메뉴 건너뛰기




Volumn 112, Issue 9, 2012, Pages

Phonon limited transport in graphene nanoribbon field effect transistors using full three dimensional quantum mechanical simulation

Author keywords

[No Author keywords available]

Indexed keywords

ACOUSTIC PHONONS; ELECTRON PHONON SCATTERING; GRAPHENE NANO-RIBBON; LOW FIELD MOBILITY; NANORIBBONS; NEAREST NEIGHBOUR; NON EQUILIBRIUM; OPTICAL PHONONS; QUANTUM MECHANICAL SIMULATIONS; REAL-SPACE; TIGHT-BINDING APPROXIMATIONS; TRANSPORT PARAMETERS;

EID: 84870882902     PISSN: 00218979     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.4764318     Document Type: Article
Times cited : (28)

References (53)
  • 1
    • 7444220645 scopus 로고    scopus 로고
    • Electric field effect in atomically thin carbon films
    • 10.1126/science.1102896
    • K. S. Novoselov, A. K. Geim, S. V. Morozov, Electric field effect in atomically thin carbon films., Science 306 (5696), 666-669 (2004). 10.1126/science.1102896
    • (2004) Science , vol.306 , Issue.5696 , pp. 666-669
    • Novoselov, K.S.1    Geim, A.K.2    Morozov, S.V.3
  • 2
    • 23044442056 scopus 로고    scopus 로고
    • Two-dimensional atomic crystals
    • 10.1073/pnas.0502848102
    • K. S. Novoselov, D. Jiang, F. Schedin, Two-dimensional atomic crystals., Proc. Natl. Acad. Sci. U.S.A. 102 (30), 10451-10453 (2005). 10.1073/pnas. 0502848102
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , Issue.30 , pp. 10451-10453
    • Novoselov, K.S.1    Jiang, D.2    Schedin, F.3
  • 3
    • 34548388792 scopus 로고    scopus 로고
    • Detection of individual gas molecules adsorbed on graphene
    • 10.1038/nmat1967
    • F. Schedin, A. K. Geim, S. V. Morozov, Detection of individual gas molecules adsorbed on graphene., Nature Mater. 6 (9), 652-655 (2007). 10.1038/nmat1967
    • (2007) Nature Mater. , vol.6 , Issue.9 , pp. 652-655
    • Schedin, F.1    Geim, A.K.2    Morozov, S.V.3
  • 5
    • 33744469329 scopus 로고    scopus 로고
    • Electronic confinement and coherence in patterned epitaxial graphene
    • 10.1126/science.1125925
    • C. Berger, Z. Song, X. Li, Electronic confinement and coherence in patterned epitaxial graphene., Science 312 (5777), 1191-1196 (2006). 10.1126/science.1125925
    • (2006) Science , vol.312 , Issue.5777 , pp. 1191-1196
    • Berger, C.1    Song, Z.2    Li, X.3
  • 6
    • 42349087225 scopus 로고    scopus 로고
    • Superior thermal conductivity of single-layer graphene
    • 10.1021/nl0731872
    • A. A. Balandin, S. Ghosh, W. Bao, Superior thermal conductivity of single-layer graphene., Nano Lett. 8 (3), 902-907 (2008). 10.1021/nl0731872
    • (2008) Nano Lett. , vol.8 , Issue.3 , pp. 902-907
    • Balandin, A.A.1    Ghosh, S.2    Bao, W.3
  • 7
    • 34547334459 scopus 로고    scopus 로고
    • Energy band-gap engineering of graphene nanoribbons
    • 10.1103/PhysRevLett.98.206805
    • M. Y. Han, B. Özyilmaz, Y. Zhang, Energy band-gap engineering of graphene nanoribbons., Phys. Rev. Lett. 98 (20), 206805 (2007). 10.1103/PhysRevLett.98.206805
