-
2
-
-
79551631857
-
Mitochondrial response to controlled nutrition in health and disease
-
Schiff M., et al. Mitochondrial response to controlled nutrition in health and disease. Nutr. Rev. 2011, 69:65-75.
-
(2011)
Nutr. Rev.
, vol.69
, pp. 65-75
-
-
Schiff, M.1
-
3
-
-
23844558266
-
A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
-
Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39:359-407.
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 359-407
-
-
Wallace, D.C.1
-
4
-
-
77955293072
-
Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes
-
Wang C.H., et al. Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes. Ann. N. Y. Acad. Sci. 2010, 1201:157-165.
-
(2010)
Ann. N. Y. Acad. Sci.
, vol.1201
, pp. 157-165
-
-
Wang, C.H.1
-
5
-
-
77949887506
-
Mammalian sirtuins: biological insights and disease relevance
-
Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5:253-295.
-
(2010)
Annu. Rev. Pathol.
, vol.5
, pp. 253-295
-
-
Haigis, M.C.1
Sinclair, D.A.2
-
6
-
-
38649123072
-
Conserved metabolic regulatory functions of sirtuins
-
Schwer B., Verdin E. Conserved metabolic regulatory functions of sirtuins. Cell Metab. 2008, 7:104-112.
-
(2008)
Cell Metab.
, vol.7
, pp. 104-112
-
-
Schwer, B.1
Verdin, E.2
-
7
-
-
3943054839
-
The Sir2 family of protein deacetylases
-
Blander G., Guarente L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 2004, 73:417-435.
-
(2004)
Annu. Rev. Biochem.
, vol.73
, pp. 417-435
-
-
Blander, G.1
Guarente, L.2
-
8
-
-
84858797950
-
Sirtuins as regulators of metabolism and healthspan
-
Houtkooper R.H., et al. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 2012, 13:225-238.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 225-238
-
-
Houtkooper, R.H.1
-
9
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
Ahn B.H., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:14447-14452.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 14447-14452
-
-
Ahn, B.H.1
-
10
-
-
37549002891
-
Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
-
Lombard D.B., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27:8807-8814.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 8807-8814
-
-
Lombard, D.B.1
-
11
-
-
78649328799
-
Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling
-
Verdin E., et al. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem. Sci. 2010, 35:669-675.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 669-675
-
-
Verdin, E.1
-
12
-
-
33748316536
-
SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
-
Haigis M.C., et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006, 126:941-954.
-
(2006)
Cell
, vol.126
, pp. 941-954
-
-
Haigis, M.C.1
-
13
-
-
81055122671
-
Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
-
Du J., et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011, 334:806-809.
-
(2011)
Science
, vol.334
, pp. 806-809
-
-
Du, J.1
-
14
-
-
83055173304
-
The first identification of lysine malonylation substrates and its regulatory enzyme
-
M111.012658 1-12
-
Peng C., et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 2011, 10. M111.012658 1-12.
-
(2011)
Mol. Cell. Proteomics
, vol.10
-
-
Peng, C.1
-
15
-
-
67949102053
-
Recent progress in the biology and physiology of sirtuins
-
Finkel T., et al. Recent progress in the biology and physiology of sirtuins. Nature 2009, 460:587-591.
-
(2009)
Nature
, vol.460
, pp. 587-591
-
-
Finkel, T.1
-
16
-
-
80052291180
-
Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
-
Jing E., et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14608-14613.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14608-14613
-
-
Jing, E.1
-
17
-
-
77950806433
-
SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
-
Hirschey M.D., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
-
(2010)
Nature
, vol.464
, pp. 121-125
-
-
Hirschey, M.D.1
-
18
-
-
78649509214
-
SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
-
Shimazu T., et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010, 12:654-661.
-
(2010)
Cell Metab.
, vol.12
, pp. 654-661
-
-
Shimazu, T.1
-
19
-
-
82455212901
-
SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
-
Hirschey M.D., et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 2011, 44:177-190.
