메뉴 건너뛰기




Volumn 23, Issue 9, 2012, Pages 467-476

Mitochondrial sirtuins: Regulators of protein acylation and metabolism

Author keywords

Lysine acylation; Metabolism; Mitochondria; Sirtuins

Indexed keywords

BUTYRYL COENZYME A DEHYDROGENASE; MALONYL COENZYME A; MITOCHONDRIAL ENZYME; MITOCHONDRIAL PROTEIN; PROPIONYL COENZYME A; REACTIVE OXYGEN METABOLITE; SIRTUIN; SIRTUIN 3; SIRTUIN 3 DEACETYLASE; SIRTUIN 4; SIRTUIN 5; SUCCINYL COENZYME A; UNCLASSIFIED DRUG;

EID: 84865421953     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2012.07.004     Document Type: Review
Times cited : (227)

References (97)
  • 2
    • 79551631857 scopus 로고    scopus 로고
    • Mitochondrial response to controlled nutrition in health and disease
    • Schiff M., et al. Mitochondrial response to controlled nutrition in health and disease. Nutr. Rev. 2011, 69:65-75.
    • (2011) Nutr. Rev. , vol.69 , pp. 65-75
    • Schiff, M.1
  • 3
    • 23844558266 scopus 로고    scopus 로고
    • A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
    • Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39:359-407.
    • (2005) Annu. Rev. Genet. , vol.39 , pp. 359-407
    • Wallace, D.C.1
  • 4
    • 77955293072 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes
    • Wang C.H., et al. Mitochondrial dysfunction in insulin insensitivity: implication of mitochondrial role in type 2 diabetes. Ann. N. Y. Acad. Sci. 2010, 1201:157-165.
    • (2010) Ann. N. Y. Acad. Sci. , vol.1201 , pp. 157-165
    • Wang, C.H.1
  • 5
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: biological insights and disease relevance
    • Haigis M.C., Sinclair D.A. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 2010, 5:253-295.
    • (2010) Annu. Rev. Pathol. , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 6
    • 38649123072 scopus 로고    scopus 로고
    • Conserved metabolic regulatory functions of sirtuins
    • Schwer B., Verdin E. Conserved metabolic regulatory functions of sirtuins. Cell Metab. 2008, 7:104-112.
    • (2008) Cell Metab. , vol.7 , pp. 104-112
    • Schwer, B.1    Verdin, E.2
  • 7
    • 3943054839 scopus 로고    scopus 로고
    • The Sir2 family of protein deacetylases
    • Blander G., Guarente L. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 2004, 73:417-435.
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 417-435
    • Blander, G.1    Guarente, L.2
  • 8
    • 84858797950 scopus 로고    scopus 로고
    • Sirtuins as regulators of metabolism and healthspan
    • Houtkooper R.H., et al. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 2012, 13:225-238.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 225-238
    • Houtkooper, R.H.1
  • 9
    • 55749084738 scopus 로고    scopus 로고
    • A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
    • Ahn B.H., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:14447-14452.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 14447-14452
    • Ahn, B.H.1
  • 10
    • 37549002891 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation
    • Lombard D.B., et al. Mammalian Sir2 homolog SIRT3 regulates global mitochondrial lysine acetylation. Mol. Cell. Biol. 2007, 27:8807-8814.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 8807-8814
    • Lombard, D.B.1
  • 11
    • 78649328799 scopus 로고    scopus 로고
    • Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling
    • Verdin E., et al. Sirtuin regulation of mitochondria: energy production, apoptosis, and signaling. Trends Biochem. Sci. 2010, 35:669-675.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 669-675
    • Verdin, E.1
  • 12
    • 33748316536 scopus 로고    scopus 로고
    • SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
    • Haigis M.C., et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 2006, 126:941-954.
    • (2006) Cell , vol.126 , pp. 941-954
    • Haigis, M.C.1
  • 13
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
    • Du J., et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 2011, 334:806-809.
    • (2011) Science , vol.334 , pp. 806-809
    • Du, J.1
  • 14
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • M111.012658 1-12
    • Peng C., et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 2011, 10. M111.012658 1-12.
