메뉴 건너뛰기




Volumn 42, Issue , 2012, Pages 179-209

Advances in thermal conductivity

Author keywords

Nanostructures; Nanowires; Thermal barrier coatings; Thermoelectrics; Thin films; Transport

Indexed keywords

ADVANCED MATERIALS; CHARACTERIZATION TECHNIQUES; COMPLEX UNITS; EXPERIMENTAL DATA; MATERIALS ENGINEERING; THEORETICAL PREDICTION; THERMAL TRANSPORT; THERMOELECTRICS; TRANSPORT;

EID: 84864190597     PISSN: 15317331     EISSN: None     Source Type: Book Series    
DOI: 10.1146/annurev-matsci-070511-155040     Document Type: Review
Times cited : (286)

References (194)
  • 3
    • 84864223504 scopus 로고    scopus 로고
    • Microscale conduction
    • ed. LM Jiji, Berlin: Springer. 436
    • Dames C. 2009. Microscale conduction. In Heat Conduction, ed. LM Jiji, pp. 347-401. Berlin: Springer. 436 pp.
    • (2009) Heat Conduction , pp. 347-401
    • Dames, C.1
  • 7
    • 60949083089 scopus 로고    scopus 로고
    • Cambridge, UK: Cambridge Univ. Press
    • Kaviany M. 2008. Heat Transfer Physics. Cambridge, UK: Cambridge Univ. Press. 688 pp.
    • (2008) Heat Transfer Physics. , pp. 688
    • Kaviany, M.1
  • 8
    • 0001860254 scopus 로고
    • Lattice vibrations and heat transport in crystals and glasses
    • Cahill DG, Pohl RO. 1988. Lattice vibrations and heat transport in crystals and glasses. Annu. Rev. Phys. Chem. 39:93-121
    • (1988) Annu. Rev. Phys. Chem. , vol.39 , pp. 93-121
    • Cahill, D.G.1    Pohl, R.O.2
  • 10
    • 0342833825 scopus 로고
    • Materials for thermoelectric energy-conversion
    • Wood C. 1988. Materials for thermoelectric energy-conversion. Rep. Progress Phys. 51:459-539
    • (1988) Rep. Progress Phys. , vol.51 , pp. 459-539
    • Wood, C.1
  • 11
    • 0001500616 scopus 로고
    • Ambipolar thermodiffusion of electrons and holes in semiconductors
    • Price PJ. 1955. Ambipolar thermodiffusion of electrons and holes in semiconductors. Philos. Mag. 46:1252-60
    • (1955) Philos. Mag. , vol.46 , pp. 1252-1260
    • Price, P.J.1
  • 12
    • 33645260160 scopus 로고
    • Thermal conductivity and anharmonic forces
    • Black MA. 1973. Thermal conductivity and anharmonic forces. Am. J. Phys. 41:691-96
    • (1973) Am. J. Phys. , vol.41 , pp. 691-696
    • Black, M.A.1
  • 13
    • 0042444077 scopus 로고
    • Thermal conductivity and lattice vibrational modes
    • Klemens PG. 1958. Thermal conductivity and lattice vibrational modes. Solid State Phys. Adv. Res. Appl. 7:1-98
    • (1958) Solid State Phys. Adv. Res. Appl. , vol.7 , pp. 1-98
    • Klemens, P.G.1
  • 14
    • 0018767119 scopus 로고
    • The thermal conductivity of nonmetallic crystals
    • eds. F Seitz, D Turnbull, H Ehrenreich,. New York: Academic
    • Slack GA. 1979. The thermal conductivity of nonmetallic crystals. In Solid State Physics, Vol. 34, eds. F Seitz, D Turnbull, H Ehrenreich, pp. 1-71. New York: Academic
    • (1979) Solid State Physics , vol.34 , pp. 1-71
    • Slack, G.A.1
  • 15
    • 3342959328 scopus 로고
    • The scattering of low-frequency lattice waves by static imperfections
    • Klemens PG. 1955. The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. Sect. A 68:1113
    • (1955) Proc. Phys. Soc. Sect. A , vol.68 , pp. 1113
    • Klemens, P.G.1
  • 16
    • 36149027789 scopus 로고
    • Lattice thermal conductivity of disordered semiconductor alloys at high temperatures
    • Abeles B. 1963. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131:1906-11