-
(2011)
Mol. Cell
, vol.44
, pp. 177-190
-
-
Hirschey, M.D.1
-
20
-
-
0033887456
-
Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
-
Frye R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 2000, 273:793-798.
-
(2000)
Biochem. Biophys. Res. Commun.
, vol.273
, pp. 793-798
-
-
Frye, R.A.1
-
21
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary C., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
-
22
-
-
33746992118
-
Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
-
Kim S.C., et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 2006, 23:607-618.
-
(2006)
Mol. Cell
, vol.23
, pp. 607-618
-
-
Kim, S.C.1
-
23
-
-
79960797509
-
Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation
-
Weinert B.T., et al. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci. Signal. 2011, 4:ra48.
-
(2011)
Sci. Signal.
, vol.4
-
-
Weinert, B.T.1
-
24
-
-
77149120797
-
Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
-
Wang Q., et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010, 327:1004-1007.
-
(2010)
Science
, vol.327
, pp. 1004-1007
-
-
Wang, Q.1
-
25
-
-
77149148756
-
Regulation of cellular metabolism by protein lysine acetylation
-
Zhao S., et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010, 327:1000-1004.
-
(2010)
Science
, vol.327
, pp. 1000-1004
-
-
Zhao, S.1
-
26
-
-
84863086273
-
SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism
-
Hirschey M.D., et al. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb. Symp. Quant. Biol. 2011, 76:267-277.
-
(2011)
Cold Spring Harb. Symp. Quant. Biol.
, vol.76
, pp. 267-277
-
-
Hirschey, M.D.1
-
27
-
-
33745889628
-
Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
-
Schwer B., et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10224-10229.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10224-10229
-
-
Schwer, B.1
-
28
-
-
78651468722
-
Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
-
Someya S., et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
-
(2010)
Cell
, vol.143
, pp. 802-812
-
-
Someya, S.1
-
29
-
-
78649743734
-
Ethanol sensitizes mitochondria to the permeability transition by inhibiting deacetylation of cyclophilin-D mediated by sirtuin-3
-
Shulga N., Pastorino J.G. Ethanol sensitizes mitochondria to the permeability transition by inhibiting deacetylation of cyclophilin-D mediated by sirtuin-3. J. Cell Sci. 2010, 123:4117-4127.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 4117-4127
-
-
Shulga, N.1
Pastorino, J.G.2
-
30
-
-
77951176793
-
Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
-
Shulga N., et al. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J. Cell Sci. 2010, 123:894-902.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 894-902
-
-
Shulga, N.1
-
31
-
-
78649521247
-
Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
-
Qiu X., et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12:662-667.
-
(2010)
Cell Metab.
, vol.12
, pp. 662-667
-
-
Qiu, X.1
-
32
-
-
78650248160
-
Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
-
Tao R., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 2010, 40:893-904.
-
(2010)
Mol. Cell
, vol.40
, pp. 893-904
-
-
Tao, R.1
-
33
-
-
79957979314
-
Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
-
Chen Y., et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 2011, 12:534-541.
-
(2011)
EMBO Rep.
, vol.12
, pp. 534-541
-
-
Chen, Y.1
-
34
-
-
78751513117
-
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
-
Kendrick A.A., et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem. J. 2011, 433:505-514.
-
(2011)
Biochem. J.
, vol.433
, pp. 505-514
-
-
Kendrick, A.A.1
-
35
-
-
73949123433
-
Calorie restriction alters mitochondrial protein acetylation
-
Schwer B., et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009, 8:604-606.
-
(2009)
Aging Cell
, vol.8
, pp. 604-606
-
-
Schwer, B.1
-
36
-
-
77952940043
-
Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
-
Palacios O.M., et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging 2009, 1:771-783.