    • (2011) Mol. Cell. Proteomics , vol.10
    • Peng, C.1
  • 15
    • 67949102053 scopus 로고    scopus 로고
    • Recent progress in the biology and physiology of sirtuins
    • Finkel T., et al. Recent progress in the biology and physiology of sirtuins. Nature 2009, 460:587-591.
    • (2009) Nature , vol.460 , pp. 587-591
    • Finkel, T.1
  • 16
    • 80052291180 scopus 로고    scopus 로고
    • Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production
    • Jing E., et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14608-14613.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14608-14613
    • Jing, E.1
  • 17
    • 77950806433 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
    • Hirschey M.D., et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 2010, 464:121-125.
    • (2010) Nature , vol.464 , pp. 121-125
    • Hirschey, M.D.1
  • 18
    • 78649509214 scopus 로고    scopus 로고
    • SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production
    • Shimazu T., et al. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metab. 2010, 12:654-661.
    • (2010) Cell Metab. , vol.12 , pp. 654-661
    • Shimazu, T.1
  • 19
    • 82455212901 scopus 로고    scopus 로고
    • SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome
    • Hirschey M.D., et al. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol. Cell 2011, 44:177-190.
    • (2011) Mol. Cell , vol.44 , pp. 177-190
    • Hirschey, M.D.1
  • 20
    • 0033887456 scopus 로고    scopus 로고
    • Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins
    • Frye R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem. Biophys. Res. Commun. 2000, 273:793-798.
    • (2000) Biochem. Biophys. Res. Commun. , vol.273 , pp. 793-798
    • Frye, R.A.1
  • 21
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C., et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009, 325:834-840.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1
  • 22
    • 33746992118 scopus 로고    scopus 로고
    • Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
    • Kim S.C., et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell 2006, 23:607-618.
    • (2006) Mol. Cell , vol.23 , pp. 607-618
    • Kim, S.C.1
  • 23
    • 79960797509 scopus 로고    scopus 로고
    • Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation
    • Weinert B.T., et al. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci. Signal. 2011, 4:ra48.
    • (2011) Sci. Signal. , vol.4
    • Weinert, B.T.1
  • 24
    • 77149120797 scopus 로고    scopus 로고
    • Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
    • Wang Q., et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010, 327:1004-1007.
    • (2010) Science , vol.327 , pp. 1004-1007
    • Wang, Q.1
  • 25
    • 77149148756 scopus 로고    scopus 로고
    • Regulation of cellular metabolism by protein lysine acetylation
    • Zhao S., et al. Regulation of cellular metabolism by protein lysine acetylation. Science 2010, 327:1000-1004.
    • (2010) Science , vol.327 , pp. 1000-1004
    • Zhao, S.1
  • 26
    • 84863086273 scopus 로고    scopus 로고
    • SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism
    • Hirschey M.D., et al. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism. Cold Spring Harb. Symp. Quant. Biol. 2011, 76:267-277.
    • (2011) Cold Spring Harb. Symp. Quant. Biol. , vol.76 , pp. 267-277
    • Hirschey, M.D.1
  • 27
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B., et al. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10224-10229.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10224-10229
    • Schwer, B.1
  • 28
    • 78651468722 scopus 로고    scopus 로고
    • Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
    • Someya S., et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 2010, 143:802-812.
    • (2010) Cell , vol.143 , pp. 802-812
    • Someya, S.1
  • 29
    • 78649743734 scopus 로고    scopus 로고
    • Ethanol sensitizes mitochondria to the permeability transition by inhibiting deacetylation of cyclophilin-D mediated by sirtuin-3
    • Shulga N., Pastorino J.G. Ethanol sensitizes mitochondria to the permeability transition by inhibiting deacetylation of cyclophilin-D mediated by sirtuin-3. J. Cell Sci. 2010, 123:4117-4127.
    • (2010) J. Cell Sci. , vol.123 , pp. 4117-4127
    • Shulga, N.1    Pastorino, J.G.2
  • 30
    • 77951176793 scopus 로고    scopus 로고
    • Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
    • Shulga N., et al. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J. Cell Sci. 2010, 123:894-902.