    • (2007) Phys. Rev. Lett. , vol.98 , Issue.20 , pp. 206805
    • Han, M.Y.1    Özyilmaz, B.2    Zhang, Y.3
  • 8
    • 40049093097 scopus 로고    scopus 로고
    • Chemically derived, ultrasmooth graphene nanoribbon semiconductors
    • 10.1126/science.1150878
    • X. Li, X. Wang, L. Zhang, Chemically derived, ultrasmooth graphene nanoribbon semiconductors., Science 319 (5867), 1229-1232 (2008). 10.1126/science.1150878
    • (2008) Science , vol.319 , Issue.5867 , pp. 1229-1232
    • Li, X.1    Wang, X.2    Zhang, L.3
  • 9
    • 33846361065 scopus 로고    scopus 로고
    • Electronic structure and stability of semiconducting graphene nanoribbons
    • 10.1021/nl0617033
    • V. Barone, O. Hod, and G. E. Scuseria, Electronic structure and stability of semiconducting graphene nanoribbons., Nano Lett. 6 (12), 2748-2754 (2006). 10.1021/nl0617033
    • (2006) Nano Lett. , vol.6 , Issue.12 , pp. 2748-2754
    • Barone, V.1    Hod, O.2    Scuseria, G.E.3
  • 10
    • 84856260973 scopus 로고    scopus 로고
    • A numerical study of line-edge roughness scattering in graphene nanoribbons
    • 10.1109/TED.2011.2173690
    • A. Yazdanpanah, M. Pourfath, M. Fathipour, A numerical study of line-edge roughness scattering in graphene nanoribbons., IEEE Trans. Electron Devices 59 (2), 433-440 (2012). 10.1109/TED.2011.2173690
    • (2012) IEEE Trans. Electron Devices , vol.59 , Issue.2 , pp. 433-440
    • Yazdanpanah, A.1    Pourfath, M.2    Fathipour, M.3
  • 11
    • 79954471183 scopus 로고    scopus 로고
    • High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography
    • 10.1021/ja108464s
    • Y.-S. Shin, J. Y. Son, M.-H. Jo, High-mobility graphene nanoribbons prepared using polystyrene dip-pen nanolithography., J. Am. Chem. Soc. 133 (15), 5623-5625 (2011). 10.1021/ja108464s
    • (2011) J. Am. Chem. Soc. , vol.133 , Issue.15 , pp. 5623-5625
    • Shin, Y.-S.1    Son, J.Y.2    Jo, M.-H.3
  • 12
    • 44149119344 scopus 로고    scopus 로고
    • Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors
    • 10.1103/PhysRevLett.100.206803
    • X. Wang, Y. Ouyang, X. Li, Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors., Phys. Rev. Lett. 100 (20), 206803 (2008). 10.1103/PhysRevLett.100.206803
    • (2008) Phys. Rev. Lett. , vol.100 , Issue.20 , pp. 206803
    • Wang, X.1    Ouyang, Y.2    Li, X.3
  • 13
    • 40749140712 scopus 로고    scopus 로고
    • Giant intrinsic carrier mobilities in graphene and its bilayer
    • 10.1103/PhysRevLett.100.016602
    • S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, Giant intrinsic carrier mobilities in graphene and its bilayer., Phys. Rev. Lett. 100 (1), 016602 (2008). 10.1103/PhysRevLett.100.016602
    • (2008) Phys. Rev. Lett. , vol.100 , Issue.1 , pp. 016602
    • Morozov, S.V.1    Novoselov, K.S.2    Katsnelson, M.I.3
  • 14
    • 77649188721 scopus 로고    scopus 로고