-
(2009)
Aging
, vol.1
, pp. 771-783
-
-
Palacios, O.M.1
-
37
-
-
79960241384
-
PPARalpha-LXR as a novel metabolostatic signalling axis in skeletal muscle that acts to optimize substrate selection in response to nutrient status
-
Caton P.W., et al. PPARalpha-LXR as a novel metabolostatic signalling axis in skeletal muscle that acts to optimize substrate selection in response to nutrient status. Biochem. J. 2011, 437:521-530.
-
(2011)
Biochem. J.
, vol.437
, pp. 521-530
-
-
Caton, P.W.1
-
38
-
-
78651468707
-
Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
-
Hallows W.C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 2011, 41:139-149.
-
(2011)
Mol. Cell
, vol.41
, pp. 139-149
-
-
Hallows, W.C.1
-
39
-
-
84863114113
-
Distinct effects of calorie restriction and resveratrol on diet-induced obesity and Fatty liver formation
-
Tauriainen E., et al. Distinct effects of calorie restriction and resveratrol on diet-induced obesity and Fatty liver formation. J. Nutr. Metab. 2011, 2011:525094.
-
(2011)
J. Nutr. Metab.
, vol.2011
, pp. 525094
-
-
Tauriainen, E.1
-
40
-
-
79953799195
-
Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
-
Alhazzazi T.Y., et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 2011, 117:1670-1678.
-
(2011)
Cancer
, vol.117
, pp. 1670-1678
-
-
Alhazzazi, T.Y.1
-
41
-
-
84860228592
-
In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner
-
Gurd B.J., et al. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner. Metabolism 2012, 61:733-741.
-
(2012)
Metabolism
, vol.61
, pp. 733-741
-
-
Gurd, B.J.1
-
42
-
-
77955615635
-
Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles
-
Hokari F., et al. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. J. Appl. Physiol. 2010, 109:332-340.
-
(2010)
J. Appl. Physiol.
, vol.109
, pp. 332-340
-
-
Hokari, F.1
-
43
-
-
83755186617
-
Combined exercise and insulin-like growth factor-1 supplementation induces neurogenesis in old rats, but do not attenuate age-associated DNA damage
-
Koltai E., et al. Combined exercise and insulin-like growth factor-1 supplementation induces neurogenesis in old rats, but do not attenuate age-associated DNA damage. Rejuvenation Res. 2011, 14:585-596.
-
(2011)
Rejuvenation Res.
, vol.14
, pp. 585-596
-
-
Koltai, E.1
-
44
-
-
58149345928
-
Endurance exercise as a countermeasure for aging
-
Lanza I.R., et al. Endurance exercise as a countermeasure for aging. Diabetes 2008, 57:2933-2942.
-
(2008)
Diabetes
, vol.57
, pp. 2933-2942
-
-
Lanza, I.R.1
-
45
-
-
77956173286
-
SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
-
Bao J., et al. SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic. Biol. Med. 2010, 49:1230-1237.
-
(2010)
Free Radic. Biol. Med.
, vol.49
, pp. 1230-1237
-
-
Bao, J.1
-
46
-
-
77955347446
-
Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis
-
Kong X., et al. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE 2010, 5:e11707.
-
(2010)
PLoS ONE
, vol.5
-
-
Kong, X.1
-
47
-
-
79955768567
-
Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype
-
Giralt A., et al. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J. Biol. Chem. 2011, 286:16958-16966.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 16958-16966
-
-
Giralt, A.1
-
48
-
-
77449120223
-
Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
-
Pillai V.B., et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem. 2010, 285:3133-3144.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 3133-3144
-
-
Pillai, V.B.1
-
49
-
-
65349128571
-
Disruption of the Ang II type 1 receptor promotes longevity in mice
-
Benigni A., et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest. 2009, 119:524-530.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 524-530
-
-
Benigni, A.1
-
50
-
-
69849094644
-
Identification of GATA2 and AP-1 Activator elements within the enhancer VNTR occurring in intron 5 of the human SIRT3 gene
-
Bellizzi D., et al. Identification of GATA2 and AP-1 Activator elements within the enhancer VNTR occurring in intron 5 of the human SIRT3 gene. Mol. Cells 2009, 28:87-92.
