.
, vol.42
, pp. 435-450
-
-
Grisolia, S.1
Carreras, J.2
-
15
-
-
33947191174
-
Towards industrial pentose-fermenting yeast strains
-
Hahn-Hägerdal, B., K. Karhumaa, C. Fonseca, I. Spencer-Martins, and M. F. Gorwa-Grauslund. 2007. Towards industrial pentose-fermenting yeast strains. Appl. Microbiol. Biotechnol. 74:937-953.
-
(2007)
Appl. Microbiol. Biotechnol.
, vol.74
, pp. 937-953
-
-
Hahn-Hägerdal, B.1
Karhumaa, K.2
Fonseca, C.3
Spencer-Martins, I.4
Gorwa-Grauslund, M.5
-
16
-
-
34548789083
-
Metabolic engineering for pentose utilization in Saccharomyces cerevisiae
-
Hahn-Hägerdal, B., K. Karhumaa, M. Jeppsson, and M. F. Gorwa-Grauslund. 2007. Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108:147-177.
-
(2007)
Adv. Biochem. Eng. Biotechnol.
, vol.108
, pp. 147-177
-
-
Hahn-Hägerdal, B.1
Karhumaa, K.2
Jeppsson, M.3
Gorwa-Grauslund, M.F.4
-
17
-
-
0036738179
-
Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
-
Hamacher, T., J. Becker, M. Gárdonyi, B. Hahn-Hägerdal, and E. Boles. 2002. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148: 2783-2788.
-
(2002)
Microbiology
, vol.148
, pp. 2783-2788
-
-
Hamacher, T.1
Becker, J.2
Gárdonyi, M.3
Hahn-Hägerdal, B.4
Boles, E.5
-
18
-
-
0344081177
-
Minireview: The AMP-activated protein kinase cascade: The key sensor of cellular energy status
-
Hardie, D. G. 2003. Minireview: The AMP-activated protein kinase cascade: The key sensor of cellular energy status. Endocrinology 144:5179-5183.
-
(2003)
Endocrinology
, vol.144
, pp. 5179-5183
-
-
Hardie, D.G.1
-
19
-
-
0035542970
-
AMP-activated protein kinase: The energy charge hypothesis revisited
-
Hardie, D. G., and S. A. Hawley. 2001. AMP-activated protein kinase: The energy charge hypothesis revisited. Bioessays 23:1112-1119.
-
(2001)
Bioessays
, vol.23
, pp. 1112-1119
-
-
Hardie, D.G.1
Hawley, S.A.2
-
20
-
-
68049137324
-
Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
-
Hou, J., N. F. Lages, M. Oldiges, and G. N. Vemuri. 2009. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab. Eng. 11:253-261.
-
(2009)
Metab. Eng.
, vol.11
, pp. 253-261
-
-
Hou, J.1
Lages, N.F.2
Oldiges, M.3
Vemuri, G.N.4
-
21
-
-
33744914986
-
Engineering yeasts for xylose metabolism
-
Jeffries, T. W. 2006. Engineering yeasts for xylose metabolism. Curr. Opin. Biotechnol. 17:320-326.
-
(2006)
Curr. Opin. Biotechnol.
, vol.17
, pp. 320-326
-
-
Jeffries, T.W.1
-
22
-
-
1242264261
-
Metabolic engineering for improved fermentation of pentoses by yeasts
-
Jeffries, T. W., and Y. S. Jin. 2004. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63:495-509.
-
(2004)
Appl. Microbiol. Biotechnol.
, vol.63
, pp. 495-509
-
-
Jeffries, T.W.1
Jin, Y.S.2
-
23
-
-
33644879465
-
The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae
-
Jeppsson, M., O. Bengtsson, K. Franke, H. Lee, B. Hahn-Hägerdal, and M. F. Gorwa-Grauslund. 2006. The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 93:665-673.
-
(2006)
Biotechnol. Bioeng.