    • Impact of size effect on graphene nanoribbon transport
    • 10.1109/LED.2009.2039915
    • Y. Yang and R. Murali, Impact of size effect on graphene nanoribbon transport., IEEE Electron Device Lett. 31 (3), 237-239 (2010). 10.1109/LED.2009.2039915
    • (2010) IEEE Electron Device Lett. , vol.31 , Issue.3 , pp. 237-239
    • Yang, Y.1    Murali, R.2
  • 15
    • 77954219131 scopus 로고    scopus 로고
    • Simple and efficient modeling of the E-k relationship and low-field mobility in graphene nano-ribbons
    • 10.1016/j.sse.2010.04.038
    • M. Bresciani, P. Palestri, D. Esseni, Simple and efficient modeling of the E-k relationship and low-field mobility in graphene nano-ribbons., Solid-State Electron. 54 (9), 1015-1021 (2010). 10.1016/j.sse.2010.04.038
    • (2010) Solid-State Electron. , vol.54 , Issue.9 , pp. 1015-1021
    • Bresciani, M.1    Palestri, P.2    Esseni, D.3
  • 16
    • 80052094409 scopus 로고    scopus 로고
    • Atomistic investigation of low-field mobility in graphene nanoribbons
    • 10.1109/TED.2010.2100045
    • A. Betti, G. Fiori, and G. Iannaccone, Atomistic investigation of low-field mobility in graphene nanoribbons., IEEE Trans. Electron Devices 58 (9), 2824-2830 (2011). 10.1109/TED.2010.2100045
    • (2011) IEEE Trans. Electron Devices , vol.58 , Issue.9 , pp. 2824-2830
    • Betti, A.1    Fiori, G.2    Iannaccone, G.3
  • 17
    • 79961084084 scopus 로고    scopus 로고
    • Field-enhanced electron mobility by nonlinear phonon scattering of Dirac electrons in semiconducting graphene nanoribbons
    • 10.1103/PhysRevB.83.115405
    • D. Huang, G. Gumbs, and O. Roslyak, Field-enhanced electron mobility by nonlinear phonon scattering of Dirac electrons in semiconducting graphene nanoribbons., Phys. Rev. B 83 (11), 115405 (2011). 10.1103/PhysRevB.83.115405
    • (2011) Phys. Rev. B , vol.83 , Issue.11 , pp. 115405
    • Huang, D.1    Gumbs, G.2    Roslyak, O.3
  • 18
    • 56349108496 scopus 로고    scopus 로고
    • Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering
    • 10.1103/PhysRevB.78.205403
    • T. Fang, A. Konar, H. Xing, Mobility in semiconducting graphene nanoribbons: Phonon, impurity, and edge roughness scattering., Phys. Rev. B 78 (20), 205403 (2008). 10.1103/PhysRevB.78.205403
    • (2008) Phys. Rev. B , vol.78 , Issue.20 , pp. 205403
    • Fang, T.1    Konar, A.2    Xing, H.3
  • 19
    • 33846888290 scopus 로고    scopus 로고
    • Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects
    • 10.1021/nl062132h
    • D. A. Areshkin, D. Gunlycke, and C. T. White, Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects., Nano Lett. 7 (1), 204-210 (2007). 10.1021/nl062132h
    • (2007) Nano Lett. , vol.7 , Issue.1 , pp. 204-210
    • Areshkin, D.A.1    Gunlycke, D.2    White, C.T.3
  • 20
    • 77952418527 scopus 로고    scopus 로고
    • Physical insights on graphene nanoribbon mobility through atomistic simulations
    • 10.1109/IEDM.2009.5424276
