메뉴 건너뛰기




Volumn 38, Issue 1, 2013, Pages 3-11

Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes

Author keywords

Glycolysis; Hypoxia inducible factor; Metabolism; Oxygen sensing; Prolyl hydroxylase domain enzymes

Indexed keywords

AMPA RECEPTOR; HYPOXIA INDUCIBLE FACTOR; HYPOXIA INDUCIBLE FACTOR ALPHA; I KAPPA B KINASE BETA; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; MESSENGER RNA; PROCOLLAGEN PROLINE 2 OXOGLUTARATE 4 DIOXYGENASE; PYRUVATE KINASE; TRANSIENT RECEPTOR POTENTIAL CHANNEL A1; UNCLASSIFIED DRUG;

EID: 84871475998     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2012.10.004     Document Type: Review
Times cited : (125)

References (89)
  • 1
    • 0036433394 scopus 로고    scopus 로고
    • Mammalian EGLN genes have distinct patterns of mRNA expression and regulation
    • Lieb M.E., et al. Mammalian EGLN genes have distinct patterns of mRNA expression and regulation. Biochem. Cell Biol. 2002, 80:421-426.
    • (2002) Biochem. Cell Biol. , vol.80 , pp. 421-426
    • Lieb, M.E.1
  • 2
    • 38649143118 scopus 로고    scopus 로고
    • Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism
    • Aragones J., et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 2008, 40:170-180.
    • (2008) Nat. Genet. , vol.40 , pp. 170-180
    • Aragones, J.1
  • 3
    • 77449090208 scopus 로고    scopus 로고
    • Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury
    • Schneider M., et al. Loss or silencing of the PHD1 prolyl hydroxylase protects livers of mice against ischemia/reperfusion injury. Gastroenterology 2010, 138:1143-1154.
    • (2010) Gastroenterology , vol.138 , pp. 1143-1154
    • Schneider, M.1
  • 4
    • 33750976389 scopus 로고    scopus 로고
    • Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2
    • Takeda K., et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell Biol. 2006, 26:8336-8346.
    • (2006) Mol. Cell Biol. , vol.26 , pp. 8336-8346
    • Takeda, K.1
  • 5
    • 34547905406 scopus 로고    scopus 로고
    • Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system
    • Takeda K., et al. Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation 2007, 116:774-781.
    • (2007) Circulation , vol.116 , pp. 774-781
    • Takeda, K.1
  • 6
    • 42449163874 scopus 로고    scopus 로고
    • Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure
    • Minamishima Y.A., et al. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 2008, 111:3236-3244.
    • (2008) Blood , vol.111 , pp. 3236-3244
    • Minamishima, Y.A.1
  • 7
    • 43249108443 scopus 로고    scopus 로고
    • Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice
    • Bishop T., et al. Abnormal sympathoadrenal development and systemic hypotension in PHD3-/- mice. Mol. Cell Biol. 2008, 28:3386-3400.
    • (2008) Mol. Cell Biol. , vol.28 , pp. 3386-3400
    • Bishop, T.1
  • 8
    • 43649093915 scopus 로고    scopus 로고
    • Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway
    • Kaelin W.G., Ratcliffe P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 2008, 30:393-402.
    • (2008) Mol. Cell , vol.30 , pp. 393-402
    • Kaelin, W.G.1    Ratcliffe, P.J.2
  • 9
    • 57849163103 scopus 로고    scopus 로고
    • Oxygen sensors at the crossroad of metabolism
    • Aragones J., et al. Oxygen sensors at the crossroad of metabolism. Cell Metab. 2009, 9:11-22.
    • (2009) Cell Metab. , vol.9 , pp. 11-22
    • Aragones, J.1
  • 10
    • 78650416408 scopus 로고    scopus 로고
    • From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery
    • Coulon C., et al. From vessel sprouting to normalization: role of the prolyl hydroxylase domain protein/hypoxia-inducible factor oxygen-sensing machinery. Arterioscler Thromb. Vasc. Biol. 2010, 30:2331-2336.
