-
1
-
-
7444220645
-
Electric field effect in atomically thin carbon films
-
10.1126/science.1102896
-
K. S. Novoselov, A. K. Geim, S. V. Morozov, Electric field effect in atomically thin carbon films., Science 306 (5696), 666-669 (2004). 10.1126/science.1102896
-
(2004)
Science
, vol.306
, Issue.5696
, pp. 666-669
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
-
2
-
-
23044442056
-
Two-dimensional atomic crystals
-
10.1073/pnas.0502848102
-
K. S. Novoselov, D. Jiang, F. Schedin, Two-dimensional atomic crystals., Proc. Natl. Acad. Sci. U.S.A. 102 (30), 10451-10453 (2005). 10.1073/pnas. 0502848102
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, Issue.30
, pp. 10451-10453
-
-
Novoselov, K.S.1
Jiang, D.2
Schedin, F.3
-
3
-
-
34548388792
-
Detection of individual gas molecules adsorbed on graphene
-
10.1038/nmat1967
-
F. Schedin, A. K. Geim, S. V. Morozov, Detection of individual gas molecules adsorbed on graphene., Nature Mater. 6 (9), 652-655 (2007). 10.1038/nmat1967
-
(2007)
Nature Mater.
, vol.6
, Issue.9
, pp. 652-655
-
-
Schedin, F.1
Geim, A.K.2
Morozov, S.V.3
-
5
-
-
33744469329
-
Electronic confinement and coherence in patterned epitaxial graphene
-
10.1126/science.1125925
-
C. Berger, Z. Song, X. Li, Electronic confinement and coherence in patterned epitaxial graphene., Science 312 (5777), 1191-1196 (2006). 10.1126/science.1125925
-
(2006)
Science
, vol.312
, Issue.5777
, pp. 1191-1196
-
-
Berger, C.1
Song, Z.2
Li, X.3
-
6
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
10.1021/nl0731872
-
A. A. Balandin, S. Ghosh, W. Bao, Superior thermal conductivity of single-layer graphene., Nano Lett. 8 (3), 902-907 (2008). 10.1021/nl0731872
-
(2008)
Nano Lett.
, vol.8
, Issue.3
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
-
7
-
-
34547334459
-
Energy band-gap engineering of graphene nanoribbons
-
10.1103/PhysRevLett.98.206805
-
M. Y. Han, B. Özyilmaz, Y. Zhang, Energy band-gap engineering of graphene nanoribbons., Phys. Rev. Lett. 98 (20), 206805 (2007). 10.1103/PhysRevLett.98.206805
-
(2007)
Phys. Rev. Lett.
, vol.98
, Issue.20
, pp. 206805
-
-
Han, M.Y.1
Özyilmaz, B.2
Zhang, Y.3
-
8
-
-
40049093097
-
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
-
10.1126/science.1150878
-
X. Li, X. Wang, L. Zhang, Chemically derived, ultrasmooth graphene nanoribbon semiconductors., Science 319 (5867), 1229-1232 (2008). 10.1126/science.1150878
-
(2008)
Science
, vol.319
, Issue.5867
, pp. 1229-1232
-
-
Li, X.1
Wang, X.2
Zhang, L.3
-
9
-
-
33846361065
-
Electronic structure and stability of semiconducting graphene nanoribbons
-
10.1021/nl0617033
-
V. Barone, O. Hod, and G. E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons., Nano Lett. 6 (12), 2748-2754 (2006). 10.1021/nl0617033
-
(2006)
Nano Lett.