, vol.93
, pp. 665-673
-
-
Jeppsson, M.1
Bengtsson, O.2
Franke, K.3
Lee, H.4
Hahn-Hägerdal, B.5
Gorwa-Grauslund, M.F.6
-
24
-
-
8744293844
-
Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
-
Jin, Y. S., J. M. Laplaza, and T. W. Jeffries. 2004. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl. Environ. Microbiol. 70:6816-6825.
-
(2004)
Appl. Environ. Microbiol.
, vol.70
, pp. 6816-6825
-
-
Jin, Y.S.1
Laplaza, J.M.2
Jeffries, T.W.3
-
25
-
-
0036053504
-
The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001
-
Johansson, B., and B. Hahn-Hägerdal. 2002. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res. 2:277-282.
-
(2002)
FEMS Yeast Res.
, vol.2
, pp. 277-282
-
-
Johansson, B.1
Hahn-Hägerdal, B.2
-
26
-
-
0020164089
-
Effect of carbon dioxide on yeast growth and fermentation
-
Jones, R. P., and P. F. Greenfield. 1982. Effect of carbon dioxide on yeast growth and fermentation. Enzyme Microb. Technol. 4:210-223.
-
(1982)
Enzyme Microb. Technol.
, vol.4
, pp. 210-223
-
-
Jones, R.P.1
Greenfield, P.F.2
-
27
-
-
17644373035
-
Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering
-
Karhumaa, K., B. Hahn-Hägerdal, and M. F. Gorwa-Grauslund. 2005. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359-368.
-
(2005)
Yeast
, vol.22
, pp. 359-368
-
-
Karhumaa, K.1
Hahn-Hägerdal, B.2
Gorwa-Grauslund, M.F.3
-
28
-
-
68349115041
-
Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400
-
Karhumaa, K., A. K. Pahlman, B. Hahn-Hägerdal, F. Levander, and M. F. Gorwa-Grauslund. 2009. Proteome analysis of the xylose-fermenting mutant yeast strain TMB 3400. Yeast 26:371-382.
-
(2009)
Yeast
, vol.26
, pp. 371-382
-
-
Karhumaa, K.1
Pahlman, A.K.2
Hahn-Hägerdal, B.3
Levander, F.4
Gorwa-Grauslund, M.F.5
-
29
-
-
0027395082
-
Xylose fermentation by Saccharomyces cerevisiae
-
Kötter, P., and M. Ciriacy. 1993. Xylose fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 38:776-783.
-
(1993)
Appl. Microbiol. Biotechnol.
, vol.38
, pp. 776-783
-
-
Kötter, P.1
Ciriacy, M.2
-
30
-
-
68049091805
-
Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae
-
Krahulec, S., M. Klimacek, and B. Nidetzky. 2009. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol. J. 4:684-694.
-
(2009)
Biotechnol. J.
, vol.4
, pp. 684-694
-
-
Krahulec, S.1
Klimacek, M.2
Nidetzky, B.3
-
31
-
-
77949451258
-
Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: Role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization
-
Krahulec, S., B. Petschacher, M. Wallner, K. Longus, M. Klimacek, and B. Nidetzky. 2010. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: Role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb. Cell Fact. 9:16.
-
(2010)
Microb. Cell Fact.
, vol.9
, pp. 16
-
-
Krahulec, S.1
Petschacher, B.2
Wallner, M.3
Longus, K.4
Klimacek, M.5
Nidetzky, B.6
-
32
-
-
33745433792
-
Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data
-
Kümmel, A., S. Panke, and M. Heinemann. 2006. Putative regulatory sites unraveled by network-embedded thermodynamic analysis of metabolome data. Mol. Syst. Biol. 2:2006.0034.
-
(2006)
Mol. Syst. Biol.
, vol.2
, pp. 0034
-
-
Kümmel, A.1
Panke, S.2
Heinemann, M.3
-
33
-
-
13244262739
-
Metabolic engineering of a xyloseisomerase- Expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
-
Kuyper, M., M. M. Hartog, M. J. Toirkens, M. J. Almering, A. A. Winkler, J. P. van Dijken, and J. T. Pronk. 2005. Metabolic engineering of a xyloseisomerase- expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5:399-409.