    • (2010) Arterioscler Thromb. Vasc. Biol. , vol.30 , pp. 2331-2336
    • Coulon, C.1
  • 11
    • 84867420094 scopus 로고    scopus 로고
    • Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases
    • Kaelin W.G. Cancer and altered metabolism: potential importance of hypoxia-inducible factor and 2-oxoglutarate-dependent dioxygenases. Cold Spring Harb. Symp. Quant. Biol. 2011, 76:335-345.
    • (2011) Cold Spring Harb. Symp. Quant. Biol. , vol.76 , pp. 335-345
    • Kaelin, W.G.1
  • 12
    • 40949114950 scopus 로고    scopus 로고
    • Role and regulation of prolyl hydroxylase domain proteins
    • Fong G.H., Takeda K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 2008, 15:635-641.
    • (2008) Cell Death Differ. , vol.15 , pp. 635-641
    • Fong, G.H.1    Takeda, K.2
  • 13
    • 69249137859 scopus 로고    scopus 로고
    • Hypoxia-inducible factor prolyl-4-hydroxylase PHD2 protein abundance depends on integral membrane anchoring of FKBP38
    • Barth S., et al. Hypoxia-inducible factor prolyl-4-hydroxylase PHD2 protein abundance depends on integral membrane anchoring of FKBP38. J. Biol. Chem. 2009, 284:23046-23058.
    • (2009) J. Biol. Chem. , vol.284 , pp. 23046-23058
    • Barth, S.1
  • 14
    • 33846283851 scopus 로고    scopus 로고
    • Hypoxia-induced assembly of prolyl hydroxylase PHD3 into complexes: implications for its activity and susceptibility for degradation by the E3 ligase Siah2
    • Nakayama K., et al. Hypoxia-induced assembly of prolyl hydroxylase PHD3 into complexes: implications for its activity and susceptibility for degradation by the E3 ligase Siah2. Biochem. J. 2007, 401:217-226.
    • (2007) Biochem. J. , vol.401 , pp. 217-226
    • Nakayama, K.1
  • 15
    • 67649980040 scopus 로고    scopus 로고
    • Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases
    • Chowdhury R., et al. Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing prolyl hydroxylases. Structure 2009, 17:981-989.
    • (2009) Structure , vol.17 , pp. 981-989
    • Chowdhury, R.1
  • 16
    • 70449580319 scopus 로고    scopus 로고
    • Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization
    • Lee K., et al. Acriflavine inhibits HIF-1 dimerization, tumor growth, and vascularization. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:17910-17915.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 17910-17915
    • Lee, K.1
  • 17
    • 77955284188 scopus 로고    scopus 로고
    • The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism
    • Zhang N., et al. The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism. Cell Metab. 2010, 11:364-378.
    • (2010) Cell Metab. , vol.11 , pp. 364-378
    • Zhang, N.1
  • 18
    • 19944433653 scopus 로고    scopus 로고
    • Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase
    • Selak M.A., et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 2005, 7:77-85.
    • (2005) Cancer Cell , vol.7 , pp. 77-85
    • Selak, M.A.1
  • 19
    • 34047255064 scopus 로고    scopus 로고
    • Structural and mechanistic studies on the inhibition of the hypoxia-inducible transcription factor hydroxylases by tricarboxylic acid cycle intermediates
    • Hewitson K.S., et al. Structural and mechanistic studies on the inhibition of the hypoxia-inducible transcription factor hydroxylases by tricarboxylic acid cycle intermediates. J. Biol. Chem. 2007, 282:3293-3301.
    • (2007) J. Biol. Chem. , vol.282 , pp. 3293-3301
    • Hewitson, K.S.1
  • 20
    • 0037189542 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis
    • Lu H., et al. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J. Biol. Chem. 2002, 277:23111-23115.
    • (2002) J. Biol. Chem. , vol.277 , pp. 23111-23115
    • Lu, H.1
  • 21
    • 64849098267 scopus 로고    scopus 로고
    • Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha
    • Zhao S., et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009, 324:261-265.
    • (2009) Science , vol.324 , pp. 261-265
    • Zhao, S.1
  • 22
    • 72049125350 scopus 로고    scopus 로고
    • Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
    • Dang L., et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462:739-744.