, vol.6
, Issue.12
, pp. 2748-2754
-
-
Barone, V.1
Hod, O.2
Scuseria, G.E.3
-
10
-
-
84856260973
-
A numerical study of line-edge roughness scattering in graphene nanoribbons
-
10.1109/TED.2011.2173690
-
A. Yazdanpanah, M. Pourfath, M. Fathipour, A numerical study of line-edge roughness scattering in graphene nanoribbons., IEEE Trans. Electron Devices 59 (2), 433-440 (2012). 10.1109/TED.2011.2173690
-
(2012)
IEEE Trans. Electron Devices
, vol.59
, Issue.2
, pp. 433-440
-
-
Yazdanpanah, A.1
Pourfath, M.2
Fathipour, M.3
-
11
-
-
79954471183
-
High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography
-
10.1021/ja108464s
-
Y.-S. Shin, J. Y. Son, M.-H. Jo, High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography., J. Am. Chem. Soc. 133 (15), 5623-5625 (2011). 10.1021/ja108464s
-
(2011)
J. Am. Chem. Soc.
, vol.133
, Issue.15
, pp. 5623-5625
-
-
Shin, Y.-S.1
Son, J.Y.2
Jo, M.-H.3
-
12
-
-
44149119344
-
Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
-
10.1103/PhysRevLett.100.206803
-
X. Wang, Y. Ouyang, X. Li, Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors., Phys. Rev. Lett. 100 (20), 206803 (2008). 10.1103/PhysRevLett.100.206803
-
(2008)
Phys. Rev. Lett.
, vol.100
, Issue.20
, pp. 206803
-
-
Wang, X.1
Ouyang, Y.2
Li, X.3
-
13
-
-
40749140712
-
Giant intrinsic carrier mobilities in graphene and its bilayer
-
10.1103/PhysRevLett.100.016602
-
S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, Giant intrinsic carrier mobilities in graphene and its bilayer., Phys. Rev. Lett. 100 (1), 016602 (2008). 10.1103/PhysRevLett.100.016602
-
(2008)
Phys. Rev. Lett.
, vol.100
, Issue.1
, pp. 016602
-
-
Morozov, S.V.1
Novoselov, K.S.2
Katsnelson, M.I.3
-
14
-
-
77649188721
-
Impact of size effect on graphene nanoribbon transport
-
10.1109/LED.2009.2039915
-
Y. Yang and R. Murali, Impact of size effect on graphene nanoribbon transport., IEEE Electron Device Lett. 31 (3), 237-239 (2010). 10.1109/LED.2009.2039915
-
(2010)
IEEE Electron Device Lett.
, vol.31
, Issue.3
, pp. 237-239
-
-
Yang, Y.1
Murali, R.2
-
15
-
-
77954219131
-
Simple and efficient modeling of the E-k relationship and low-field mobility in graphene nano-ribbons
-
10.1016/j.sse.2010.04.038
-
M. Bresciani, P. Palestri, D. Esseni, Simple and efficient modeling of the E-k relationship and low-field mobility in graphene nano-ribbons., Solid-State Electron. 54 (9), 1015-1021 (2010). 10.1016/j.sse.2010.04.038
-
(2010)
Solid-State Electron.
, vol.54
, Issue.9
, pp. 1015-1021
-
-
Bresciani, M.1
Palestri, P.2
Esseni, D.3
-
16
-
-
80052094409
-
Atomistic investigation of low-field mobility in graphene nanoribbons
-
10.1109/TED.2010.2100045
-
A. Betti, G. Fiori, and G. Iannaccone, Atomistic investigation of low-field mobility in graphene nanoribbons., IEEE Trans. Electron Devices 58 (9), 2824-2830 (2011). 10.1109/TED.2010.2100045
-
(2011)
IEEE Trans. Electron Devices
, vol.58
, Issue.9
, pp. 2824-2830
-
-
Betti, A.1
Fiori, G.2
Iannaccone, G.3
-
17
-
-
79961084084
-
Field-enhanced electron mobility by nonlinear phonon scattering of Dirac electrons in semiconducting graphene nanoribbons
-
10.1103/PhysRevB.83.115405
-
D. Huang, G. Gumbs, and O. Roslyak, Field-enhanced electron mobility by nonlinear phonon scattering of Dirac electrons in semiconducting graphene nanoribbons., Phys. Rev. B 83 (11), 115405 (2011). 10.1103/PhysRevB.83.115405
-
(2011)
Phys. Rev. B
, vol.83
, Issue.11
, pp. 115405
-
-
Huang, D.1
Gumbs, G.2
Roslyak, O.3
-
18
-
-
56349108496
-
Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering
-
10.1103/PhysRevB.78.205403
-
T. Fang, A. Konar, H. Xing, Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering., Phys. Rev. B 78 (20), 205403 (2008). 10.1103/PhysRevB.78.205403
-
(2008)
Phys. Rev. B
, vol.78
, Issue.20
, pp. 205403
-
-
Fang, T.1
Konar, A.2
Xing, H.3
-
19
-
-
33846888290
-
Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects
-
10.1021/nl062132h
-
D. A. Areshkin, D. Gunlycke, and C. T. White, Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects., Nano Lett. 7 (1), 204-210 (2007). 10.1021/nl062132h
-
(2007)
Nano Lett.