    • (1963) Phys. Rev. , vol.131 , pp. 1906-1911
    • Abeles, B.1
  • 17
    • 0002379207 scopus 로고
    • Theory of thermal conductivity of solids at low temperatures
    • Carruthers P. 1961. Theory of thermal conductivity of solids at low temperatures. Rev. Mod. Phys. 33:92-138
    • (1961) Rev. Mod. Phys. , vol.33 , pp. 92-138
    • Carruthers, P.1
  • 18
    • 0037821169 scopus 로고
    • Nonmetallic crystals with high thermal conductivity
    • Slack GA. 1973. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34:321-35
    • (1973) J. Phys. Chem. Solids , vol.34 , pp. 321-335
    • Slack, G.A.1
  • 21
    • 0000290832 scopus 로고
    • Thermal conductivity of pure and impure silicon, silicon carbide, and diamond
    • Slack GA. 1964. Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. J. Appl. Phys. 35:3460
    • (1964) J. Appl. Phys. , vol.35 , pp. 3460
    • Slack, G.A.1
  • 23
    • 0002758190 scopus 로고
    • Thermal conductivity of Ge-Si alloys at high temperatures
    • Abeles B, Beers DS, Cody GD, Dismukes JP. 1962. Thermal conductivity of Ge-Si alloys at high temperatures. Phys. Rev. 125:44-46
    • (1962) Phys. Rev. , vol.125 , pp. 44-46
    • Abeles, B.1    Beers, D.S.2    Cody, G.D.3    Dismukes, J.P.4
  • 25
    • 32144460107 scopus 로고
    • Thermal conductivity of amorphous solids above the plateau
    • Cahill DG, Pohl RO. 1987. Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35:4067-73
    • (1987) Phys. Rev. B , vol.35 , pp. 4067-4073
    • Cahill, D.G.1    Pohl, R.O.2
  • 26
    • 0033311240 scopus 로고    scopus 로고
    • Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si
    • Allen PB, Feldman JL, Fabian J, Wooten F. 1999. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Philos. Mag. Part B 79:1715-31
    • (1999) Philos. Mag. Part B , vol.79 , pp. 1715-1731
    • Allen, P.B.1    Feldman, J.L.2    Fabian, J.3    Wooten, F.4
  • 27
    • 0001293162 scopus 로고
    • Lower limit to the thermal-conductivity of disordered crystals
    • Cahill DG, Watson SK, Pohl RO. 1992. Lower limit to the thermal-conductivity of disordered crystals. Phys. Rev. B 46:6131-40
    • (1992) Phys. Rev. B , vol.46 , pp. 6131-6140
    • Cahill, D.G.1    Watson, S.K.2    Pohl, R.O.3
  • 28
  • 31
    • 0032076421 scopus 로고    scopus 로고
    • Thermal conductivity of thermal barrier coatings
    • Klemens PG, Gell M. 1998. Thermal conductivity of thermal barrier coatings. Mater. Sci. Eng. A 245:143-49
    • (1998) Mater. Sci. Eng. A , vol.245 , pp. 143-149
    • Klemens, P.G.1    Gell, M.2
  • 32
    • 84864215408 scopus 로고    scopus 로고
    • C518-10: Standard test method for steady-state thermal transmission properties bymeans of the heat flow meter apparatus
    • ASTM.06. West Conshohocken, PA: ASTM Int
    • ASTM. 2010. C518-10: Standard test method for steady-state thermal transmission properties bymeans of the heat flow meter apparatus. In Annual Book of ASTM Standards, Vol. 4.06. West Conshohocken, PA: ASTM Int. 15 pp.
    • (2010) Annual Book of ASTM Standards , vol.4 , pp. 15
  • 34
    • 84864199657 scopus 로고    scopus 로고
    • E1225-09: Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique
    • ASTM.02. West Conshohocken, PA: ASTM Int
    • ASTM. 2009. E1225-09: Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique. In Annual Book of ASTM Standards, Vol. 14.02. West Conshohocken, PA: ASTM Int. 15 pp.