-
(2005)
FEMS Yeast Res.
, vol.5
, pp. 399-409
-
-
Kuyper, M.1
Hartog, M.M.2
Toirkens, M.J.3
Almering, M.J.4
Winkler, A.A.5
Van Dijken, J.P.6
Pronk, J.T.7
-
34
-
-
33947503169
-
Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography- Mass spectrometry
-
Luo, B., K. Groenke, R. Takors, C. Wandrey, and M. Oldiges. 2007. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography- mass spectrometry. J. Chromatogr. A 1147:153-164.
-
(2007)
J. Chromatogr. A
, vol.1147
, pp. 153-164
-
-
Luo, B.1
Groenke, K.2
Takors, R.3
Wandrey, C.4
Oldiges, M.5
-
35
-
-
44749095048
-
Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: Quantification of metabolic impact
-
Luttik, M. A., Z. Vuralhan, E. Suir, G. H. Braus, J. T. Pronk, and J. M. Daran. 2008. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: Quantification of metabolic impact. Metab. Eng. 10:141-153.
-
(2008)
Metab. Eng.
, vol.10
, pp. 141-153
-
-
Luttik, M.A.1
Vuralhan, Z.2
Suir, E.3
Braus, G.H.4
Pronk, J.T.5
Daran, J.M.6
-
36
-
-
67649819695
-
New improvements for lignocellulosic ethanol
-
Margeot, A., B. Hahn-Hägerdal, M. Edlund, R. Slade, and F. Monot. 2009. New improvements for lignocellulosic ethanol. Curr. Opin. Biotechnol. 20: 372-380.
-
(2009)
Curr. Opin. Biotechnol.
, vol.20
, pp. 372-380
-
-
Margeot, A.1
Hahn-Hägerdal, B.2
Edlund, M.3
Slade, R.4
Monot, F.5
-
37
-
-
68349109625
-
Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: Current state and perspectives
-
Matsushika, A., H. Inoue, T. Kodaki, and S. Sawayama. 2009. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84:37-53.
-
(2009)
Appl. Microbiol. Biotechnol.
, vol.84
, pp. 37-53
-
-
Matsushika, A.1
Inoue, H.2
Kodaki, T.3
Sawayama, S.4
-
38
-
-
0035965277
-
Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit
-
McCartney, R. R., and M. C. Schmidt. 2001. Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J. Biol. Chem. 276:36460-36466.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 36460-36466
-
-
McCartney, R.R.1
Schmidt, M.C.2
-
39
-
-
0033118507
-
Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1
-
Meinander, N. Q., I. Boels, and B. Hahn-Hägerdal. 1999. Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour. Technol. 68:79-87.
-
(1999)
Bioresour. Technol.
, vol.68
, pp. 79-87
-
-
Meinander, N.Q.1
Boels, I.2
Hahn-Hägerdal, B.3
-
40
-
-
0029084376
-
Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae
-
Müller, S., E. Boles, M. May, and F. K. Zimmermann. 1995. Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae. J. Bacteriol. 177:4517-4519.
-
(1995)
J. Bacteriol.
, vol.177
, pp. 4517-4519
-
-
Müller, S.1
Boles, E.2
May, M.3
Kzimmermann, F.4
-
41
-
-
0018712199
-
Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae
-
Navon, G., R. G. Shulman, T. Yamane, T. R. Eccleshall, K. B. Lam, J. J. Baronofsky, and J. Marmur. 1979. Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry 18:4487-4499.
-
(1979)
Biochemistry
, vol.18
, pp. 4487-4499
-
-
Navon, G.1
Shulman, R.G.2
Yamane, T.3
Eccleshall, T.R.4
Lam, K.B.5
Baronofsky, J.J.6
Marmur, J.7
-
42
-
-
34247508562
-
Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose
-
Ni, H., J. M. Laplaza, and T. W. Jeffries. 2007. Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl. Environ. Microbiol. 73:2061-2066.