    • A. Betti, G. Fiori, G. Iannaccone, Physical insights on graphene nanoribbon mobility through atomistic simulations., Tech. Dig.-Int. Electron Devices Meet. 2009, 837-840. 10.1109/IEDM.2009.5424276
    • Tech. Dig. - Int. Electron Devices Meet. , vol.2009 , pp. 837-840
    • Betti, A.1    Fiori, G.2    Iannaccone, G.3
  • 21
    • 45749113730 scopus 로고    scopus 로고
    • Carrier scattering in graphene nanoribbon field-effect transistors
    • 10.1063/1.2949749
    • Y. Ouyang, X. Wang, H. Dai, Carrier scattering in graphene nanoribbon field-effect transistors., Appl. Phys. Lett. 92 (24), 243124-3 (2008). 10.1063/1.2949749
    • (2008) Appl. Phys. Lett. , vol.92 , Issue.24 , pp. 243124-243133
    • Ouyang, Y.1    Wang, X.2    Dai, H.3
  • 22
    • 80054926743 scopus 로고    scopus 로고
    • Inelastic phonon scattering in graphene FETs
    • 10.1109/TED.2011.2164253
    • J. Chauhan and G. Jing, Inelastic phonon scattering in graphene FETs., IEEE Trans. Electron Devices 58 (11), 3997-4003 (2011). 10.1109/TED.2011.2164253
    • (2011) IEEE Trans. Electron Devices , vol.58 , Issue.11 , pp. 3997-4003
    • Chauhan, J.1    Jing, G.2
  • 23
    • 79957561572 scopus 로고    scopus 로고
    • Role of phonon scattering in graphene nanoribbon transistors: Nonequilibrium Greens function method with real space approach
    • 10.1063/1.3589365
    • Y. Yoon, D. E. Nikonov, and S. Salahuddin, Role of phonon scattering in graphene nanoribbon transistors: Nonequilibrium Greens function method with real space approach., Appl. Phys. Lett. 98 (20), 203503-3 (2011). 10.1063/1.3589365
    • (2011) Appl. Phys. Lett. , vol.98 , Issue.20 , pp. 203503-203513
    • Yoon, Y.1    Nikonov, D.E.2    Salahuddin, S.3
  • 24
    • 0342723158 scopus 로고    scopus 로고
    • Single and multiband modeling of quantum electron transport through layered semiconductor devices
    • 10.1063/1.365394
    • R. Lake, G. Klimeck, R. C. Bowen, Single and multiband modeling of quantum electron transport through layered semiconductor devices., J. Appl. Phys. 81 (12), 7845-7869 (1997). 10.1063/1.365394
    • (1997) J. Appl. Phys. , vol.81 , Issue.12 , pp. 7845-7869
    • Lake, R.1    Klimeck, G.2    Bowen, R.C.3
  • 25
    • 33751348065 scopus 로고    scopus 로고
    • Energy gaps in graphene nanoribbons
    • 10.1103/PhysRevLett.97.216803
    • Y.-W. Son, M. L. Cohen, and S. G. Louie, Energy gaps in graphene nanoribbons., Phys. Rev. Lett. 97 (21), 216803 (2006). 10.1103/PhysRevLett.97. 216803
    • (2006) Phys. Rev. Lett. , vol.97 , Issue.21 , pp. 216803
    • Son, Y.-W.1    Cohen, M.L.2    Louie, S.G.3
  • 26
    • 77957590671 scopus 로고    scopus 로고
    • A fast method to analyze and characterize the graphene nanoribbon FET by non-equilibrium Greens function
    • H. Sarvari and R. Ghayour, A fast method to analyze and characterize the graphene nanoribbon FET by non-equilibrium Greens function., in IEEE International Conference on Semiconductor Electronics (ICSE) (2010), pp. 219-223.