    • (2010) J. Cell Sci. , vol.123 , pp. 894-902
    • Shulga, N.1
  • 31
    • 78649521247 scopus 로고    scopus 로고
    • Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
    • Qiu X., et al. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 2010, 12:662-667.
    • (2010) Cell Metab. , vol.12 , pp. 662-667
    • Qiu, X.1
  • 32
    • 78650248160 scopus 로고    scopus 로고
    • Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
    • Tao R., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 2010, 40:893-904.
    • (2010) Mol. Cell , vol.40 , pp. 893-904
    • Tao, R.1
  • 33
    • 79957979314 scopus 로고    scopus 로고
    • Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS
    • Chen Y., et al. Tumour suppressor SIRT3 deacetylates and activates manganese superoxide dismutase to scavenge ROS. EMBO Rep. 2011, 12:534-541.
    • (2011) EMBO Rep. , vol.12 , pp. 534-541
    • Chen, Y.1
  • 34
    • 78751513117 scopus 로고    scopus 로고
    • Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation
    • Kendrick A.A., et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem. J. 2011, 433:505-514.
    • (2011) Biochem. J. , vol.433 , pp. 505-514
    • Kendrick, A.A.1
  • 35
    • 73949123433 scopus 로고    scopus 로고
    • Calorie restriction alters mitochondrial protein acetylation
    • Schwer B., et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell 2009, 8:604-606.
    • (2009) Aging Cell , vol.8 , pp. 604-606
    • Schwer, B.1
  • 36
    • 77952940043 scopus 로고    scopus 로고
    • Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle
    • Palacios O.M., et al. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging 2009, 1:771-783.
    • (2009) Aging , vol.1 , pp. 771-783
    • Palacios, O.M.1
  • 37
    • 79960241384 scopus 로고    scopus 로고
    • PPARalpha-LXR as a novel metabolostatic signalling axis in skeletal muscle that acts to optimize substrate selection in response to nutrient status
    • Caton P.W., et al. PPARalpha-LXR as a novel metabolostatic signalling axis in skeletal muscle that acts to optimize substrate selection in response to nutrient status. Biochem. J. 2011, 437:521-530.
    • (2011) Biochem. J. , vol.437 , pp. 521-530
    • Caton, P.W.1
  • 38
    • 78651468707 scopus 로고    scopus 로고
    • Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction
    • Hallows W.C., et al. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Mol. Cell 2011, 41:139-149.
    • (2011) Mol. Cell , vol.41 , pp. 139-149
    • Hallows, W.C.1
  • 39
    • 84863114113 scopus 로고    scopus 로고
    • Distinct effects of calorie restriction and resveratrol on diet-induced obesity and Fatty liver formation
    • Tauriainen E., et al. Distinct effects of calorie restriction and resveratrol on diet-induced obesity and Fatty liver formation. J. Nutr. Metab. 2011, 2011:525094.
    • (2011) J. Nutr. Metab. , vol.2011 , pp. 525094
    • Tauriainen, E.1
  • 40
    • 79953799195 scopus 로고    scopus 로고
    • Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
    • Alhazzazi T.Y., et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 2011, 117:1670-1678.
    • (2011) Cancer , vol.117 , pp. 1670-1678
    • Alhazzazi, T.Y.1
  • 41
    • 84860228592 scopus 로고    scopus 로고
    • In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner
    • Gurd B.J., et al. In mammalian muscle, SIRT3 is present in mitochondria and not in the nucleus; and SIRT3 is upregulated by chronic muscle contraction in an adenosine monophosphate-activated protein kinase-independent manner. Metabolism 2012, 61:733-741.
    • (2012) Metabolism , vol.61 , pp. 733-741
    • Gurd, B.J.1
  • 42
    • 77955615635 scopus 로고    scopus 로고
    • Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles
    • Hokari F., et al. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles. J. Appl. Physiol. 2010, 109:332-340.