    • (2009) Nature , vol.462 , pp. 739-744
    • Dang, L.1
  • 23
    • 79952366279 scopus 로고    scopus 로고
    • Metabolism unhinged: IDH mutations in cancer
    • Prensner J.R., Chinnaiyan A.M. Metabolism unhinged: IDH mutations in cancer. Nat. Med. 2011, 17:291-293.
    • (2011) Nat. Med. , vol.17 , pp. 291-293
    • Prensner, J.R.1    Chinnaiyan, A.M.2
  • 24
    • 84862776918 scopus 로고    scopus 로고
    • Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation
    • Koivunen P., et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 2012, 483:484-488.
    • (2012) Nature , vol.483 , pp. 484-488
    • Koivunen, P.1
  • 25
    • 79955547561 scopus 로고    scopus 로고
    • The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases
    • Chowdhury R., et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep. 2011, 12:463-469.
    • (2011) EMBO Rep. , vol.12 , pp. 463-469
    • Chowdhury, R.1
  • 26
    • 78650019179 scopus 로고    scopus 로고
    • Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
    • Figueroa M.E., et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010, 18:553-567.
    • (2010) Cancer Cell , vol.18 , pp. 553-567
    • Figueroa, M.E.1
  • 27
    • 78651463452 scopus 로고    scopus 로고
    • Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases
    • Xu W., et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011, 19:17-30.
    • (2011) Cancer Cell , vol.19 , pp. 17-30
    • Xu, W.1
  • 28
    • 0032581277 scopus 로고    scopus 로고
    • Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis
    • Carmeliet P., et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998, 394:485-490.
    • (1998) Nature , vol.394 , pp. 485-490
    • Carmeliet, P.1
  • 29
    • 23644435597 scopus 로고    scopus 로고
    • Genetic evidence for a tumor suppressor role of HIF-2alpha
    • Acker T., et al. Genetic evidence for a tumor suppressor role of HIF-2alpha. Cancer Cell 2005, 8:131-141.
    • (2005) Cancer Cell , vol.8 , pp. 131-141
    • Acker, T.1
  • 30
    • 70549092785 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species regulate hypoxic signaling
    • Hamanaka R.B., Chandel N.S. Mitochondrial reactive oxygen species regulate hypoxic signaling. Curr. Opin. Cell Biol. 2009, 21:894-899.
    • (2009) Curr. Opin. Cell Biol. , vol.21 , pp. 894-899
    • Hamanaka, R.B.1    Chandel, N.S.2
  • 31
    • 84860703232 scopus 로고    scopus 로고
    • Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia
    • Niecknig H., et al. Role of reactive oxygen species in the regulation of HIF-1 by prolyl hydroxylase 2 under mild hypoxia. Free Radic. Res. 2012, 46:705-717.
    • (2012) Free Radic. Res. , vol.46 , pp. 705-717
    • Niecknig, H.1
  • 32
    • 84857789085 scopus 로고    scopus 로고
    • The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity
    • Masson N., et al. The FIH hydroxylase is a cellular peroxide sensor that modulates HIF transcriptional activity. EMBO Rep. 2012, 13:251-257.
    • (2012) EMBO Rep. , vol.13 , pp. 251-257
    • Masson, N.1
  • 34
    • 80054767730 scopus 로고    scopus 로고
    • Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling
    • Adam J., et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 2011, 20:524-537.
    • (2011) Cancer Cell , vol.20 , pp. 524-537
    • Adam, J.1
  • 35
    • 79956287701 scopus 로고    scopus 로고
    • Vitamin C is dispensable for oxygen sensing in vivo
    • Nytko K.J., et al. Vitamin C is dispensable for oxygen sensing in vivo. Blood 2011, 117:5485-5493.
    • (2011) Blood , vol.117 , pp. 5485-5493
    • Nytko, K.J.1
  • 36
    • 77956469107 scopus 로고    scopus 로고
    • HIF prolyl hydroxylase-3 mediates alpha-ketoglutarate-induced apoptosis and tumor suppression
    • Tennant D.A., Gottlieb E. HIF prolyl hydroxylase-3 mediates alpha-ketoglutarate-induced apoptosis and tumor suppression. J. Mol. Med. (Berl.) 2010, 88:839-849.