-
(2009)
Mol. Cells
, vol.28
, pp. 87-92
-
-
Bellizzi, D.1
-
51
-
-
84864667383
-
Regulation of sirtuin function by posttranslational modifications
-
Flick F., Luscher B. Regulation of sirtuin function by posttranslational modifications. Front. Pharmacol. 2012, 3:29.
-
(2012)
Front. Pharmacol.
, vol.3
, pp. 29
-
-
Flick, F.1
Luscher, B.2
-
52
-
-
77951644400
-
Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis
-
Olsen J.V., et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 2010, 3:ra3.
-
(2010)
Sci. Signal.
, vol.3
-
-
Olsen, J.V.1
-
53
-
-
79956150193
-
4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification
-
Fritz K.S., et al. 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification. Chem. Res. Toxicol. 2011, 24:651-662.
-
(2011)
Chem. Res. Toxicol.
, vol.24
, pp. 651-662
-
-
Fritz, K.S.1
-
54
-
-
84860003699
-
Friedreich's ataxia reveals a mechanism for coordinate regulation of oxidative metabolism via feedback inhibition of the SIRT3 deacetylase
-
Wagner G.R., et al. Friedreich's ataxia reveals a mechanism for coordinate regulation of oxidative metabolism via feedback inhibition of the SIRT3 deacetylase. Hum. Mol. Genet. 2012, 21:2688-2697.
-
(2012)
Hum. Mol. Genet.
, vol.21
, pp. 2688-2697
-
-
Wagner, G.R.1
-
55
-
-
33745931074
-
Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
-
Hallows W.C., et al. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10230-10235.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 10230-10235
-
-
Hallows, W.C.1
-
56
-
-
77956191450
-
Acetate metabolism and aging: An emerging connection
-
Shimazu T., et al. Acetate metabolism and aging: An emerging connection. Mech. Ageing Dev. 2010, 131:511-516.
-
(2010)
Mech. Ageing Dev.
, vol.131
, pp. 511-516
-
-
Shimazu, T.1
-
58
-
-
50149103440
-
Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
-
Schlicker C., et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 2008, 382:790-801.
-
(2008)
J. Mol. Biol.
, vol.382
, pp. 790-801
-
-
Schlicker, C.1
-
59
-
-
79957441575
-
SIRT3 and cancer: tumor promoter or suppressor?
-
Alhazzazi T.Y., et al. SIRT3 and cancer: tumor promoter or suppressor?. Biochim. Biophys. Acta 2011, 1816:80-88.
-
(2011)
Biochim. Biophys. Acta
, vol.1816
, pp. 80-88
-
-
Alhazzazi, T.Y.1
-
61
-
-
74049094817
-
SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
-
Kim H.S., et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
-
(2010)
Cancer Cell
, vol.17
, pp. 41-52
-
-
Kim, H.S.1
-
62
-
-
79952501323
-
SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
-
Finley L.W., et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 2011, 19:416-428.
-
(2011)
Cancer Cell
, vol.19
, pp. 416-428
-
-
Finley, L.W.1
-
63
-
-
43649093915
-
Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway
-
Kaelin W.G., Ratcliffe P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 2008, 30:393-402.
-
(2008)
Mol. Cell
, vol.30
, pp. 393-402
-
-
Kaelin, W.G.1
Ratcliffe, P.J.2
-
64
-
-
0037056002
-
Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention
-
Pedersen P.L., et al. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim. Biophys. Acta 2002, 1555:14-20.