    • (2010) J. Appl. Physiol. , vol.109 , pp. 332-340
    • Hokari, F.1
  • 43
    • 83755186617 scopus 로고    scopus 로고
    • Combined exercise and insulin-like growth factor-1 supplementation induces neurogenesis in old rats, but do not attenuate age-associated DNA damage
    • Koltai E., et al. Combined exercise and insulin-like growth factor-1 supplementation induces neurogenesis in old rats, but do not attenuate age-associated DNA damage. Rejuvenation Res. 2011, 14:585-596.
    • (2011) Rejuvenation Res. , vol.14 , pp. 585-596
    • Koltai, E.1
  • 44
    • 58149345928 scopus 로고    scopus 로고
    • Endurance exercise as a countermeasure for aging
    • Lanza I.R., et al. Endurance exercise as a countermeasure for aging. Diabetes 2008, 57:2933-2942.
    • (2008) Diabetes , vol.57 , pp. 2933-2942
    • Lanza, I.R.1
  • 45
    • 77956173286 scopus 로고    scopus 로고
    • SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity
    • Bao J., et al. SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity. Free Radic. Biol. Med. 2010, 49:1230-1237.
    • (2010) Free Radic. Biol. Med. , vol.49 , pp. 1230-1237
    • Bao, J.1
  • 46
    • 77955347446 scopus 로고    scopus 로고
    • Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis
    • Kong X., et al. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS ONE 2010, 5:e11707.
    • (2010) PLoS ONE , vol.5
    • Kong, X.1
  • 47
    • 79955768567 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype
    • Giralt A., et al. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. J. Biol. Chem. 2011, 286:16958-16966.
    • (2011) J. Biol. Chem. , vol.286 , pp. 16958-16966
    • Giralt, A.1
  • 48
    • 77449120223 scopus 로고    scopus 로고
    • Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway
    • Pillai V.B., et al. Exogenous NAD blocks cardiac hypertrophic response via activation of the SIRT3-LKB1-AMP-activated kinase pathway. J. Biol. Chem. 2010, 285:3133-3144.
    • (2010) J. Biol. Chem. , vol.285 , pp. 3133-3144
    • Pillai, V.B.1
  • 49
    • 65349128571 scopus 로고    scopus 로고
    • Disruption of the Ang II type 1 receptor promotes longevity in mice
    • Benigni A., et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest. 2009, 119:524-530.
    • (2009) J. Clin. Invest. , vol.119 , pp. 524-530
    • Benigni, A.1
  • 50
    • 69849094644 scopus 로고    scopus 로고
    • Identification of GATA2 and AP-1 Activator elements within the enhancer VNTR occurring in intron 5 of the human SIRT3 gene
    • Bellizzi D., et al. Identification of GATA2 and AP-1 Activator elements within the enhancer VNTR occurring in intron 5 of the human SIRT3 gene. Mol. Cells 2009, 28:87-92.
    • (2009) Mol. Cells , vol.28 , pp. 87-92
    • Bellizzi, D.1
  • 51
    • 84864667383 scopus 로고    scopus 로고
    • Regulation of sirtuin function by posttranslational modifications
    • Flick F., Luscher B. Regulation of sirtuin function by posttranslational modifications. Front. Pharmacol. 2012, 3:29.
    • (2012) Front. Pharmacol. , vol.3 , pp. 29
    • Flick, F.1    Luscher, B.2
  • 52
    • 77951644400 scopus 로고    scopus 로고
    • Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis
    • Olsen J.V., et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 2010, 3:ra3.
    • (2010) Sci. Signal. , vol.3
    • Olsen, J.V.1
  • 53
    • 79956150193 scopus 로고    scopus 로고
    • 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification
    • Fritz K.S., et al. 4-Hydroxynonenal inhibits SIRT3 via thiol-specific modification. Chem. Res. Toxicol. 2011, 24:651-662.