    • (2010) J. Mol. Med. (Berl.) , vol.88 , pp. 839-849
    • Tennant, D.A.1    Gottlieb, E.2
  • 37
    • 77956674635 scopus 로고    scopus 로고
    • Evidence for an alternative glycolytic pathway in rapidly proliferating cells
    • Vander Heiden M.G., et al. Evidence for an alternative glycolytic pathway in rapidly proliferating cells. Science 2010, 329:1492-1499.
    • (2010) Science , vol.329 , pp. 1492-1499
    • Vander Heiden, M.G.1
  • 38
    • 82555170271 scopus 로고    scopus 로고
    • Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation
    • Yang W., et al. Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 2011, 480:118-122.
    • (2011) Nature , vol.480 , pp. 118-122
    • Yang, W.1
  • 39
    • 84862776933 scopus 로고    scopus 로고
    • Pyruvate kinase m2 regulates gene transcription by acting as a protein kinase
    • Gao X., et al. Pyruvate kinase m2 regulates gene transcription by acting as a protein kinase. Mol. Cell 2012, 45:598-609.
    • (2012) Mol. Cell , vol.45 , pp. 598-609
    • Gao, X.1
  • 40
    • 40749099894 scopus 로고    scopus 로고
    • Pyruvate kinase M2 is a phosphotyrosine-binding protein
    • Christofk H.R., et al. Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature 2008, 452:181-186.
    • (2008) Nature , vol.452 , pp. 181-186
    • Christofk, H.R.1
  • 41
    • 40749163248 scopus 로고    scopus 로고
    • The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth
    • Christofk H.R., et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008, 452:230-233.
    • (2008) Nature , vol.452 , pp. 230-233
    • Christofk, H.R.1
  • 42
    • 77449131347 scopus 로고    scopus 로고
    • Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth
    • Hitosugi T., et al. Tyrosine phosphorylation inhibits PKM2 to promote the Warburg effect and tumor growth. Sci. Signal. 2009, 2:ra73.
    • (2009) Sci. Signal. , vol.2
    • Hitosugi, T.1
  • 43
    • 79957567239 scopus 로고    scopus 로고
    • Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1
    • Luo W., et al. Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1. Cell 2011, 145:732-744.
    • (2011) Cell , vol.145 , pp. 732-744
    • Luo, W.1
  • 44
    • 45849123222 scopus 로고    scopus 로고
    • A cytosolic iron chaperone that delivers iron to ferritin
    • Shi H., et al. A cytosolic iron chaperone that delivers iron to ferritin. Science 2008, 320:1207-1210.
    • (2008) Science , vol.320 , pp. 1207-1210
    • Shi, H.1
  • 45
    • 80455143216 scopus 로고    scopus 로고
    • Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2
    • Nandal A., et al. Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. Cell Metab. 2011, 14:647-657.
    • (2011) Cell Metab. , vol.14 , pp. 647-657
    • Nandal, A.1
  • 46
    • 77649261101 scopus 로고    scopus 로고
    • TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI
    • Chaudhury A., et al. TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat. Cell Biol. 2010, 12:286-293.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 286-293
    • Chaudhury, A.1
  • 47
    • 33746581893 scopus 로고    scopus 로고
    • Heterogeneous nuclear ribonucleoprotein (hnRNP) E1 binds to hnRNP A2 and inhibits translation of A2 response element mRNAs
    • Kosturko L.D., et al. Heterogeneous nuclear ribonucleoprotein (hnRNP) E1 binds to hnRNP A2 and inhibits translation of A2 response element mRNAs. Mol. Biol. Cell 2006, 17:3521-3533.
    • (2006) Mol. Biol. Cell , vol.17 , pp. 3521-3533
    • Kosturko, L.D.1
  • 48
    • 0035122454 scopus 로고    scopus 로고
    • Mapping a tumor suppressor gene to chromosome 2p13 in metanephric adenoma by microsatellite allelotyping
    • Pesti T., et al. Mapping a tumor suppressor gene to chromosome 2p13 in metanephric adenoma by microsatellite allelotyping. Hum. Pathol. 2001, 32:101-104.