    • (2009) Annual Book of ASTM Standards , vol.14 , pp. 15
  • 35
    • 36849003894 scopus 로고    scopus 로고
    • Intrinsic lattice thermal conductivity of semiconductors from first principles
    • Broido DA, Malorny M, Birner G, Mingo N, Stewart DA. 2007. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91:231922
    • (2007) Appl. Phys. Lett. , vol.91 , pp. 231922
    • Broido, D.A.1    Malorny, M.2    Birner, G.3    Mingo, N.4    Stewart, D.A.5
  • 37
    • 79955737553 scopus 로고    scopus 로고
    • 2+m observed by inelastic neutron scattering
    • ManleyME,Shapiro S, Li Q, LlobetA,HagenME.2011. Lattice dynamical origin of peak thermoelectric performance in AgPbmSbTe2+m observed by inelastic neutron scattering. J. Appl. Phys. 109:083722
    • (2011) J. Appl. Phys. , vol.109 , pp. 083722
    • Manley, M.E.1    Shapiro, S.2    Li, Q.3    Llobet, A.4    Hagen, M.E.5
  • 38
    • 79961233306 scopus 로고    scopus 로고
    • 12 (M=Ca, Sr, Ba, and Yb): Temperature response, dispersion relation, and material properties
    • Koza MM, Leithe-Jasper A, Rosner H, Schnelle W, Mutka H, et al. 2011. Vibrational dynamics of the filled skutterudites M1?xFe4Sb12 (M=Ca, Sr, Ba, and Yb): Temperature response, dispersion relation, and material properties. Phys. Rev. B 84:014306
    • (2011) Phys. Rev. B , vol.84 , pp. 014306
    • Koza, M.M.1    Leithe-Jasper, A.2    Rosner, H.3    Schnelle, W.4    Mutka, H.5
  • 42
    • 30344447263 scopus 로고    scopus 로고
    • 2
    • Li D, Qin XY, Gu YJ. 2006. The effects of bismuth intercalation on structure and thermal conductivity of TiS2. Mater. Res. Bull. 41:282-90
    • (2006) Mater. Res. Bull. , vol.41 , pp. 282-290
    • Li, D.1    Qin, X.Y.2    Gu, Y.J.3
  • 43
    • 77955745596 scopus 로고    scopus 로고
    • Investigation on thermal conductivity of aluminum nitride ceramics by FT-Raman spectroscopy
    • Lee HK, Kim DK. 2010. Investigation on thermal conductivity of aluminum nitride ceramics by FT-Raman spectroscopy. J. Am. Ceram. Soc. 93:2167-70
    • (2010) J. Am. Ceram. Soc. , vol.93 , pp. 2167-2170
    • Lee, H.K.1    Kim, D.K.2
  • 44
    • 79952689975 scopus 로고    scopus 로고
    • Thermal conductivity of chalcogenide material with superlatticelike structure
    • Tong H, Miao XS, Cheng XM, Wang H, Zhang L, et al. 2011. Thermal conductivity of chalcogenide material with superlatticelike structure. Appl. Phys. Lett. 98:101904
    • (2011) Appl. Phys. Lett. , vol.98 , pp. 101904
    • Tong, H.1    Miao, X.S.2    Cheng, X.M.3    Wang, H.4    Zhang, L.5
  • 45
    • 84892315372 scopus 로고    scopus 로고
    • Inelastic X-ray scattering from collective atom dynamics
    • ed. F Hippert,. Dordrecht: Springer. 590
    • Sette F, Krisch M. 2006. Inelastic X-ray scattering from collective atom dynamics. In Neutron and X-ray Spectroscopy, ed. F Hippert, pp. 169-88. Dordrecht: Springer. 590 pp.
    • (2006) Neutron and X-ray Spectroscopy , pp. 169-188
    • Sette, F.1    Krisch, M.2
  • 46
    • 1642462317 scopus 로고
    • Neutron scattering: A primer
    • Pynn R. 1990. Neutron scattering: a primer. Los Alamos Science 19:1-33
    • (1990) Los Alamos Science , vol.19 , pp. 1-33
    • Pynn, R.1
  • 48
    • 0034664447 scopus 로고    scopus 로고
    • Raman scattering study of Ge and Sn compounds with type-I clathrate hydrate crystal structure
    • Nolas GS, Kendziora CA. 2000. Raman scattering study of Ge and Sn compounds with type-I clathrate hydrate crystal structure. Phys. Rev. B 62:7157-61
    • (2000) Phys. Rev. B , vol.62 , pp. 7157-7161
    • Nolas, G.S.1    Kendziora, C.A.2
  • 50
    • 33751329744 scopus 로고    scopus 로고
    • 30 (X = Eu,Sr,Ba) investigated by Raman scattering
    • Takasu Y, Hasegawa T, OgitaN, Udagawa M, Avila MA, et al. 2006. Dynamical properties of guest ions in the type-I clathrate compounds X8Ga16Ge30 (X = Eu,Sr,Ba) investigated by Raman scattering. Phys. Rev. B 74:174303