    • (2011) Chem. Res. Toxicol. , vol.24 , pp. 651-662
    • Fritz, K.S.1
  • 54
    • 84860003699 scopus 로고    scopus 로고
    • Friedreich's ataxia reveals a mechanism for coordinate regulation of oxidative metabolism via feedback inhibition of the SIRT3 deacetylase
    • Wagner G.R., et al. Friedreich's ataxia reveals a mechanism for coordinate regulation of oxidative metabolism via feedback inhibition of the SIRT3 deacetylase. Hum. Mol. Genet. 2012, 21:2688-2697.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 2688-2697
    • Wagner, G.R.1
  • 55
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows W.C., et al. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10230-10235.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10230-10235
    • Hallows, W.C.1
  • 56
    • 77956191450 scopus 로고    scopus 로고
    • Acetate metabolism and aging: An emerging connection
    • Shimazu T., et al. Acetate metabolism and aging: An emerging connection. Mech. Ageing Dev. 2010, 131:511-516.
    • (2010) Mech. Ageing Dev. , vol.131 , pp. 511-516
    • Shimazu, T.1
  • 58
    • 50149103440 scopus 로고    scopus 로고
    • Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5
    • Schlicker C., et al. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. J. Mol. Biol. 2008, 382:790-801.
    • (2008) J. Mol. Biol. , vol.382 , pp. 790-801
    • Schlicker, C.1
  • 59
    • 79957441575 scopus 로고    scopus 로고
    • SIRT3 and cancer: tumor promoter or suppressor?
    • Alhazzazi T.Y., et al. SIRT3 and cancer: tumor promoter or suppressor?. Biochim. Biophys. Acta 2011, 1816:80-88.
    • (2011) Biochim. Biophys. Acta , vol.1816 , pp. 80-88
    • Alhazzazi, T.Y.1
  • 61
    • 74049094817 scopus 로고    scopus 로고
    • SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
    • Kim H.S., et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 2010, 17:41-52.
    • (2010) Cancer Cell , vol.17 , pp. 41-52
    • Kim, H.S.1
  • 62
    • 79952501323 scopus 로고    scopus 로고
    • SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
    • Finley L.W., et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 2011, 19:416-428.
    • (2011) Cancer Cell , vol.19 , pp. 416-428
    • Finley, L.W.1
  • 63
    • 43649093915 scopus 로고    scopus 로고
    • Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway
    • Kaelin W.G., Ratcliffe P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 2008, 30:393-402.
    • (2008) Mol. Cell , vol.30 , pp. 393-402
    • Kaelin, W.G.1    Ratcliffe, P.J.2
  • 64
    • 0037056002 scopus 로고    scopus 로고
    • Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention
    • Pedersen P.L., et al. Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim. Biophys. Acta 2002, 1555:14-20.
    • (2002) Biochim. Biophys. Acta , vol.1555 , pp. 14-20
    • Pedersen, P.L.1
  • 65
    • 80051716282 scopus 로고    scopus 로고
    • Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity
    • Finley L.W., et al. Succinate dehydrogenase is a direct target of sirtuin 3 deacetylase activity. PLoS ONE 2011, 6:e23295.
    • (2011) PLoS ONE , vol.6
    • Finley, L.W.1
  • 66
    • 75349111140 scopus 로고    scopus 로고
    • Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria
    • Cimen H., et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 2010, 49:304-311.
    • (2010) Biochemistry , vol.49 , pp. 304-311
    • Cimen, H.1
  • 67
    • 17044386953 scopus 로고    scopus 로고
    • Type 2 diabetes: principles of pathogenesis and therapy
    • Stumvoll M., et al. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005, 365:1333-1346.
    • (2005) Lancet , vol.365 , pp. 1333-1346
    • Stumvoll, M.1
  • 68
    • 84861589885 scopus 로고    scopus 로고
    • Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis
    • Fernandez-Marcos P.J., et al. Muscle or liver-specific Sirt3 deficiency induces hyperacetylation of mitochondrial proteins without affecting global metabolic homeostasis. Sci. Rep. 2012, 2:425.
    • (2012) Sci. Rep. , vol.2 , pp. 425
    • Fernandez-Marcos, P.J.1
  • 69
    • 36349030394 scopus 로고    scopus 로고
    • Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase
    • Ahuja N., et al. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J. Biol. Chem. 2007, 282:33583-33592.