    • (2010) IEEE International Conference on Semiconductor Electronics (ICSE) , pp. 219-223
    • Sarvari, H.1    Ghayour, R.2
  • 27
    • 26244453976 scopus 로고    scopus 로고
    • Towards multiscale modeling of carbon nanotube transistors
    • special issue on multiscale methods for emerging technologies. 10.1615/IntJMultCompEng.v2.i2.60
    • J. Guo, S. Datta, M. Lundstrom, Towards multiscale modeling of carbon nanotube transistors., Int. J. Multiscale Comp. Eng. 2, 157-179 (2004), special issue on multiscale methods for emerging technologies. 10.1615/IntJMultCompEng. v2.i2.60
    • (2004) Int. J. Multiscale Comp. Eng. , vol.2 , pp. 157-179
    • Guo, J.1    Datta, S.2    Lundstrom, M.3
  • 28
    • 38849085377 scopus 로고    scopus 로고
    • Nonequilibrium greens function treatment of phonon scattering in carbon-nanotube transistors
    • 10.1109/TED.2007.902900
    • S. O. Koswatta, S. Hasan, M. S. Lundstrom, Nonequilibrium greens function treatment of phonon scattering in carbon-nanotube transistors., IEEE Trans. Electron Devices 54 (9), 2339-2351 (2007). 10.1109/TED.2007.902900
    • (2007) IEEE Trans. Electron Devices , vol.54 , Issue.9 , pp. 2339-2351
    • Koswatta, S.O.1    Hasan, S.2    Lundstrom, M.S.3
  • 29
    • 60449083167 scopus 로고    scopus 로고
    • Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods
    • 10.1063/1.3073875
    • P. Zhao and J. Guo, Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods., J. Appl. Phys. 105 (3), 034503 (2009). 10.1063/1.3073875
    • (2009) J. Appl. Phys. , vol.105 , Issue.3 , pp. 034503
    • Zhao, P.1    Guo, J.2
  • 30
    • 77956329383 scopus 로고    scopus 로고
    • Generalized tight-binding transport model for graphene nanoribbon-based systems
    • 10.1103/PhysRevB.81.245402
    • Y. Hancock, A. Uppstu, K. Saloriutta, Generalized tight-binding transport model for graphene nanoribbon-based systems., Phys. Rev. B 81 (24), 245402 (2010). 10.1103/PhysRevB.81.245402
    • (2010) Phys. Rev. B , vol.81 , Issue.24 , pp. 245402
    • Hancock, Y.1    Uppstu, A.2    Saloriutta, K.3
  • 31
    • 4043108064 scopus 로고    scopus 로고
    • Tight-binding description of graphene
    • 10.1103/PhysRevB.66.035412
    • S. Reich, J. Maultzsch, C. Thomsen, Tight-binding description of graphene., Phys. Rev. B 66 (3), 035412 (2002). 10.1103/PhysRevB.66.035412
    • (2002) Phys. Rev. B , vol.66 , Issue.3 , pp. 035412
    • Reich, S.1    Maultzsch, J.2    Thomsen, C.3
  • 32
    • 41749107980 scopus 로고    scopus 로고
    • Multidimensional Modeling of Nanotransistors
    • 10.1109/TED.2007.902857
    • M. P. Anantram and A. Svizhenko, Multidimensional Modeling of Nanotransistors., IEEE Trans. Electron Devices 54 (9), 2100-2115 (2007). 10.1109/TED.2007.902857
    • (2007) IEEE Trans. Electron Devices , vol.54 , Issue.9 , pp. 2100-2115
    • Anantram, M.P.1    Svizhenko, A.2
  • 33
    • 51649112866 scopus 로고    scopus 로고
    • Modeling of nanoscale devices
    • 10.1109/JPROC.2008.927355
    • M. P. Anantram, M. S. Lundstrom, and D. E. Nikonov, Modeling of nanoscale devices., Proc. IEEE 96 (9), 1511-1550 (2008). 10.1109/JPROC.2008.927355
    • (2008) Proc. IEEE , vol.96 , Issue.9 , pp. 1511-1550
    • Anantram, M.P.1    Lundstrom, M.S.2    Nikonov, D.E.3
  • 34