    • (2006) Phys. Rev. B , vol.74 , pp. 174303
    • Takasu, Y.1    Hasegawa, T.2    Ogitan Udagawa, M.3    Avila, M.A.4
  • 52
    • 80052476976 scopus 로고    scopus 로고
    • Thermoelectric properties and investigations of low thermal conductivity in Ga-doped Cu2GeSe3
    • Cho JY, Shi X, Salvador JR,Meisner GP, Yang J, et al. 2011. Thermoelectric properties and investigations of low thermal conductivity in Ga-doped Cu2GeSe3. Phys. Rev. B 84:085207
    • (2011) Phys. Rev. B , vol.84 , pp. 085207
    • Cho, J.Y.1    Shi, X.2    Salvador, J.R.3    Meisner, G.P.4    Yang, J.5
  • 53
    • 33746050718 scopus 로고    scopus 로고
    • 136: Theoretical and experimental study of the type-II clathrate polymorph of Si
    • Tang XL, Dong JJ, Hutchins P, Shebanova O, Gryko J, et al. 2006. Thermal properties of Si136: theoretical and experimental study of the type-II clathrate polymorph of Si. Phys. Rev. B 74:014109
    • (2006) Phys. Rev. B , vol.74 , pp. 014109
    • Tang, X.L.1    Dong, J.J.2    Hutchins, P.3    Shebanova, O.4    Gryko, J.5
  • 55
    • 77957555865 scopus 로고    scopus 로고
    • Thermal behavior of vibrational phonons and hydroxyls ofmuscovite in dehydroxylation: In situ high-temperature infrared spectroscopic investigations
    • ZhangM,Redfern SAT, SaljeEKH,Carpenter MA,Hayward CL. 2010. Thermal behavior of vibrational phonons and hydroxyls ofmuscovite in dehydroxylation: in situ high-temperature infrared spectroscopic investigations. Am. Mineral. 95:1444-57
    • (2010) Am. Mineral. , vol.95 , pp. 1444-1457
    • Zhang, M.1    Sat, R.2    Ekh, S.3    Carpenter, M.A.4    Hayward, C.L.5
  • 56
    • 0000608060 scopus 로고
    • Mode Grüneisen parameter dispersion relation of RbI determined by neutron scattering
    • Blaschko O, Ernst G, Quittner G, KressW, Lechner RE. 1975. Mode Grüneisen parameter dispersion relation of RbI determined by neutron scattering. Phys. Rev. B 11:3960-65
    • (1975) Phys. Rev. B , vol.11 , pp. 3960-3965
    • Blaschko, O.1    Ernst, G.2    Quittner, G.3    Kress, W.4    Lechner, R.E.5
  • 58
    • 79960644631 scopus 로고    scopus 로고
    • Thermal properties of graphene and nanostructured carbon materials
    • Balandin AA. 2011. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10:569-81
    • (2011) Nat. Mater. , vol.10 , pp. 569-581
    • Balandin, A.A.1
  • 59
    • 84864217806 scopus 로고    scopus 로고
    • Thermal and thermoelectric transport in low-dimensional and nanostructrured materials
    • In press
    • Shi L. 2012. Thermal and thermoelectric transport in low-dimensional and nanostructrured materials. Nanoscale Microscale Thermophys. Eng. In press
    • (2012) Nanoscale Microscale Thermophys. Eng.
    • Shi, L.1
  • 60
    • 79958845378 scopus 로고    scopus 로고
    • Thermal conductivity of nanocrystalline silicon: Importance of grain size and frequency-dependent mean free paths
    • Wang Z, Alaniz JE, JangW, Garay JE, Dames C. 2011. Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett. 11:2206-13
    • (2011) Nano Lett. , vol.11 , pp. 2206-2213
    • Wang, Z.1    Alaniz, J.E.2    Jang, W.3    Garay, J.E.4    Dames, C.5
  • 61
    • 0542378949 scopus 로고    scopus 로고
    • Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
    • Chen G. 1998. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57:14958-73
    • (1998) Phys. Rev. B , vol.57 , pp. 14958-14973
    • Chen, G.1
  • 62
    • 33748263468 scopus 로고    scopus 로고
    • Thermal conductivity of nanostructured materials
    • ed. DM Rowe,. Boca Raton: CRC Press. 1, 014
    • DamesC,ChenG. 2005. Thermal conductivity of nanostructured materials. In ThermoelectricsHandbook: Macro to Nano, ed. DM Rowe, 42:1-11. Boca Raton: CRC Press. 1,014 pp.