-
(2002)
Biochim. Biophys. Acta
, vol.1555
, pp. 14-20
-
-
Pedersen, P.L.1
-
65
-
-
80051716282
-
Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
-
Finley L.W., et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS ONE 2011, 6:e23295.
-
(2011)
PLoS ONE
, vol.6
-
-
Finley, L.W.1
-
66
-
-
75349111140
-
Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
-
Cimen H., et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010, 49:304-311.
-
(2010)
Biochemistry
, vol.49
, pp. 304-311
-
-
Cimen, H.1
-
67
-
-
17044386953
-
Type 2 diabetes: principles of pathogenesis and therapy
-
Stumvoll M., et al. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005, 365:1333-1346.
-
(2005)
Lancet
, vol.365
, pp. 1333-1346
-
-
Stumvoll, M.1
-
68
-
-
84861589885
-
Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
-
Fernandez-Marcos P.J., et al. Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci. Rep. 2012, 2:425.
-
(2012)
Sci. Rep.
, vol.2
, pp. 425
-
-
Fernandez-Marcos, P.J.1
-
69
-
-
36349030394
-
Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
-
Ahuja N., et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem. 2007, 282:33583-33592.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 33583-33592
-
-
Ahuja, N.1
-
70
-
-
77957762687
-
SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
-
Nasrin N., et al. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J. Biol. Chem. 2010, 285:31995-32002.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 31995-32002
-
-
Nasrin, N.1
-
71
-
-
78650516004
-
Identification of lysine succinylation as a new post-translational modification
-
Zhang Z., et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 2011, 7:58-63.
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 58-63
-
-
Zhang, Z.1
-
72
-
-
65249087389
-
SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
-
Nakagawa T., et al. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009, 137:560-570.
-
(2009)
Cell
, vol.137
, pp. 560-570
-
-
Nakagawa, T.1
-
73
-
-
0000333646
-
Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate
-
Garland P.B., et al. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem. J. 1965, 97:587-594.
-
(1965)
Biochem. J.
, vol.97
, pp. 587-594
-
-
Garland, P.B.1
-
74
-
-
0014937061
-
Nonenzymatic acetylation of histones with acetyl-CoA
-
Paik W.K., et al. Nonenzymatic acetylation of histones with acetyl-CoA. Biochim. Biophys. Acta 1970, 213:513-522.
-
(1970)
Biochim. Biophys. Acta
, vol.213
, pp. 513-522
-
-
Paik, W.K.1
-
75
-
-
84857883360
-
Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice
-
Fritz K.S., et al. Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice. J. Proteome Res. 2012, 11:1633-1643.
-
(2012)
J. Proteome Res.
, vol.11
, pp. 1633-1643
-
-
Fritz, K.S.1
-
76
-
-
53149113000
-
Ethanol intoxication increases hepatic N-lysyl protein acetylation
-
Picklo M.J. Ethanol intoxication increases hepatic N-lysyl protein acetylation. Biochem. Biophys. Res. Commun. 2008, 376:615-619.
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.376
, pp. 615-619
-
-
Picklo, M.J.1
-
77
-
-
50949087166
-
Malonyl-CoA, a key signaling molecule in mammalian cells
-
Saggerson D. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr. 2008, 28:253-272.
-
(2008)
Annu. Rev. Nutr.
, vol.28
, pp. 253-272
-
-
Saggerson, D.1
-
78
-
-
4444226906
-
Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation
-
Dyck J.R., et al. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ. Res. 2004, 94:e78-e84.
-
(2004)
Circ. Res.
, vol.94
-
-
Dyck, J.R.1
-
79
-
-
33750211736
-
Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury
-
Dyck J.R., et al. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury. Circulation 2006, 114:1721-1728.
-
(2006)
Circulation
, vol.114
, pp. 1721-1728
-
-
Dyck, J.R.1
-
80
-
-
23944509003
-
Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery
-
Tong L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell. Mol. Life Sci. 2005, 62:1784-1803.