, vol.7
, Issue.1
, pp. 204-210
-
-
Areshkin, D.A.1
Gunlycke, D.2
White, C.T.3
-
20
-
-
77952418527
-
Physical insights on graphene nanoribbon mobility through atomistic simulations
-
10.1109/IEDM.2009.5424276
-
A. Betti, G. Fiori, G. Iannaccone, Physical insights on graphene nanoribbon mobility through atomistic simulations., Tech. Dig.-Int. Electron Devices Meet. 2009, 837-840. 10.1109/IEDM.2009.5424276
-
Tech. Dig. - Int. Electron Devices Meet.
, vol.2009
, pp. 837-840
-
-
Betti, A.1
Fiori, G.2
Iannaccone, G.3
-
21
-
-
45749113730
-
Carrier scattering in graphene nanoribbon field-effect transistors
-
10.1063/1.2949749
-
Y. Ouyang, X. Wang, H. Dai, Carrier scattering in graphene nanoribbon field-effect transistors., Appl. Phys. Lett. 92 (24), 243124-3 (2008). 10.1063/1.2949749
-
(2008)
Appl. Phys. Lett.
, vol.92
, Issue.24
, pp. 243124-243133
-
-
Ouyang, Y.1
Wang, X.2
Dai, H.3
-
22
-
-
80054926743
-
Inelastic phonon scattering in graphene FETs
-
10.1109/TED.2011.2164253
-
J. Chauhan and G. Jing, Inelastic phonon scattering in graphene FETs., IEEE Trans. Electron Devices 58 (11), 3997-4003 (2011). 10.1109/TED.2011.2164253
-
(2011)
IEEE Trans. Electron Devices
, vol.58
, Issue.11
, pp. 3997-4003
-
-
Chauhan, J.1
Jing, G.2
-
23
-
-
79957561572
-
Role of phonon scattering in graphene nanoribbon transistors: Nonequilibrium Greens function method with real space approach
-
10.1063/1.3589365
-
Y. Yoon, D. E. Nikonov, and S. Salahuddin, Role of phonon scattering in graphene nanoribbon transistors: Nonequilibrium Greens function method with real space approach., Appl. Phys. Lett. 98 (20), 203503-3 (2011). 10.1063/1.3589365
-
(2011)
Appl. Phys. Lett.
, vol.98
, Issue.20
, pp. 203503-203513
-
-
Yoon, Y.1
Nikonov, D.E.2
Salahuddin, S.3
-
24
-
-
0342723158
-
Single and multiband modeling of quantum electron transport through layered semiconductor devices
-
10.1063/1.365394
-
R. Lake, G. Klimeck, R. C. Bowen, Single and multiband modeling of quantum electron transport through layered semiconductor devices., J. Appl. Phys. 81 (12), 7845-7869 (1997). 10.1063/1.365394
-
(1997)
J. Appl. Phys.
, vol.81
, Issue.12
, pp. 7845-7869
-
-
Lake, R.1
Klimeck, G.2
Bowen, R.C.3
-
25
-
-
33751348065
-
Energy gaps in graphene nanoribbons
-
10.1103/PhysRevLett.97.216803
-
Y.-W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons., Phys. Rev. Lett. 97 (21), 216803 (2006). 10.1103/PhysRevLett.97. 216803
-
(2006)
Phys. Rev. Lett.