-
(2007)
Appl. Environ. Microbiol.
, vol.73
, pp. 2061-2066
-
-
Ni, H.1
Laplaza, J.M.2
Jeffries, T.W.3
-
43
-
-
0037325074
-
Characterization of recombinant xylitol dehydrogenase from Galactocandida mastotermitis expressed in Escherichia coli
-
Nidetzky, B., H. Helmer, M. Klimacek, R. Lunzer, and G. Mayer. 2003. Characterization of recombinant xylitol dehydrogenase from Galactocandida mastotermitis expressed in Escherichia coli. Chem. Biol. Interact. 143-144: 533-542.
-
(2003)
Chem. Biol. Interact.
, vol.143-144
, pp. 533-542
-
-
Nidetzky, B.1
Helmer, H.2
Klimacek, M.3
Lunzer, R.4
Mayer, G.5
-
44
-
-
0035862739
-
Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool
-
Nissen, T. L., M. Anderlund, J. Nielsen, J. Villadsen, and M. C. Kielland- Brandt. 2001. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18:19-32.
-
(2001)
Yeast
, vol.18
, pp. 19-32
-
-
Nissen, T.L.1
Anderlund, M.2
Nielsen, J.3
Villadsen, J.4
Kielland- Brandt, M.C.5
-
45
-
-
12844287005
-
The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography
-
Petschacher, B., S. Leitgeb, K. L. Kavanagh, D. K. Wilson, and B. Nidetzky. 2005. The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem. J. 385:75-83.
-
(2005)
Biochem. J.
, vol.385
, pp. 75-83
-
-
Petschacher, B.1
Leitgeb, S.2
Kavanagh, K.L.3
Wilson, D.K.4
Nidetzky, B.5
-
46
-
-
42449145157
-
Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae
-
Petschacher, B., and B. Nidetzky. 2008. Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 7:9.
-
(2008)
Microb. Cell Fact.
, vol.7
, pp. 9
-
-
Petschacher, B.1
Nidetzky, B.2
-
47
-
-
26844452043
-
Engineering Candida tenuis xylose reductase for improved utilization of NADH: Antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions
-
Petschacher, B., and B. Nidetzky. 2005. Engineering Candida tenuis xylose reductase for improved utilization of NADH: Antagonistic effects of multiple side chain replacements and performance of site-directed mutants under simulated in vivo conditions. Appl. Environ. Microbiol. 71:6390-6393.
-
(2005)
Appl. Environ. Microbiol.
, vol.71
, pp. 6390-6393
-
-
Petschacher, B.1
Nidetzky, B.2
-
48
-
-
0022514877
-
Studies on the regulation of yeast phosphofructo-1-kinase: Its role in aerobic and anaerobic glycolysis
-
Reibstein, D., J. A. den Hollander, S. J. Pilkis, and R. G. Shulman. 1986. Studies on the regulation of yeast phosphofructo-1-kinase: Its role in aerobic and anaerobic glycolysis. Biochemistry 25:219-227.
-
(1986)
Biochemistry
, vol.25
, pp. 219-227
-
-
Reibstein, D.1
Den Hollander, J.A.2
Pilkis, S.J.3
Shulman, R.G.4
-
49
-
-
0034284318
-
The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism
-
Richard, P., M. H. Toivari, and M. Penttilä. 2000. The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol. Lett. 190: 39-43.
-
(2000)
FEMS Microbiol. Lett.
, vol.190
, pp. 39-43
-
-
Richard, P.1
Toivari, M.H.2
Penttilä, M.3
-
50
-
-
70449428931
-
Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae
-
Runquist, D., B. Hahn-Hägerdal, and M. Bettiga. 2009. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb. Cell Fact. 8:49.
-
(2009)
Microb. Cell Fact.
, vol.8
, pp. 49
-
-
Runquist, D.1
Hahn-Hägerdal, B.2
Bettiga, M.3
-
52
-
-
46349094089
-
Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae
-
Salusjärvi, L., M. Kankainen, R. Soliymani, J. P. Pitkänen, M. Penttilä, and L. Ruohonen. 2008. Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae. Microb. Cell Fact. 7:18.