    • 33845426952 scopus 로고    scopus 로고
    • Two-dimensional quantum mechanical modeling of nanotransistors
    • 10.1063/1.1432117
    • A. Svizhenko, M. P. Anantram, T. R. Govindan, Two-dimensional quantum mechanical modeling of nanotransistors., J. Appl. Phys. 91 (4), 2343-2354 (2002). 10.1063/1.1432117
    • (2002) J. Appl. Phys. , vol.91 , Issue.4 , pp. 2343-2354
    • Svizhenko, A.1    Anantram, M.P.2    Govindan, T.R.3
  • 35
    • 44449090563 scopus 로고    scopus 로고
    • Quantum thermal transport in nanostructures
    • 10.1140/epjb/e2008-00195-8
    • J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures., Eur. Phys. J. B 62 (4), 381-404 (2008). 10.1140/epjb/e2008- 00195-8
    • (2008) Eur. Phys. J. B , vol.62 , Issue.4 , pp. 381-404
    • Wang, J.S.1    Wang, J.2    Lü, J.T.3
  • 36
    • 0242473163 scopus 로고    scopus 로고
    • Non-equilibrium Green function implementation of boundary conditions for full band simulations of substrate-nanowire structures
    • 10.1002/pssb.200303240
    • C. Rivas and R. Lake, Non-equilibrium Green function implementation of boundary conditions for full band simulations of substrate-nanowire structures., Phys. Status Solidi B 239 (1), 94-102 (2003). 10.1002/pssb.200303240
    • (2003) Phys. Status Solidi B , vol.239 , Issue.1 , pp. 94-102
    • Rivas, C.1    Lake, R.2
  • 37
    • 0000821265 scopus 로고
    • Quick iterative scheme for the calculation of transfer matrices: Application to Mo (100)
    • 10.1088/0305-4608/14/5/016
    • M. P. L. Sancho, Quick iterative scheme for the calculation of transfer matrices: Application to Mo (100)., J. Phys. F: Met. Phys. 14 (5), 1205 (1984). 10.1088/0305-4608/14/5/016
    • (1984) J. Phys. F: Met. Phys. , vol.14 , Issue.5 , pp. 1205
    • Sancho, M.P.L.1
  • 38
    • 0001124898 scopus 로고
    • Highly convergent schemes for the calculation of bulk and surface Green functions
    • 10.1088/0305-4608/15/4/009
    • M. P. L. Sancho, Highly convergent schemes for the calculation of bulk and surface Green functions., J. Phys. F: Met. Phys. 15 (4), 851 (1985). 10.1088/0305-4608/15/4/009
    • (1985) J. Phys. F: Met. Phys. , vol.15 , Issue.4 , pp. 851
    • Sancho, M.P.L.1
  • 39
    • 51249116057 scopus 로고    scopus 로고
    • Atomistic non-equilibrium Greens function simulations of Graphene nano-ribbons in the quantum hall regime
    • 10.1007/s10825-008-0190-x
    • R. Golizadeh-Mojarad, A. Zainuddin, G. Klimeck, Atomistic non-equilibrium Greens function simulations of Graphene nano-ribbons in the quantum hall regime., J. Comput. Electron. 7 (3), 407-410 (2008). 10.1007/s10825-008-0190-x
    • (2008) J. Comput. Electron. , vol.7 , Issue.3 , pp. 407-410
    • Golizadeh-Mojarad, R.1    Zainuddin, A.2    Klimeck, G.3
  • 40
    • 79953077972 scopus 로고    scopus 로고
    • Influence of elastic and inelastic electron-phonon interaction on quantum transport in multigate silicon nanowire MOSFETs
    • 10.1109/TED.2011.2107521
    • N. D. Akhavan, A. Afzalian, I. Ferain, Influence of elastic and inelastic electron-phonon interaction on quantum transport in multigate silicon nanowire MOSFETs., IEEE Trans. Electron Devices 58 (4), 1029 (2011). 10.1109/TED.2011. 2107521
    • (2011) IEEE Trans. Electron Devices , vol.58 , Issue.4 , pp. 1029