    • (2005) ThermoelectricsHandbook: Macro to Nano , vol.42 , pp. 1-11
    • Dames, C.1    Chen, G.2
  • 64
    • 77949560538 scopus 로고    scopus 로고
    • Marked effects of alloying on the thermal conductivity of nanoporous materials
    • Bera C, Mingo N, Volz S. 2010. Marked effects of alloying on the thermal conductivity of nanoporous materials. Phys. Rev. Lett. 104:115502
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 115502
    • Bera, C.1    Mingo, N.2    Volz, S.3
  • 65
    • 47149105630 scopus 로고    scopus 로고
    • Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics
    • Henry AS, Chen G. 2008. Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanosci. 5:141-52
    • (2008) J. Comput. Theor. Nanosci. , vol.5 , pp. 141-152
    • Henry, A.S.1    Chen, G.2
  • 66
    • 34548216859 scopus 로고    scopus 로고
    • Frequency dependence of the thermal conductivity of semiconductor alloys
    • Koh YK, Cahill DG. 2007. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76:075207
    • (2007) Phys. Rev. B , vol.76 , pp. 075207
    • Koh, Y.K.1    Cahill, D.G.2
  • 68
    • 0039702996 scopus 로고    scopus 로고
    • Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures
    • Chen G. 1997. Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J. Heat Transf. Trans. ASME 119:220-29
    • (1997) J. Heat Transf. Trans. ASME , vol.119 , pp. 220-229
    • Chen, G.1
  • 69
    • 0000061661 scopus 로고
    • The transport of heat between dissimilar solids at low temperatures
    • Little WA. 1959. The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37:334-49
    • (1959) Can. J. Phys. , vol.37 , pp. 334-349
    • Little, W.A.1
  • 70
  • 72
    • 0009647268 scopus 로고
    • Heat transport through helium II: Kapitza conductance
    • Snyder NS. 1970. Heat transport through helium II: Kapitza conductance. Cryogenics 10:89-95
    • (1970) Cryogenics , vol.10 , pp. 89-95
    • Snyder, N.S.1
  • 73
    • 0742285722 scopus 로고    scopus 로고
    • Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires
    • Dames C, Chen G. 2004. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 95:682-93
    • (2004) J. Appl. Phys. , vol.95 , pp. 682-693
    • Dames, C.1    Chen, G.2
  • 75
    • 0013497476 scopus 로고    scopus 로고
    • Heat conduction in novel electronic films
    • Goodson KE, Ju YS. 1999. Heat conduction in novel electronic films. Annu. Rev. Mater. Sci. 29:261-93
    • (1999) Annu. Rev. Mater. Sci. , vol.29 , pp. 261-293
    • Goodson, K.E.1    Ju, Y.S.2
  • 76
    • 0040151682 scopus 로고    scopus 로고
    • Heat transport in dielectric thin films and at solid-solid interfaces
    • Cahill DG. 1997. Heat transport in dielectric thin films and at solid-solid interfaces. Microscale Thermophys. Eng. 1:85-109
    • (1997) Microscale Thermophys. Eng. , vol.1 , pp. 85-109
    • Cahill, D.G.1
  • 77
    • 0000953459 scopus 로고    scopus 로고
    • Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures
    • Venkatasubramanian R. 2000. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61:3091-97
    • (2000) Phys. Rev. B , vol.61 , pp. 3091-3097
    • Venkatasubramanian, R.1
  • 78
    • 0000881998 scopus 로고    scopus 로고
    • Thermal-conductivity measurements of GaAs/AIAs superlattices using a picosecond optical pump-and-probe technique
    • Capinski WS, Maris HJ, Ruf T, Cardona M, Ploog K, Katzer DS. 1999. Thermal-conductivity measurements of GaAs/AIAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59:8105-13
    • (1999) Phys. Rev. B , vol.59 , pp. 8105-8113
    • Capinski, W.S.1    Maris, H.J.2    Ruf, T.3    Cardona, M.4    Ploog, K.5    Katzer, D.S.6
  • 80
    • 0001248353 scopus 로고    scopus 로고
    • Minimum thermal conductivity of superlattices
    • Simkin MV,Mahan GD. 2000. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84:927-30
    • (2000) Phys. Rev. Lett. , vol.84 , pp. 927-930
    • Simkin, M.V.1    Mahan, G.D.2