-
(2008)
Microb. Cell Fact.
, vol.7
, pp. 18
-
-
Salusjärvi, L.1
Kankainen, M.2
Soliymani, R.3
Pitkänen, J.P.4
Penttilä, M.5
Ruohonen, L.6
-
53
-
-
33646873502
-
Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose
-
Salusjärvi, L., J. P. Pitkänen, A. Aristidou, L. Ruohonen, and M. Penttilä. 2006. Transcription analysis of recombinant Saccharomyces cerevisiae reveals novel responses to xylose. Appl. Biochem. Biotechnol. 128:237-261.
-
(2006)
Appl. Biochem. Biotechnol.
, vol.128
, pp. 237-261
-
-
Salusjärvi, L.1
Pitkänen, J.P.2
Aristidou, A.3
Ruohonen, L.4
Penttilä, M.5
-
54
-
-
0345269094
-
Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae
-
Salusjärvi, L., M. Poutanen, J. P. Pitkänen, H. Koivistoinen, A. Aristidou, N. Kalkkinen, L. Ruohonen, and M. Penttilä. 2003. Proteome analysis of recombinant xylose-fermenting Saccharomyces cerevisiae. Yeast 20:295-314.
-
(2003)
Yeast
, vol.20
, pp. 295-314
-
-
Salusjärvi, L.1
Poutanen, M.2
Pitkänen, J.P.3
Koivistoinen, H.4
Aristidou, A.5
Kalkkinen, N.6
Ruohonen, L.7
Penttilä, M.8
-
56
-
-
0025857432
-
Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts
-
Senac, T., and B. Hahn-Hägerdal. 1991. Effects of increased transaldolase activity on D-xylulose and D-glucose metabolism in Saccharomyces cerevisiae cell extracts. Appl. Environ. Microbiol. 57:1701-1706.
-
(1991)
Appl. Environ. Microbiol.
, vol.57
, pp. 1701-1706
-
-
Senac, T.1
Hahn-Hägerdal, B.2
-
57
-
-
0025021348
-
Intermediary metabolite concentrations in xylulose- and glucose-fermenting Saccharomyces cerevisiae cells
-
Senac, T., and B. Hahn-Hägerdal. 1990. Intermediary metabolite concentrations in xylulose- and glucose-fermenting Saccharomyces cerevisiae cells. Appl. Environ. Microbiol. 56:120-126.
-
(1990)
Appl. Environ. Microbiol.
, vol.56
, pp. 120-126
-
-
Senac, T.1
Hahn-Hägerdal, B.2
-
58
-
-
0024102204
-
Estimation of intracellular sugar phosphate concentrations in Saccharomyces cerevisiae using 31P nuclear magnetic resonance spectroscopy
-
Shanks, J. V., and J. E. Bailey. 1988. Estimation of intracellular sugar phosphate concentrations in Saccharomyces cerevisiae using 31P nuclear magnetic resonance spectroscopy. Biotechnol. Bioeng. 32:1138-1152.
-
(1988)
Biotechnol. Bioeng.
, vol.32
, pp. 1138-1152
-
-
Shanks, J.V.1
Bailey, J.E.2
-
59
-
-
0004218135
-
-
Academic Press,San Diego, CA
-
Stephanopoulos, G. N., A. Aristidou, and J. Nielsen. 1998. Metabolic engineering, principles and methodologies. Academic Press, San Diego, CA.
-
(1998)
Metabolic engineering, principles and methodologies
-
-
Stephanopoulos, G.N.1
Aristidou, A.2
Nielsen, J.3
-
60
-
-
0018359439
-
Regulation of protein synthesis during early limitation of Saccharomyces cerevisiae
-
Swedes, J. S., M. E. Dial, and C. S. McLaughlin. 1979. Regulation of protein synthesis during early limitation of Saccharomyces cerevisiae. J. Bacteriol. 138:162-170.