    • (2007) J. Biol. Chem. , vol.282 , pp. 33583-33592
    • Ahuja, N.1
  • 70
    • 77957762687 scopus 로고    scopus 로고
    • SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
    • Nasrin N., et al. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J. Biol. Chem. 2010, 285:31995-32002.
    • (2010) J. Biol. Chem. , vol.285 , pp. 31995-32002
    • Nasrin, N.1
  • 71
    • 78650516004 scopus 로고    scopus 로고
    • Identification of lysine succinylation as a new post-translational modification
    • Zhang Z., et al. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 2011, 7:58-63.
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 58-63
    • Zhang, Z.1
  • 72
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T., et al. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 2009, 137:560-570.
    • (2009) Cell , vol.137 , pp. 560-570
    • Nakagawa, T.1
  • 73
    • 0000333646 scopus 로고
    • Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate
    • Garland P.B., et al. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem. J. 1965, 97:587-594.
    • (1965) Biochem. J. , vol.97 , pp. 587-594
    • Garland, P.B.1
  • 74
    • 0014937061 scopus 로고
    • Nonenzymatic acetylation of histones with acetyl-CoA
    • Paik W.K., et al. Nonenzymatic acetylation of histones with acetyl-CoA. Biochim. Biophys. Acta 1970, 213:513-522.
    • (1970) Biochim. Biophys. Acta , vol.213 , pp. 513-522
    • Paik, W.K.1
  • 75
    • 84857883360 scopus 로고    scopus 로고
    • Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice
    • Fritz K.S., et al. Mitochondrial acetylome analysis in a mouse model of alcohol-induced liver injury utilizing SIRT3 knockout mice. J. Proteome Res. 2012, 11:1633-1643.
    • (2012) J. Proteome Res. , vol.11 , pp. 1633-1643
    • Fritz, K.S.1
  • 76
    • 53149113000 scopus 로고    scopus 로고
    • Ethanol intoxication increases hepatic N-lysyl protein acetylation
    • Picklo M.J. Ethanol intoxication increases hepatic N-lysyl protein acetylation. Biochem. Biophys. Res. Commun. 2008, 376:615-619.
    • (2008) Biochem. Biophys. Res. Commun. , vol.376 , pp. 615-619
    • Picklo, M.J.1
  • 77
    • 50949087166 scopus 로고    scopus 로고
    • Malonyl-CoA, a key signaling molecule in mammalian cells
    • Saggerson D. Malonyl-CoA, a key signaling molecule in mammalian cells. Annu. Rev. Nutr. 2008, 28:253-272.
    • (2008) Annu. Rev. Nutr. , vol.28 , pp. 253-272
    • Saggerson, D.1
  • 78
    • 4444226906 scopus 로고    scopus 로고
    • Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation
    • Dyck J.R., et al. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ. Res. 2004, 94:e78-e84.
    • (2004) Circ. Res. , vol.94
    • Dyck, J.R.1
  • 79
    • 33750211736 scopus 로고    scopus 로고
    • Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury
    • Dyck J.R., et al. Absence of malonyl coenzyme A decarboxylase in mice increases cardiac glucose oxidation and protects the heart from ischemic injury. Circulation 2006, 114:1721-1728.
    • (2006) Circulation , vol.114 , pp. 1721-1728
    • Dyck, J.R.1
  • 80
    • 23944509003 scopus 로고    scopus 로고
    • Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery
    • Tong L. Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell. Mol. Life Sci. 2005, 62:1784-1803.
    • (2005) Cell. Mol. Life Sci. , vol.62 , pp. 1784-1803
    • Tong, L.1
  • 81
    • 24744448667 scopus 로고    scopus 로고
    • Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal
    • Abu-Elheiga L., et al. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:12011-12016.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 12011-12016
    • Abu-Elheiga, L.1
  • 82
    • 0035970805 scopus 로고    scopus 로고
    • Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2
    • Abu-Elheiga L., et al. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001, 291:2613-2616.