, vol.97
, Issue.21
, pp. 216803
-
-
Son, Y.-W.1
Cohen, M.L.2
Louie, S.G.3
-
26
-
-
77957590671
-
A fast method to analyze and characterize the graphene nanoribbon FET by non-equilibrium Greens function
-
H. Sarvari and R. Ghayour, A fast method to analyze and characterize the graphene nanoribbon FET by non-equilibrium Greens function., in IEEE International Conference on Semiconductor Electronics (ICSE) (2010), pp. 219-223.
-
(2010)
IEEE International Conference on Semiconductor Electronics (ICSE)
, pp. 219-223
-
-
Sarvari, H.1
Ghayour, R.2
-
27
-
-
26244453976
-
Towards multiscale modeling of carbon nanotube transistors
-
special issue on multiscale methods for emerging technologies. 10.1615/IntJMultCompEng.v2.i2.60
-
J. Guo, S. Datta, M. Lundstrom, Towards multiscale modeling of carbon nanotube transistors., Int. J. Multiscale Comp. Eng. 2, 157-179 (2004), special issue on multiscale methods for emerging technologies. 10.1615/IntJMultCompEng. v2.i2.60
-
(2004)
Int. J. Multiscale Comp. Eng.
, vol.2
, pp. 157-179
-
-
Guo, J.1
Datta, S.2
Lundstrom, M.3
-
28
-
-
38849085377
-
Nonequilibrium greens function treatment of phonon scattering in carbon-nanotube transistors
-
10.1109/TED.2007.902900
-
S. O. Koswatta, S. Hasan, M. S. Lundstrom, Nonequilibrium greens function treatment of phonon scattering in carbon-nanotube transistors., IEEE Trans. Electron Devices 54 (9), 2339-2351 (2007). 10.1109/TED.2007.902900
-
(2007)
IEEE Trans. Electron Devices
, vol.54
, Issue.9
, pp. 2339-2351
-
-
Koswatta, S.O.1
Hasan, S.2
Lundstrom, M.S.3
-
29
-
-
60449083167
-
Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods
-
10.1063/1.3073875
-
P. Zhao and J. Guo, Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods., J. Appl. Phys. 105 (3), 034503 (2009). 10.1063/1.3073875
-
(2009)
J. Appl. Phys.
, vol.105
, Issue.3
, pp. 034503
-
-
Zhao, P.1
Guo, J.2
-
30
-
-
77956329383
-
Generalized tight-binding transport model for graphene nanoribbon-based systems
-
10.1103/PhysRevB.81.245402
-
Y. Hancock, A. Uppstu, K. Saloriutta, Generalized tight-binding transport model for graphene nanoribbon-based systems., Phys. Rev. B 81 (24), 245402 (2010). 10.1103/PhysRevB.81.245402
-
(2010)
Phys. Rev. B
, vol.81
, Issue.24
, pp. 245402
-
-
Hancock, Y.1
Uppstu, A.2
Saloriutta, K.3
-
31
-
-
4043108064
-
Tight-binding description of graphene
-
10.1103/PhysRevB.66.035412
-
S. Reich, J. Maultzsch, C. Thomsen, Tight-binding description of graphene., Phys. Rev. B 66 (3), 035412 (2002). 10.1103/PhysRevB.66.035412
-
(2002)
Phys. Rev. B
, vol.66
, Issue.3
, pp. 035412
-
-
Reich, S.1
Maultzsch, J.2
Thomsen, C.3
-
32
-
-
41749107980
-
Multidimensional Modeling of Nanotransistors
-
10.1109/TED.2007.902857
-
M. P. Anantram and A. Svizhenko, Multidimensional Modeling of Nanotransistors., IEEE Trans. Electron Devices 54 (9), 2100-2115 (2007). 10.1109/TED.2007.902857
-
(2007)
IEEE Trans. Electron Devices
, vol.54
, Issue.9
, pp. 2100-2115
-
-
Anantram, M.P.1
Svizhenko, A.2
-
33
-
-
51649112866
-
Modeling of nanoscale devices
-
10.1109/JPROC.2008.927355
-
M. P. Anantram, M. S. Lundstrom, and D. E. Nikonov, Modeling of nanoscale devices., Proc. IEEE 96 (9), 1511-1550 (2008). 10.1109/JPROC.2008.927355
-
(2008)
Proc. IEEE
, vol.96
, Issue.9
, pp. 1511-1550
-
-
Anantram, M.P.1
Lundstrom, M.S.2
Nikonov, D.E.3
-
34
-
-
33845426952
-
Two-dimensional quantum mechanical modeling of nanotransistors
-
10.1063/1.1432117
-
A. Svizhenko, M. P. Anantram, T. R. Govindan, Two-dimensional quantum mechanical modeling of nanotransistors., J. Appl. Phys. 91 (4), 2343-2354 (2002). 10.1063/1.1432117
-
(2002)