-
(1979)
J. Bacteriol.
, vol.138
, pp. 162-170
-
-
Swedes, J.S.1
Dial, M.E.2
McLaughlin, C.S.3
-
61
-
-
34249851330
-
Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: A multilevel analysis in anaerobic chemostat cultures
-
Tai, S. L., P. Daran-Lapujade, M. A. Luttik, M. C. Walsh, J. A. Diderich, G. C. Krijger, W. M. van Gulik, J. T. Pronk, and J. M. Daran. 2007. Control of the glycolytic flux in Saccharomyces cerevisiae grown at low temperature: A multilevel analysis in anaerobic chemostat cultures. J. Biol. Chem. 282: 10243-10251.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 10243-10251
-
-
Tai, S.L.1
Daran-Lapujade, P.2
Luttik, M.A.3
Walsh, M.C.4
Diderich, J.A.5
Krijger, G.C.6
Van Gulik, W.M.7
Pronk, J.T.8
Daran, J.M.9
-
62
-
-
0033857139
-
Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry
-
Teusink, B., J. Passarge, C. A. Reijenga, E. Esgalhado, C. C. van der Weijden, M. Schepper, M. C. Walsh, B. M. Bakker, K. van Dam, H. V. Westerhoff, and J. L. Snoep. 2000. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267:5313-5329.
-
(2000)
Eur. J. Biochem.
, vol.267
, pp. 5313-5329
-
-
Teusink, B.1
Passarge, J.2
Reijenga, C.A.3
Esgalhado, E.4
Van Der Weijden, C.C.5
Schepper, M.6
Walsh, M.C.7
Bakker, B.M.8
Van Dam, K.9
Westerhoff, H.V.10
Snoep, J.L.11
-
63
-
-
0034878314
-
Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability
-
Toivari, M. H., A. Aristidou, L. Ruohonen, and M. Penttilä. 2001. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metab. Eng. 3:236-249.
-
(2001)
Metab. Eng.
, vol.3
, pp. 236-249
-
-
Toivari, M.H.1
Aristidou, A.2
Ruohonen, L.3
Penttilä, M.4
-
64
-
-
0034214335
-
An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains
-
van Dijken, J. P., J. Bauer, L. Brambilla, P. Duboc, J. M. Francois, C. Gancedo, M. L. Giuseppin, J. J. Heijnen, M. Hoare, H. C. Lange, E. A. Madden, P. Niederberger, J. Nielsen, J. L. Parrou, T. Petit, D. Porro, M. Reuss, N. van Riel, M. Rizzi, H. Y. Steensma, C. T. Verrips, J. Vindelov, and J. T. Pronk. 2000. An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb. Technol. 26:706-714.
-
(2000)
Enzyme Microb. Technol.
, vol.26
, pp. 706-714
-
-
Van Dijken, J.P.1
Bauer, J.2
Brambilla, L.3
Duboc, P.4
Francois, J.M.5
Gancedo, C.6
Giuseppin, M.L.7
Heijnen, J.J.8
Hoare, M.9
Lange, H.C.10
Madden, E.A.11
Niederberger, P.12
Nielsen, J.13
Parrou, J.L.14
Petit, T.15
Porro, D.16
Reuss, M.17
Van Riel, N.18
Rizzi, M.19
Steensma, H.Y.20
Verrips, C.T.21
Vindelov, J.22
Pronk, J.T.23
more..
-
65
-
-
33750621979
-
Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: Current status
-
van Maris, A. J., D. A. Abbott, E. Bellissimi, J. van den Brink, M. Kuyper, M. A. Luttik, H. W. Wisselink, W. A. Scheffers, J. P. van Dijken, and J. T. Pronk. 2006. Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90:391-418.