    • Akhavan, N.D.1    Afzalian, A.2    Ferain, I.3
  • 41
    • 77955883760 scopus 로고    scopus 로고
    • Effect of intravalley acoustic phonon scattering on quantum transport in multigate silicon nanowire metal-oxide-semiconductor field-effect transistors
    • 10.1063/1.3457848
    • N. D. Akhavan, A. Afzalian, C. W. Lee, Effect of intravalley acoustic phonon scattering on quantum transport in multigate silicon nanowire metal-oxide-semiconductor field-effect transistors., J. Appl. Phys. 108 (3), 034510 (2010). 10.1063/1.3457848
    • (2010) J. Appl. Phys. , vol.108 , Issue.3 , pp. 034510
    • Akhavan, N.D.1    Afzalian, A.2    Lee, C.W.3
  • 42
    • 84858069152 scopus 로고    scopus 로고
    • Influence of discrete dopant on quantum transport in silicon nanowire transistors
    • 10.1016/j.sse.2011.11.017
    • N. D. Akhavan, I. Ferain, R. Yu, Influence of discrete dopant on quantum transport in silicon nanowire transistors., Solid-State Electron. 70, 92-100 (2011). 10.1016/j.sse.2011.11.017
    • (2011) Solid-State Electron. , vol.70 , pp. 92-100
    • Akhavan, N.D.1    Ferain, I.2    Yu, R.3
  • 43
    • 34547365864 scopus 로고    scopus 로고
    • Quantum simulation of coaxially gated CNTFETs by using an effective mass approach
    • 10.3938/jkps.50.1887
    • C. Ahn and M. Shin, Quantum simulation of coaxially gated CNTFETs by using an effective mass approach., J. Korean Phys. Soc. 50 (6), 1887-1893 (2007). 10.3938/jkps.50.1887
    • (2007) J. Korean Phys. Soc. , vol.50 , Issue.6 , pp. 1887-1893
    • Ahn, C.1    Shin, M.2
  • 44
    • 37749025732 scopus 로고    scopus 로고
    • Nanometer MOSFET variation in minimum energy subthreshold circuits
    • 10.1109/TED.2007.911352
    • N. Verma, J. Kwong, and A. P. Chandrakasan, Nanometer MOSFET variation in minimum energy subthreshold circuits., IEEE Trans. Electron Devices 55 (1), 163-174 (2008). 10.1109/TED.2007.911352
    • (2008) IEEE Trans. Electron Devices , vol.55 , Issue.1 , pp. 163-174
    • Verma, N.1    Kwong, J.2    Chandrakasan, A.P.3
  • 45
    • 77950084994 scopus 로고    scopus 로고
    • Top-gated epitaxial graphene FETs on Si-Face SiC wafers with a peak transconductance of 600 mS/mm
    • 10.1109/LED.2010.2040132
    • J. S. Moon, D. Curtis, S. Bui, Top-gated epitaxial graphene FETs on Si-Face SiC wafers with a peak transconductance of 600 mS/mm., IEEE Electron Device Lett. 31 (4), 260-262 (2010). 10.1109/LED.2010.2040132
    • (2010) IEEE Electron Device Lett. , vol.31 , Issue.4 , pp. 260-262
    • Moon, J.S.1    Curtis, D.2    Bui, S.3
  • 46
    • 84856983318 scopus 로고    scopus 로고
    • Nanodevices in Flatland: Two-dimensional graphene-based transistors with high Ion/Ioff ratio
    • 10.1109/IEDM.2011.6131533
    • G. Fiori, A. Betti, S. Bruzzone, Nanodevices in Flatland: Two-dimensional graphene-based transistors with high Ion/Ioff ratio., Tech. Dig.-Int. Electron Devices Meet. 2011, 11.4.1-11.4.4. 10.1109/IEDM.2011.6131533
    • Tech. Dig. - Int. Electron Devices Meet. , vol.2011 , pp. 1141-1144
    • Fiori, G.1    Betti, A.2    Bruzzone, S.3
  • 47
    • 79955718937 scopus 로고    scopus 로고
    • Computational comparison of conductivity and mobility models for silicon nanowire devices
    • 10.1063/1.3573487