  • 81
    • 0037826935 scopus 로고    scopus 로고
    • Partially coherent phonon heat conduction in superlattices
    • Yang B, Chen G. 2003. Partially coherent phonon heat conduction in superlattices.Phys. Rev. B 67:195311
    • (2003) Phys. Rev. B , vol.67 , pp. 195311
    • Yang, B.1    Chen, G.2
  • 82
    • 0027576198 scopus 로고
    • Thermal-conductivities of quantum-well structures
    • Chen G, Tien CL. 1993. Thermal-conductivities of quantum-well structures. J. Thermophys.Heat Transf. 7:311-18
    • (1993) J. Thermophys.Heat Transf. , vol.7 , pp. 311-318
    • Chen, G.1    Tien, C.L.2
  • 85
    • 29744465652 scopus 로고    scopus 로고
    • Thermal conductivity measurements of ultra-thin single crystal silicon layers
    • LiuW, Asheghi M. 2006. Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat Transf. 128:75-83
    • (2006) J. Heat Transf. , vol.128 , pp. 75-83
    • Liu, W.1    Asheghi, M.2
  • 86
    • 84933207793 scopus 로고
    • The mean free path of electrons in metals
    • Sondheimer EH. 1952. The mean free path of electrons in metals. Adv. Phys. 1:1-42
    • (1952) Adv. Phys. , vol.1 , pp. 1-42
    • Sondheimer, E.H.1
  • 88
    • 79961110456 scopus 로고    scopus 로고
    • Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases
    • Zhou F, Moore AL, Bolinsson J, Persson A, Fr öberg L, et al. 2011. Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. Phys. Rev. B 83:205416
    • (2011) Phys. Rev. B , vol.83 , pp. 205416
    • Zhou, F.1    Moore, A.L.2    Bolinsson, J.3    Persson, A.4    Fröberg, L.5
  • 90
    • 0242595934 scopus 로고    scopus 로고
    • Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations
    • Mingo N. 2003. Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68:113308
    • (2003) Phys. Rev. B , vol.68 , pp. 113308
    • Mingo, N.1
  • 91
    • 66449114263 scopus 로고    scopus 로고
    • Mesoscopic size effects on the thermal conductance of silicon nanowire
    • Heron JS, Fournier T, MingoN, BourgeoisO. 2009. Mesoscopic size effects on the thermal conductance of silicon nanowire. Nano Lett. 9:1861-65
    • (2009) Nano Lett. , vol.9 , pp. 1861-1865
    • Heron, J.S.1    Fournier, T.2    Bourgeoiso, M.3
  • 93
    • 78449275196 scopus 로고    scopus 로고
    • Fabrication ofmicrodevices with integrated nanowires for investigating low-dimensional phonon transport
    • Hippalgaonkar K, Huang B,ChenR, SawyerK,Ercius P,MajumdarA. 2010. Fabrication ofmicrodevices with integrated nanowires for investigating low-dimensional phonon transport. Nano Lett. 10:4341-48
    • (2010) Nano Lett. , vol.10 , pp. 4341-4348
    • Hippalgaonkar, K.1    Huang, B.2    Chen, R.3    Sawyer, K.4    Ercius, P.5    Majumdar, A.6
  • 95
    • 64149110758 scopus 로고    scopus 로고
    • Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires
    • Martin P, Aksamija Z, Pop E, Ravaioli U. 2009. Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102:125503
    • (2009) Phys. Rev. Lett. , vol.102 , pp. 125503
    • Martin, P.1    Aksamija, Z.2    Pop, E.3    Ravaioli, U.4
  • 96
    • 35448989286 scopus 로고    scopus 로고
    • Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires
    • Murphy PG, Moore JE. 2007. Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires. Phys. Rev. B 76:155313
    • (2007) Phys. Rev. B , vol.76 , pp. 155313
    • Murphy, P.G.1    Moore, J.E.2
  • 98
    • 46449085036 scopus 로고    scopus 로고
    • High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys
    • Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, et al. 2008. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634-38
    • (2008) Science , vol.320 , pp. 634-638
    • Poudel, B.1    Hao, Q.2    Ma, Y.3    Lan, Y.4    Minnich, A.5
  • 99
    • 68249125385 scopus 로고    scopus 로고
    • Nanostructured bulk silicon as an effective thermoelectric material
    • Bux SK, Blair RG, Gogna PK, Lee H, Chen G, et al. 2009. Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19:2445-52