-
(2006)
Antonie Van Leeuwenhoek
, vol.90
, pp. 391-418
-
-
Van Maris, A.J.1
Abbott, D.A.2
Bellissimi, E.3
Van Den Brink, J.4
Kuyper, M.5
Luttik, M.A.6
Wisselink, H.W.7
Scheffers, W.A.8
Van Dijken, J.P.9
Pronk, J.T.10
-
66
-
-
34548728610
-
Development of efficient xylose fermentation in Saccharomyces cerevisiae: Xylose isomerase as a key component
-
van Maris, A. J., A. A. Winkler, M. Kuyper, W. T. de Laat, J. P. van Dijken, and J. T. Pronk. 2007. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv. Biochem. Eng. Biotechnol. 108:179-204.
-
(2007)
Adv. Biochem. Eng. Biotechnol.
, vol.108
, pp. 179-204
-
-
Van Maris, A.J.1
Winkler, A.A.2
Kuyper, M.3
De Laat, W.T.4
Van Dijken, J.P.5
Pronk, J.T.6
-
67
-
-
0033107539
-
In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae
-
Vaseghi, S., A. Baumeister, M. Rizzi, and M. Reuss. 1999. In vivo dynamics of the pentose phosphate pathway in Saccharomyces cerevisiae. Metab. Eng. 1:128-140.
-
(1999)
Metab. Eng.
, vol.1
, pp. 128-140
-
-
Vaseghi, S.1
Baumeister, A.2
Rizzi, M.3
Reuss, M.4
-
68
-
-
0028829654
-
Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase
-
Walfridsson, M., J. Hallborn, M. Penttilä, S. Keränen, and B. Hahn-Hägerdal. 1995. Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl. Environ. Microbiol. 61:4184-4190.
-
(1995)
Appl. Environ. Microbiol.
, vol.61
, pp. 4184-4190
-
-
Walfridsson, M.1
Hallborn, J.2
Penttilä, M.3
Keränen, S.4
Hahn-Hägerdal, B.5
-
69
-
-
10044224601
-
Metabolic control analysis under uncertainty: Framework development and case studies
-
Wang, L., I. Birol, and V. Hatzimanikatis. 2004. Metabolic control analysis under uncertainty: Framework development and case studies. Biophys. J. 87:3750-3763.
-
(2004)
Biophys. J.
, vol.87
, pp. 3750-3763
-
-
Wang, L.1
Birol, I.2
Hatzimanikatis, V.3
-
70
-
-
38349121328
-
Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions
-
Wiebe, M. G., E. Rintala, A. Tamminen, H. Simolin, L. Salusjärvi, M. Toivari, J. T. Kokkonen, J. Kiuru, R. A. Ketola, P. Jouhten, A. Huuskonen, H. Maaheimo, L. Ruohonen, and M. Penttilä. 2008. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res. 8:140-154.
-
(2008)
FEMS Yeast Res.
, vol.8
, pp. 140-154
-
-
Wiebe, M.G.1
Rintala, E.2
Tamminen, A.3
Simolin, H.4
Salusjärvi, L.5
Toivari, M.6
Kokkonen, J.T.7
Kiuru, J.8
Ketola, R.A.9
Jouhten, P.10
Huuskonen, A.11
Maaheimo, H.12
Ruohonen, L.13
Penttilä, M.14
-
71
-
-
0030293885
-
Glucose repression/ derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP: ATP ratio
-
Wilson, W. A., S. A. Hawley, and D. G. Hardie. 1996. Glucose repression/ derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP: ATP ratio. Curr. Biol. 6:1426-1434.
-
(1996)
Curr. Biol.
, vol.6
, pp. 1426-1434
-
-
Wilson, W.A.1
Hawley, S.A.2
Hardie, D.G.3
-
72
-
-
0036036461
-
Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae
-
Zaldivar, J., A. Borges, B. Johansson, H. P. Smits, S. G. Villas-Bǒas, J. Nielsen, and L. Olsson. 2002. Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 59:436-442.
-
(2002)
Appl. Microbiol. Biotechnol.
, vol.59
, pp. 436-442
-
-
Zaldivar, J.1
Borges, A.2
Johansson, B.3
Smits, H.P.4
Villas-Bǒas, H.P.5
Nielsen, J.6
Olsson, L.7
|