    • (2001) Hum. Pathol. , vol.32 , pp. 101-104
    • Pesti, T.1
  • 49
    • 59649117924 scopus 로고    scopus 로고
    • Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization
    • Mazzone M., et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 2009, 136:839-851.
    • (2009) Cell , vol.136 , pp. 839-851
    • Mazzone, M.1
  • 50
    • 84865107849 scopus 로고    scopus 로고
    • Gene-targeting of phd2 improves tumor response to chemotherapy and prevents side-toxicity
    • Leite de Oliveira R., et al. Gene-targeting of phd2 improves tumor response to chemotherapy and prevents side-toxicity. Cancer Cell 2012, 22:263-277.
    • (2012) Cancer Cell , vol.22 , pp. 263-277
    • Leite de Oliveira, R.1
  • 51
    • 31444436640 scopus 로고    scopus 로고
    • A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis
    • Percy M.J., et al. A family with erythrocytosis establishes a role for prolyl hydroxylase domain protein 2 in oxygen homeostasis. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:654-659.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 654-659
    • Percy, M.J.1
  • 52
    • 33845321931 scopus 로고    scopus 로고
    • Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity
    • Cummins E.P., et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:18154-18159.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 18154-18159
    • Cummins, E.P.1
  • 53
    • 77950565914 scopus 로고    scopus 로고
    • Prolyl hydroxylase EGLN3 regulates skeletal myoblast differentiation through an NF-kappaB-dependent pathway
    • Fu J., Taubman M.B. Prolyl hydroxylase EGLN3 regulates skeletal myoblast differentiation through an NF-kappaB-dependent pathway. J. Biol. Chem. 2010, 285:8927-8935.
    • (2010) J. Biol. Chem. , vol.285 , pp. 8927-8935
    • Fu, J.1    Taubman, M.B.2
  • 54
    • 75149150805 scopus 로고    scopus 로고
    • Prolyl hydroxylase-3 is down-regulated in colorectal cancer cells and inhibits IKKbeta independent of hydroxylase activity
    • Xue J., et al. Prolyl hydroxylase-3 is down-regulated in colorectal cancer cells and inhibits IKKbeta independent of hydroxylase activity. Gastroenterology 2010, 138:606-615.
    • (2010) Gastroenterology , vol.138 , pp. 606-615
    • Xue, J.1
  • 55
    • 80455122752 scopus 로고    scopus 로고
    • Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis
    • Takeda Y., et al. Macrophage skewing by Phd2 haplodeficiency prevents ischaemia by inducing arteriogenesis. Nature 2011, 479:122-126.
    • (2011) Nature , vol.479 , pp. 122-126
    • Takeda, Y.1
  • 56
    • 84862809203 scopus 로고    scopus 로고
    • Hypoxia regulates glutamate receptor trafficking through an HIF-independent mechanism
    • Park E.C., et al. Hypoxia regulates glutamate receptor trafficking through an HIF-independent mechanism. Embo. J. 2012, 31:1379-1393.
    • (2012) Embo. J. , vol.31 , pp. 1379-1393
    • Park, E.C.1
  • 57
    • 84858056556 scopus 로고    scopus 로고
    • CYSL-1 interacts with the O(2)-sensing hydroxylase EGL-9 to promote H(2)S-modulated hypoxia-induced behavioral plasticity in C. elegans
    • Ma D.K., et al. CYSL-1 interacts with the O(2)-sensing hydroxylase EGL-9 to promote H(2)S-modulated hypoxia-induced behavioral plasticity in C. elegans. Neuron 2012, 73:925-940.
    • (2012) Neuron , vol.73 , pp. 925-940
    • Ma, D.K.1
  • 58
    • 84865741390 scopus 로고    scopus 로고
    • Metabotropic glutamate receptors in neurodegeneration/neuroprotection: Still a hot topic?