    • (2009) Adv. Funct. Mater. , vol.19 , pp. 2445-2452
    • Bux, S.K.1    Blair, R.G.2    Gogna, P.K.3    Lee, H.4    Chen, G.5
  • 100
    • 0842331448 scopus 로고    scopus 로고
    • Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit
    • Hsu KF, Loo S, Guo F, Chen W, Dyck JS, et al. 2004. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303:818-21
    • (2004) Science , vol.303 , pp. 818-821
    • Hsu, K.F.1    Loo, S.2    Guo, F.3    Chen, W.4    Dyck, J.S.5
  • 101
    • 79251622230 scopus 로고    scopus 로고
    • Strained endotaxial nanostructures with high thermoelectric figure of merit
    • Biswas K, He J, Zhang Q, Wang G, Uher C, et al. 2011. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3:160-66
    • (2011) Nat. Chem. , vol.3 , pp. 160-166
    • Biswas, K.1    He, J.2    Zhang, Q.3    Wang, G.4    Uher, C.5
  • 102
    • 33947113376 scopus 로고    scopus 로고
    • Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces
    • Ikeda T, Collins LA, Ravi VA, Gascoin FS, Haile SM, Snyder GJ. 2007. Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces. Chem. Mater. 19:763-67
    • (2007) Chem. Mater. , vol.19 , pp. 763-767
    • Ikeda, T.1    Collins, L.A.2    Ravi, V.A.3    Gascoin, F.S.4    Haile, S.M.5    Snyder, G.J.6
  • 103
    • 77955856357 scopus 로고    scopus 로고
    • Effective thermal conductivity of polycrystalline materials with randomly oriented superlattice grains
    • Yang F, Ikeda T, Snyder GJ, Dames C. 2010. Effective thermal conductivity of polycrystalline materials with randomly oriented superlattice grains. J. Appl. Phys. 108:034310
    • (2010) J. Appl. Phys. , vol.108 , pp. 034310
    • Yang, F.1    Ikeda, T.2    Snyder, G.J.3    Dames, C.4
  • 104
    • 58049209774 scopus 로고    scopus 로고
    • 3 Widmanstätten precipitates in thermoelectric PbTe
    • Ikeda T, Ravi VA, Snyder GJ. 2009. Formation of Sb2Te3 Widmanstätten precipitates in thermoelectric PbTe. Acta Mater. 57:666-72
    • (2009) Acta Mater. , vol.57 , pp. 666-672
    • Ikeda, T.1    Ravi, V.A.2    Snyder, G.J.3
  • 108
    • 33144473476 scopus 로고    scopus 로고
    • Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors
    • Kim W, Zide J, Gossard A, Klenov D, Stemmer S, et al. 2006. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96:045901
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 045901
    • Kim, W.1    Zide, J.2    Gossard, A.3    Klenov, D.4    Stemmer, S.5
  • 109
    • 0001289631 scopus 로고
    • Boundary scattering of phonons in solid solutions
    • GoldsmidHJ, PennAW.1968. Boundary scattering of phonons in solid solutions. Phys. Lett. A27:523-24
    • (1968) Phys. Lett. A27 , pp. 523-524
    • Goldsmid, H.J.1    Penn, A.W.2
  • 110
    • 44649176898 scopus 로고    scopus 로고
    • The brick layer model revisited: Introducing the nano-grain composite model
    • Kidner NJ, Perry NH, Mason TO, Garboczi EJ. 2008. The brick layer model revisited: introducing the nano-grain composite model. J. Am. Ceram. Soc. 91:1733-46
    • (2008) J. Am. Ceram. Soc. , vol.91 , pp. 1733-1746
    • Kidner, N.J.1    Perry, N.H.2    Mason, T.O.3    Garboczi, E.J.4
  • 111
    • 33646722130 scopus 로고    scopus 로고
    • Phonon scattering cross section of polydispersed spherical nanoparticles
    • Kim W, Majumdar A. 2006. Phonon scattering cross section of polydispersed spherical nanoparticles. J. Appl. Phys. 99:084306-7
    • (2006) J. Appl. Phys. , vol.99 , pp. 084306-084307
    • Kim, W.1    Majumdar, A.2
  • 112
    • 77957909092 scopus 로고    scopus 로고
    • Reduction of thermal conductivity in phononic nanomesh structures
    • Yu J-K, Mitrovic S, Tham D, Varghese J,Heath JR. 2010. Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nano 5:718-21
    • (2010) Nat. Nano , vol.5 , pp. 718-721
    • Yu, J.-K.1    Mitrovic, S.2    Tham, D.3    Varghese, J.4    Heath, J.R.5
  • 113