-
(2005)
Cell. Mol. Life Sci.
, vol.62
, pp. 1784-1803
-
-
Tong, L.1
-
81
-
-
24744448667
-
Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal
-
Abu-Elheiga L., et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:12011-12016.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 12011-12016
-
-
Abu-Elheiga, L.1
-
82
-
-
0035970805
-
Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2
-
Abu-Elheiga L., et al. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001, 291:2613-2616.
-
(2001)
Science
, vol.291
, pp. 2613-2616
-
-
Abu-Elheiga, L.1
-
83
-
-
0042337449
-
Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets
-
Abu-Elheiga L., et al. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:10207-10212.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 10207-10212
-
-
Abu-Elheiga, L.1
-
84
-
-
0034652297
-
The subcellular localization of acetyl-CoA carboxylase 2
-
Abu-Elheiga L., et al. The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:1444-1449.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 1444-1449
-
-
Abu-Elheiga, L.1
-
85
-
-
0036071008
-
Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride
-
Roe C.R., et al. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J. Clin. Invest. 2002, 110:259-269.
-
(2002)
J. Clin. Invest.
, vol.110
, pp. 259-269
-
-
Roe, C.R.1
-
86
-
-
0035744467
-
Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase
-
Shimomura Y., et al. Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4:419-423.
-
(2001)
Curr. Opin. Clin. Nutr. Metab. Care
, vol.4
, pp. 419-423
-
-
Shimomura, Y.1
-
87
-
-
0031750339
-
A molecular model of human branched-chain amino acid metabolism
-
Suryawan A., et al. A molecular model of human branched-chain amino acid metabolism. Am. J. Clin. Nutr. 1998, 68:72-81.
-
(1998)
Am. J. Clin. Nutr.
, vol.68
, pp. 72-81
-
-
Suryawan, A.1
-
88
-
-
31544454965
-
Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise
-
Blomstrand E., et al. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 2006, 136:269S-273S.
-
(2006)
J. Nutr.
, vol.136
-
-
Blomstrand, E.1
-
89
-
-
31544458134
-
Branched-chain amino acids: enzyme and substrate regulation
-
Brosnan J.T., Brosnan M.E. Branched-chain amino acids: enzyme and substrate regulation. J. Nutr. 2006, 136:207S-211S.
-
(2006)
J. Nutr.
, vol.136
-
-
Brosnan, J.T.1
Brosnan, M.E.2
-
90
-
-
34248640428
-
Lysine propionylation and butyrylation are novel post-translational modifications in histones
-
Chen Y., et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics 2007, 6:812-819.
-
(2007)
Mol. Cell. Proteomics
, vol.6
, pp. 812-819
-
-
Chen, Y.1
-
92
-
-
33847635635
-
Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin
-
Schuetz A., et al. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 2007, 15:377-389.
-
(2007)
Structure
, vol.15
, pp. 377-389
-
-
Schuetz, A.1
-
93
-
-
84855757015
-
Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation
-
Xue L., et al. Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation. FEBS Lett. 2012, 586:137-142.
-
(2012)
FEBS Lett.
, vol.586
, pp. 137-142
-
-
Xue, L.1
-
94
-
-
77951235122
-
+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
-
+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J. Biol. Chem. 2010, 285:7417-7429.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7417-7429
-
-
Yang, Y.1
-
95
-
-
70349208608
-
Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
-
Sundaresan N.R., et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 2009, 119:2758-2771.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 2758-2771
-
-
Sundaresan, N.R.1
-
96
-
-
77956553913
-
P300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals
-
Vempati R.K., et al. p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J. Biol. Chem. 2010, 285:28553-28564.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 28553-28564
-
-
Vempati, R.K.1
-
97
-
-
53549105529
-
SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
-
Sundaresan N.R., et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol. Cell. Biol. 2008, 28:6384-6401.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 6384-6401
-
-
Sundaresan, N.R.1
|