    • (2001) Science , vol.291 , pp. 2613-2616
    • Abu-Elheiga, L.1
  • 83
    • 0042337449 scopus 로고    scopus 로고
    • Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets
    • Abu-Elheiga L., et al. Acetyl-CoA carboxylase 2 mutant mice are protected against obesity and diabetes induced by high-fat/high-carbohydrate diets. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:10207-10212.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 10207-10212
    • Abu-Elheiga, L.1
  • 84
    • 0034652297 scopus 로고    scopus 로고
    • The subcellular localization of acetyl-CoA carboxylase 2
    • Abu-Elheiga L., et al. The subcellular localization of acetyl-CoA carboxylase 2. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:1444-1449.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 1444-1449
    • Abu-Elheiga, L.1
  • 85
    • 0036071008 scopus 로고    scopus 로고
    • Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride
    • Roe C.R., et al. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J. Clin. Invest. 2002, 110:259-269.
    • (2002) J. Clin. Invest. , vol.110 , pp. 259-269
    • Roe, C.R.1
  • 86
    • 0035744467 scopus 로고    scopus 로고
    • Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase
    • Shimomura Y., et al. Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4:419-423.
    • (2001) Curr. Opin. Clin. Nutr. Metab. Care , vol.4 , pp. 419-423
    • Shimomura, Y.1
  • 87
    • 0031750339 scopus 로고    scopus 로고
    • A molecular model of human branched-chain amino acid metabolism
    • Suryawan A., et al. A molecular model of human branched-chain amino acid metabolism. Am. J. Clin. Nutr. 1998, 68:72-81.
    • (1998) Am. J. Clin. Nutr. , vol.68 , pp. 72-81
    • Suryawan, A.1
  • 88
    • 31544454965 scopus 로고    scopus 로고
    • Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise
    • Blomstrand E., et al. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 2006, 136:269S-273S.
    • (2006) J. Nutr. , vol.136
    • Blomstrand, E.1
  • 89
    • 31544458134 scopus 로고    scopus 로고
    • Branched-chain amino acids: enzyme and substrate regulation
    • Brosnan J.T., Brosnan M.E. Branched-chain amino acids: enzyme and substrate regulation. J. Nutr. 2006, 136:207S-211S.
    • (2006) J. Nutr. , vol.136
    • Brosnan, J.T.1    Brosnan, M.E.2
  • 90
    • 34248640428 scopus 로고    scopus 로고
    • Lysine propionylation and butyrylation are novel post-translational modifications in histones
    • Chen Y., et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol. Cell. Proteomics 2007, 6:812-819.
    • (2007) Mol. Cell. Proteomics , vol.6 , pp. 812-819
    • Chen, Y.1
  • 92
    • 33847635635 scopus 로고    scopus 로고
    • Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin
    • Schuetz A., et al. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 2007, 15:377-389.
    • (2007) Structure , vol.15 , pp. 377-389
    • Schuetz, A.1
  • 93
    • 84855757015 scopus 로고    scopus 로고
    • Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation
    • Xue L., et al. Acetylation-dependent regulation of mitochondrial ALDH2 activation by SIRT3 mediates acute ethanol-induced eNOS activation. FEBS Lett. 2012, 586:137-142.
    • (2012) FEBS Lett. , vol.586 , pp. 137-142
    • Xue, L.1
  • 94
    • 77951235122 scopus 로고    scopus 로고
    • +-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10
    • +-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. J. Biol. Chem. 2010, 285:7417-7429.
    • (2010) J. Biol. Chem. , vol.285 , pp. 7417-7429
    • Yang, Y.1
  • 95
    • 70349208608 scopus 로고    scopus 로고
    • Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
    • Sundaresan N.R., et al. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 2009, 119:2758-2771.
    • (2009) J. Clin. Invest. , vol.119 , pp. 2758-2771
    • Sundaresan, N.R.1
  • 96
    • 77956553913 scopus 로고    scopus 로고
    • P300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals
    • Vempati R.K., et al. p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J. Biol. Chem. 2010, 285:28553-28564.
    • (2010) J. Biol. Chem. , vol.285 , pp. 28553-28564
    • Vempati, R.K.1
  • 97
    • 53549105529 scopus 로고    scopus 로고
    • SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
    • Sundaresan N.R., et al. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol. Cell. Biol. 2008, 28:6384-6401.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 6384-6401
    • Sundaresan, N.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.