J. Appl. Phys.
, vol.91
, Issue.4
, pp. 2343-2354
-
-
Svizhenko, A.1
Anantram, M.P.2
Govindan, T.R.3
-
35
-
-
44449090563
-
Quantum thermal transport in nanostructures
-
10.1140/epjb/e2008-00195-8
-
J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures., Eur. Phys. J. B 62 (4), 381-404 (2008). 10.1140/epjb/e2008- 00195-8
-
(2008)
Eur. Phys. J. B
, vol.62
, Issue.4
, pp. 381-404
-
-
Wang, J.S.1
Wang, J.2
Lü, J.T.3
-
36
-
-
0242473163
-
Non-equilibrium Green function implementation of boundary conditions for full band simulations of substrate-nanowire structures
-
10.1002/pssb.200303240
-
C. Rivas and R. Lake, Non-equilibrium Green function implementation of boundary conditions for full band simulations of substrate-nanowire structures., Phys. Status Solidi B 239 (1), 94-102 (2003). 10.1002/pssb.200303240
-
(2003)
Phys. Status Solidi B
, vol.239
, Issue.1
, pp. 94-102
-
-
Rivas, C.1
Lake, R.2
-
37
-
-
0000821265
-
Quick iterative scheme for the calculation of transfer matrices: Application to Mo (100)
-
10.1088/0305-4608/14/5/016
-
M. P. L. Sancho, Quick iterative scheme for the calculation of transfer matrices: Application to Mo (100)., J. Phys. F: Met. Phys. 14 (5), 1205 (1984). 10.1088/0305-4608/14/5/016
-
(1984)
J. Phys. F: Met. Phys.
, vol.14
, Issue.5
, pp. 1205
-
-
Sancho, M.P.L.1
-
38
-
-
0001124898
-
Highly convergent schemes for the calculation of bulk and surface Green functions
-
10.1088/0305-4608/15/4/009
-
M. P. L. Sancho, Highly convergent schemes for the calculation of bulk and surface Green functions., J. Phys. F: Met. Phys. 15 (4), 851 (1985). 10.1088/0305-4608/15/4/009
-
(1985)
J. Phys. F: Met. Phys.
, vol.15
, Issue.4
, pp. 851
-
-
Sancho, M.P.L.1
-
39
-
-
51249116057
-
Atomistic non-equilibrium Greens function simulations of Graphene nano-ribbons in the quantum hall regime
-
10.1007/s10825-008-0190-x
-
R. Golizadeh-Mojarad, A. Zainuddin, G. Klimeck, Atomistic non-equilibrium Greens function simulations of Graphene nano-ribbons in the quantum hall regime., J. Comput. Electron. 7 (3), 407-410 (2008). 10.1007/s10825-008-0190-x
-
(2008)