    • Caraci F., et al. Metabotropic glutamate receptors in neurodegeneration/neuroprotection: Still a hot topic?. Neurochem. Int. 2012, 61:559-565.
    • (2012) Neurochem. Int. , vol.61 , pp. 559-565
    • Caraci, F.1
  • 59
    • 80052960971 scopus 로고    scopus 로고
    • TRPA1 underlies a sensing mechanism for O2
    • Takahashi N., et al. TRPA1 underlies a sensing mechanism for O2. Nat. Chem. Biol. 2011, 7:701-711.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 701-711
    • Takahashi, N.1
  • 60
    • 0347504835 scopus 로고    scopus 로고
    • TRP channels as cellular sensors
    • Clapham D.E. TRP channels as cellular sensors. Nature 2003, 426:517-524.
    • (2003) Nature , vol.426 , pp. 517-524
    • Clapham, D.E.1
  • 61
    • 24644439900 scopus 로고    scopus 로고
    • Sensing with TRP channels
    • Voets T., et al. Sensing with TRP channels. Nat. Chem. Biol. 2005, 1:85-92.
    • (2005) Nat. Chem. Biol. , vol.1 , pp. 85-92
    • Voets, T.1
  • 62
    • 33750257552 scopus 로고    scopus 로고
    • Nitric oxide activates TRP channels by cysteine S-nitrosylation
    • Yoshida T., et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nat. Chem. Biol. 2006, 2:596-607.
    • (2006) Nat. Chem. Biol. , vol.2 , pp. 596-607
    • Yoshida, T.1
  • 63
    • 38049035093 scopus 로고    scopus 로고
    • TRPC channel activation by extracellular thioredoxin
    • Xu S.Z., et al. TRPC channel activation by extracellular thioredoxin. Nature 2008, 451:69-72.
    • (2008) Nature , vol.451 , pp. 69-72
    • Xu, S.Z.1
  • 64
    • 84856496317 scopus 로고    scopus 로고
    • The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity
    • Foxler D.E., et al. The LIMD1 protein bridges an association between the prolyl hydroxylases and VHL to repress HIF-1 activity. Nat. Cell Biol. 2012, 14:201-208.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 201-208
    • Foxler, D.E.1
  • 65
    • 33644620740 scopus 로고    scopus 로고
    • NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species
    • Callapina M., et al. NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species. Free Radic. Biol. Med. 2005, 39:925-936.
    • (2005) Free Radic. Biol. Med. , vol.39 , pp. 925-936
    • Callapina, M.1
  • 66
    • 33744979253 scopus 로고    scopus 로고
    • Nonezymatic formation of succinate in mitochondria under oxidative stress
    • Fedotcheva N.I., et al. Nonezymatic formation of succinate in mitochondria under oxidative stress. Free Radic. Biol. Med. 2006, 41:56-64.
    • (2006) Free Radic. Biol. Med. , vol.41 , pp. 56-64
    • Fedotcheva, N.I.1
  • 67
    • 77951552411 scopus 로고    scopus 로고
    • Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury
    • Hyvarinen J., et al. Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury. J. Biol. Chem. 2010, 285:13646-13657.
    • (2010) J. Biol. Chem. , vol.285 , pp. 13646-13657
    • Hyvarinen, J.1
  • 68
    • 77957810983 scopus 로고    scopus 로고
    • Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production
    • Chua Y.L., et al. Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production. J. Biol. Chem. 2010, 285:31277-31284.
    • (2010) J. Biol. Chem. , vol.285 , pp. 31277-31284
    • Chua, Y.L.1
  • 69
    • 35148828429 scopus 로고    scopus 로고
    • Hypoxia-inducible factor 1 (HIF-1) pathway
    • Semenza G.L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE 2007, 2007:cm8.
    • (2007) Sci. STKE , vol.2007
    • Semenza, G.L.1
  • 70
    • 79955518026 scopus 로고    scopus 로고
    • Inhibition of HIF prolyl hydroxylase-2 blocks tumor growth in mice through the antiproliferative activity of TGFbeta
    • Ameln A.K., et al. Inhibition of HIF prolyl hydroxylase-2 blocks tumor growth in mice through the antiproliferative activity of TGFbeta. Cancer Res. 2011, 71:3306-3316.