    • M. Frey, A. Esposito, and A. Schenk, Computational comparison of conductivity and mobility models for silicon nanowire devices., J. Appl. Phys. 109 (8), 083707 (2011). 10.1063/1.3573487
    • (2011) J. Appl. Phys. , vol.109 , Issue.8 , pp. 083707
    • Frey, M.1    Esposito, A.2    Schenk, A.3
  • 48
    • 33745711573 scopus 로고    scopus 로고
    • A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions
    • 10.1063/1.2206885
    • S. Jin, Y. J. Park, and H. S. Min, A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron-phonon interactions., J. Appl. Phys. 99 (12), 123719 (2006). 10.1063/1.2206885
    • (2006) J. Appl. Phys. , vol.99 , Issue.12 , pp. 123719
    • Jin, S.1    Park, Y.J.2    Min, H.S.3
  • 49
    • 74349083691 scopus 로고    scopus 로고
    • Full quantum investigation of low Field mobility in short-channel silicon nanowire FETS
    • SISPAD '09 10.1109/SISPAD.2009.5290193
    • S. Poli and M. G. Pala, Full quantum investigation of low Field mobility in short-channel silicon nanowire FETS., in International Conference on Simulation of Semiconductor Processes and Devices, SISPAD '09 (2009) pp. 1-4. 10.1109/SISPAD.2009.5290193
    • (2009) International Conference on Simulation of Semiconductor Processes and Devices , pp. 1-4
    • Poli, S.1    Pala, M.G.2
  • 50
    • 70350584509 scopus 로고    scopus 로고
    • Channel-length dependence of low-field mobility in silicon-nanowire FETs
    • 10.1109/LED.2009.2031418
    • S. Poli and M. G. Pala, Channel-length dependence of low-field mobility in silicon-nanowire FETs., IEEE Electron Device Lett. 30 (11), 1212-1214 (2009). 10.1109/LED.2009.2031418
    • (2009) IEEE Electron Device Lett. , vol.30 , Issue.11 , pp. 1212-1214
    • Poli, S.1    Pala, M.G.2
  • 51
    • 79955539931 scopus 로고    scopus 로고
    • Full three-dimensional quantum transport simulation of atomistic interface roughness in silicon nanowire FETs
    • 10.1109/TED.2011.2118213
    • S. Kim, M. Luisier, A. Paul, Full three-dimensional quantum transport simulation of atomistic interface roughness in silicon nanowire FETs., IEEE Trans. Electron Devices 58 (5), 1371-1380 (2011). 10.1109/TED.2011.2118213
    • (2011) IEEE Trans. Electron Devices , vol.58 , Issue.5 , pp. 1371-1380
    • Kim, S.1    Luisier, M.2    Paul, A.3
  • 52
    • 56549113551 scopus 로고    scopus 로고
    • Size dependence of surface-roughness-limited mobility in silicon-nanowire FETs
    • 10.1109/TED.2008.2005164
    • S. Poli, M. G. Pala, T. Poiroux, Size dependence of surface-roughness- limited mobility in silicon-nanowire FETs., IEEE Trans. Electron Devices 55 (11), 2968-2976 (2008). 10.1109/TED.2008.2005164
    • (2008) IEEE Trans. Electron Devices , vol.55 , Issue.11 , pp. 2968-2976
    • Poli, S.1    Pala, M.G.2    Poiroux, T.3
  • 53
    • 84870892752 scopus 로고    scopus 로고
    • Emission and absorption of optical phonons in multigate silicon nanowire MOSFETs
    • 10.1007/s10825-012-0411-1
    • N. D. Akhavan, I. Ferain, R. Yu, Emission and absorption of optical phonons in multigate silicon nanowire MOSFETs., J. Comput. Electron. 11 (3), 249-265 (2012). 10.1007/s10825-012-0411-1
    • (2012) J. Comput. Electron. , vol.11 , Issue.3 , pp. 249-265
    • Akhavan, N.D.1    Ferain, I.2    Yu, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.