J. Comput. Electron.
, vol.7
, Issue.3
, pp. 407-410
-
-
Golizadeh-Mojarad, R.1
Zainuddin, A.2
Klimeck, G.3
-
40
-
-
79953077972
-
Influence of elastic and inelastic electron-phonon interaction on quantum transport in multigate silicon nanowire MOSFETs
-
10.1109/TED.2011.2107521
-
N. D. Akhavan, A. Afzalian, I. Ferain, Influence of elastic and inelastic electron-phonon interaction on quantum transport in multigate silicon nanowire MOSFETs., IEEE Trans. Electron Devices 58 (4), 1029 (2011). 10.1109/TED.2011. 2107521
-
(2011)
IEEE Trans. Electron Devices
, vol.58
, Issue.4
, pp. 1029
-
-
Akhavan, N.D.1
Afzalian, A.2
Ferain, I.3
-
41
-
-
77955883760
-
Effect of intravalley acoustic phonon scattering on quantum transport in multigate silicon nanowire metal-oxide-semiconductor field-effect transistors
-
10.1063/1.3457848
-
N. D. Akhavan, A. Afzalian, C. W. Lee, Effect of intravalley acoustic phonon scattering on quantum transport in multigate silicon nanowire metal-oxide-semiconductor field-effect transistors., J. Appl. Phys. 108 (3), 034510 (2010). 10.1063/1.3457848
-
(2010)
J. Appl. Phys.
, vol.108
, Issue.3
, pp. 034510
-
-
Akhavan, N.D.1
Afzalian, A.2
Lee, C.W.3
-
42
-
-
84858069152
-
Influence of discrete dopant on quantum transport in silicon nanowire transistors
-
10.1016/j.sse.2011.11.017
-
N. D. Akhavan, I. Ferain, R. Yu, Influence of discrete dopant on quantum transport in silicon nanowire transistors., Solid-State Electron. 70, 92-100 (2011). 10.1016/j.sse.2011.11.017
-
(2011)
Solid-State Electron.
, vol.70
, pp. 92-100
-
-
Akhavan, N.D.1
Ferain, I.2
Yu, R.3
-
43
-
-
34547365864
-
Quantum simulation of coaxially gated CNTFETs by using an effective mass approach
-
10.3938/jkps.50.1887
-
C. Ahn and M. Shin, Quantum simulation of coaxially gated CNTFETs by using an effective mass approach., J. Korean Phys. Soc. 50 (6), 1887-1893 (2007). 10.3938/jkps.50.1887
-
(2007)
J. Korean Phys. Soc.
, vol.50
, Issue.6
, pp. 1887-1893
-
-
Ahn, C.1
Shin, M.2
-
44
-
-
37749025732
-
Nanometer MOSFET variation in minimum energy subthreshold circuits
-
10.1109/TED.2007.911352
-
N. Verma, J. Kwong, and A. P. Chandrakasan, Nanometer MOSFET variation in minimum energy subthreshold circuits., IEEE Trans. Electron Devices 55 (1), 163-174 (2008). 10.1109/TED.2007.911352
-
(2008)
IEEE Trans. Electron Devices
, vol.55
, Issue.1
, pp. 163-174
-
-
Verma, N.1
Kwong, J.2
Chandrakasan, A.P.3
-
45
-
-
77950084994
-
Top-gated epitaxial graphene FETs on Si-Face SiC wafers with a peak transconductance of 600 mS/mm
-
10.1109/LED.2010.2040132
-
J. S. Moon, D. Curtis, S. Bui, Top-gated epitaxial graphene FETs on Si-Face SiC wafers with a peak transconductance of 600 mS/mm., IEEE Electron Device Lett. 31 (4), 260-262 (2010). 10.1109/LED.2010.2040132
-
(2010)
IEEE Electron Device Lett.
, vol.31
, Issue.4
, pp. 260-262
-
-
Moon, J.S.1
Curtis, D.2
Bui, S.3
-
46
-
-
84856983318
-
Nanodevices in Flatland: Two-dimensional graphene-based transistors with high Ion/Ioff ratio
-
10.1109/IEDM.2011.6131533
-
G. Fiori, A. Betti, S. Bruzzone, Nanodevices in Flatland: Two-dimensional graphene-based transistors with high Ion/Ioff ratio., Tech. Dig.-Int. Electron Devices Meet. 2011, 11.4.1-11.4.4. 10.1109/IEDM.2011.6131533
-
Tech. Dig. - Int. Electron Devices Meet.