    • (2011) Cancer Res. , vol.71 , pp. 3306-3316
    • Ameln, A.K.1
  • 71
    • 82555179130 scopus 로고    scopus 로고
    • PHD1 interacts with ATF4 and negatively regulates its transcriptional activity without prolyl hydroxylation
    • Hiwatashi Y., et al. PHD1 interacts with ATF4 and negatively regulates its transcriptional activity without prolyl hydroxylation. Exp. Cell Res. 2011, 317:2789-2799.
    • (2011) Exp. Cell Res. , vol.317 , pp. 2789-2799
    • Hiwatashi, Y.1
  • 72
    • 36348936212 scopus 로고    scopus 로고
    • Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor
    • Koditz J., et al. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 2007, 110:3610-3617.
    • (2007) Blood , vol.110 , pp. 3610-3617
    • Koditz, J.1
  • 73
    • 77956871456 scopus 로고    scopus 로고
    • Human PRP19 interacts with prolyl-hydroxylase PHD3 and inhibits cell death in hypoxia
    • Sato M., et al. Human PRP19 interacts with prolyl-hydroxylase PHD3 and inhibits cell death in hypoxia. Exp. Cell Res. 2010, 316:2871-2882.
    • (2010) Exp. Cell Res. , vol.316 , pp. 2871-2882
    • Sato, M.1
  • 74
    • 79957894196 scopus 로고    scopus 로고
    • Prolyl hydroxylase domain protein 3 targets Pax2 for destruction
    • Yan B., et al. Prolyl hydroxylase domain protein 3 targets Pax2 for destruction. Biochem. Biophys. Res. Commun. 2011, 409:315-320.
    • (2011) Biochem. Biophys. Res. Commun. , vol.409 , pp. 315-320
    • Yan, B.1
  • 75
    • 82755162954 scopus 로고    scopus 로고
    • Regulation of cellular levels of Sprouty2 protein by prolyl hydroxylase domain and von Hippel-Lindau proteins
    • Anderson K., et al. Regulation of cellular levels of Sprouty2 protein by prolyl hydroxylase domain and von Hippel-Lindau proteins. J. Biol. Chem. 2011, 286:42027-42036.
    • (2011) J. Biol. Chem. , vol.286 , pp. 42027-42036
    • Anderson, K.1
  • 76
    • 3142646779 scopus 로고    scopus 로고
    • The HIF prolyl hydroxylase PHD3 is a potential substrate of the TRiC chaperonin
    • Masson N., et al. The HIF prolyl hydroxylase PHD3 is a potential substrate of the TRiC chaperonin. FEBS Lett. 2004, 570:166-170.
    • (2004) FEBS Lett. , vol.570 , pp. 166-170
    • Masson, N.1
  • 77
    • 13944276440 scopus 로고    scopus 로고
    • OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha
    • Baek J.H., et al. OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha. Mol. Cell 2005, 17:503-512.
    • (2005) Mol. Cell , vol.17 , pp. 503-512
    • Baek, J.H.1
  • 78
    • 34247402599 scopus 로고    scopus 로고
    • AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia-inducible factor-1alpha
    • Choi Y.K., et al. AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia-inducible factor-1alpha. J. Neurosci. 2007, 27:4472-4481.
    • (2007) J. Neurosci. , vol.27 , pp. 4472-4481
    • Choi, Y.K.1
  • 79
    • 33646852807 scopus 로고    scopus 로고
    • The novel WD-repeat protein Morg1 acts as a molecular scaffold for hypoxia-inducible factor prolyl hydroxylase 3 (PHD3)
    • Hopfer U., et al. The novel WD-repeat protein Morg1 acts as a molecular scaffold for hypoxia-inducible factor prolyl hydroxylase 3 (PHD3). J. Biol. Chem. 2006, 281:8645-8655.
    • (2006) J. Biol. Chem. , vol.281 , pp. 8645-8655
    • Hopfer, U.1
  • 80
    • 19644376763 scopus 로고    scopus 로고
    • The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF)
    • Ozer A., et al. The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc. Natl. Acad. Sci. U.S.A. 2005, 102:7481-7486.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 7481-7486
    • Ozer, A.1
  • 81
    • 33846298869 scopus 로고    scopus 로고
    • IOP1, a novel hydrogenase-like protein that modulates hypoxia-inducible factor-1alpha activity
    • Huang J., et al. IOP1, a novel hydrogenase-like protein that modulates hypoxia-inducible factor-1alpha activity. Biochem. J. 2007, 401:341-352.
    • (2007) Biochem. J. , vol.401 , pp. 341-352
    • Huang, J.1
  • 82
    • 58349122490 scopus 로고    scopus 로고
    • Melanoma antigen-11 inhibits the hypoxia-inducible factor prolyl hydroxylase 2 and activates hypoxic response
    • Aprelikova O., et al. Melanoma antigen-11 inhibits the hypoxia-inducible factor prolyl hydroxylase 2 and activates hypoxic response. Cancer Res. 2009, 69:616-624.
    • (2009) Cancer Res. , vol.69 , pp. 616-624
    • Aprelikova, O.1
  • 83
    • 70349273701 scopus 로고    scopus 로고
    • Onconeuronal cerebellar degeneration-related antigen, Cdr2, is strongly expressed in papillary renal cell carcinoma and leads to attenuated hypoxic response
    • Balamurugan K., et al. Onconeuronal cerebellar degeneration-related antigen, Cdr2, is strongly expressed in papillary renal cell carcinoma and leads to attenuated hypoxic response. Oncogene 2009, 28:3274-3285.
    • (2009) Oncogene , vol.28 , pp. 3274-3285
    • Balamurugan, K.1
  • 84
    • 34250376483 scopus 로고    scopus 로고
    • EGLN3 prolyl hydroxylase regulates skeletal muscle differentiation and myogenin protein stability
    • Fu J., et al. EGLN3 prolyl hydroxylase regulates skeletal muscle differentiation and myogenin protein stability. J. Biol. Chem. 2007, 282:12410-12418.
    • (2007) J. Biol. Chem. , vol.282 , pp. 12410-12418
    • Fu, J.1
  • 85
    • 41649116940 scopus 로고    scopus 로고
    • The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor
    • Schlisio S., et al. The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev. 2008, 22:884-893.
    • (2008) Genes Dev. , vol.22 , pp. 884-893
    • Schlisio, S.1
  • 86
    • 42149089909 scopus 로고    scopus 로고
    • The von Hippel-Lindau tumor suppressor protein and Egl-9-type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress
    • Mikhaylova O., et al. The von Hippel-Lindau tumor suppressor protein and Egl-9-type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol. Cell Biol. 2008, 28:2701-2717.
    • (2008) Mol. Cell Biol. , vol.28 , pp. 2701-2717
    • Mikhaylova, O.1
  • 87
    • 70249122059 scopus 로고    scopus 로고
    • Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL
    • Xie L., et al. Oxygen-regulated beta(2)-adrenergic receptor hydroxylation by EGLN3 and ubiquitylation by pVHL. Sci. Signal. 2009, 2:ra33.
    • (2009) Sci. Signal. , vol.2
    • Xie, L.1
  • 88
    • 84864766822 scopus 로고    scopus 로고
    • PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response
    • Xie L., et al. PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response. J. Clin. Invest. 2012, 122:2827-2836.
    • (2012) J. Clin. Invest. , vol.122 , pp. 2827-2836
    • Xie, L.1
  • 89
    • 84867658207 scopus 로고    scopus 로고
    • Prolyl hydroxylase domain protein 2 regulates the intracellular cyclic AMP level in cardiomyocytes through its interaction with phosphodiesterase 4D
    • Huo Z., et al. Prolyl hydroxylase domain protein 2 regulates the intracellular cyclic AMP level in cardiomyocytes through its interaction with phosphodiesterase 4D. Biochem. Biophys. Res. Commun. 2012, 427:73-79.
    • (2012) Biochem. Biophys. Res. Commun. , vol.427 , pp. 73-79
    • Huo, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.