, vol.2011
, pp. 1141-1144
-
-
Fiori, G.1
Betti, A.2
Bruzzone, S.3
-
47
-
-
79955718937
-
Computational comparison of conductivity and mobility models for silicon nanowire devices
-
10.1063/1.3573487
-
M. Frey, A. Esposito, and A. Schenk, Computational comparison of conductivity and mobility models for silicon nanowire devices., J. Appl. Phys. 109 (8), 083707 (2011). 10.1063/1.3573487
-
(2011)
J. Appl. Phys.
, vol.109
, Issue.8
, pp. 083707
-
-
Frey, M.1
Esposito, A.2
Schenk, A.3
-
48
-
-
33745711573
-
A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions
-
10.1063/1.2206885
-
S. Jin, Y. J. Park, and H. S. Min, A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions., J. Appl. Phys. 99 (12), 123719 (2006). 10.1063/1.2206885
-
(2006)
J. Appl. Phys.
, vol.99
, Issue.12
, pp. 123719
-
-
Jin, S.1
Park, Y.J.2
Min, H.S.3
-
49
-
-
74349083691
-
Full quantum investigation of low Field mobility in short-channel silicon nanowire FETS
-
SISPAD '09 10.1109/SISPAD.2009.5290193
-
S. Poli and M. G. Pala, Full quantum investigation of low Field mobility in short-channel silicon nanowire FETS., in International Conference on Simulation of Semiconductor Processes and Devices, SISPAD '09 (2009) pp. 1-4. 10.1109/SISPAD.2009.5290193
-
(2009)
International Conference on Simulation of Semiconductor Processes and Devices
, pp. 1-4
-
-
Poli, S.1
Pala, M.G.2
-
50
-
-
70350584509
-
Channel-length dependence of low-field mobility in silicon-nanowire FETs
-
10.1109/LED.2009.2031418
-
S. Poli and M. G. Pala, Channel-length dependence of low-field mobility in silicon-nanowire FETs., IEEE Electron Device Lett. 30 (11), 1212-1214 (2009). 10.1109/LED.2009.2031418
-
(2009)
IEEE Electron Device Lett.
, vol.30
, Issue.11
, pp. 1212-1214
-
-
Poli, S.1
Pala, M.G.2
-
51
-
-
79955539931
-
Full three-dimensional quantum transport simulation of atomistic interface roughness in silicon nanowire FETs
-
10.1109/TED.2011.2118213
-
S. Kim, M. Luisier, A. Paul, Full three-dimensional quantum transport simulation of atomistic interface roughness in silicon nanowire FETs., IEEE Trans. Electron Devices 58 (5), 1371-1380 (2011). 10.1109/TED.2011.2118213
-
(2011)
IEEE Trans. Electron Devices
, vol.58
, Issue.5
, pp. 1371-1380
-
-
Kim, S.1
Luisier, M.2
Paul, A.3
-
52
-
-
56549113551
-
Size dependence of surface-roughness-limited mobility in silicon-nanowire FETs
-
10.1109/TED.2008.2005164
-
S. Poli, M. G. Pala, T. Poiroux, Size dependence of surface-roughness- limited mobility in silicon-nanowire FETs., IEEE Trans. Electron Devices 55 (11), 2968-2976 (2008). 10.1109/TED.2008.2005164
-
(2008)
IEEE Trans. Electron Devices
, vol.55
, Issue.11
, pp. 2968-2976
-
-
Poli, S.1
Pala, M.G.2
Poiroux, T.3
-
53
-
-
84870892752
-
Emission and absorption of optical phonons in multigate silicon nanowire MOSFETs
-
10.1007/s10825-012-0411-1
-
N. D. Akhavan, I. Ferain, R. Yu, Emission and absorption of optical phonons in multigate silicon nanowire MOSFETs., J. Comput. Electron. 11 (3), 249-265 (2012). 10.1007/s10825-012-0411-1
-
(2012)
J. Comput. Electron.
, vol.11
, Issue.3
, pp. 249-265
-
-
Akhavan, N.D.1
Ferain, I.2
Yu, R.3
|