    • 77958033784 scopus 로고    scopus 로고
    • Holey silicon as an efficient thermoelectric material
    • Tang JY, Wang HT, Lee DH, Fardy M, Huo ZY, et al. 2010. Holey silicon as an efficient thermoelectric material. Nano Lett. 10:4279-83
    • (2010) Nano Lett. , vol.10 , pp. 4279-4283
    • Tang, J.Y.1    Wang, H.T.2    Lee, D.H.3    Fardy, M.4    Huo, Z.Y.5
  • 114
    • 1242286933 scopus 로고    scopus 로고
    • Thermal conductivity of periodic microporous silicon films
    • Song D, Chen G. 2004. Thermal conductivity of periodic microporous silicon films. Appl. Phys. Lett. 84:687-89
    • (2004) Appl. Phys. Lett. , vol.84 , pp. 687-689
    • Song, D.1    Chen, G.2
  • 115
    • 84864184540 scopus 로고    scopus 로고
    • Experimental techniques for thin-film thermal conductivity characterization
    • ed. TM Tritt,. New York: Kluwer Acad./ Plenum
    • Borca-Tasciuc T, Chen G. 2004. Experimental techniques for thin-film thermal conductivity characterization. In Thermal Conductivity: Theory, Properties, and Applications, ed. TM Tritt, pp. 205-37. New York: Kluwer Acad./Plenum
    • (2004) Thermal Conductivity: Theory, Properties, and Applications , pp. 205-237
    • Borca-Tasciuc, T.1    Chen, G.2
  • 116
    • 0028403721 scopus 로고
    • Solid layer thermal-conductivity measurement techniques
    • Goodson KE, Flik MI. 1994. Solid layer thermal-conductivity measurement techniques. Appl.Mech. Rev. 47:101-12
    • (1994) Appl.Mech. Rev. , vol.47 , pp. 101-112
    • Goodson, K.E.1    Flik, M.I.2
  • 117
    • 0000856591 scopus 로고
    • Thermal-conductivity of alpha-SiH thin-films
    • Cahill DG, Katiyar M, Abelson JR. 1994. Thermal-conductivity of alpha-SiH thin-films. Phys. Rev. B 50:6077-81
    • (1994) Phys. Rev. B , vol.50 , pp. 6077-6081
    • Cahill, D.G.1    Katiyar, M.2    Abelson, J.R.3
  • 118
    • 29744438825 scopus 로고    scopus 로고
    • 1ω, 2ω, and 3ωmethods for measurements of thermal properties
    • Dames C, Chen G. 2005. 1ω, 2ω, and 3ωmethods for measurements of thermal properties. Rev. Sci. Instrum. 76:124902
    • (2005) Rev. Sci. Instrum. , vol.76 , pp. 124902
    • Dames, C.1    Chen, G.2
  • 119
    • 36549099049 scopus 로고
    • Thermal conductivity measurement from 30 K to 750 K: The 3ωmethod
    • Cahill DG. 1990. Thermal conductivity measurement from 30 K to 750 K: the 3ωmethod. Rev. Sci. Instrum. 61:802-8
    • (1990) Rev. Sci. Instrum. , vol.61 , pp. 802-808
    • Cahill, D.G.1
  • 120
    • 0035306385 scopus 로고    scopus 로고
    • Data reduction in 3 omega method for thin-film thermal conductivity determination
    • Borca-Tasciuc T, Kumar AR, Chen G. 2001. Data reduction in 3 omega method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 72:2139-47
    • (2001) Rev. Sci. Instrum. , vol.72 , pp. 2139-2147
    • Borca-Tasciuc, T.1    Kumar, A.R.2    Chen, G.3
  • 121
    • 0031094623 scopus 로고    scopus 로고
    • Heat transport in thin dielectric films
    • Lee SM, Cahill DG. 1997. Heat transport in thin dielectric films. J. Appl. Phys. 81:2590-95
    • (1997) J. Appl. Phys. , vol.81 , pp. 2590-2595
    • Lee, S.M.1    Cahill, D.G.2
  • 122
    • 70350393233 scopus 로고    scopus 로고
    • Thermal contact resistance between graphene and silicon dioxide
    • Chen Z, Jang W, BaoW, Lau CN, Dames C. 2009. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 95:161910
    • (2009) Appl. Phys. Lett. , vol.95 , pp. 161910
    • Chen, Z.1    Jang, W.2    Baow Lau, C.N.3    Dames, C.4
  • 123
    • 0001292732 scopus 로고
    • Transient thermoreflectance from thinmetal films
    • Paddock CA, Eesley GL. 1986. Transient thermoreflectance from thinmetal films. J. Appl. Phys. 60:285-90
    • (1986) J. Appl. Phys. , vol.60 , pp. 285-290
    • Paddock, C.A.1    Eesley, G.L.2
  • 125
    • 0033534934 scopus 로고    scopus 로고
    • Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating
    • Ju YS, Kurabayashi K, Goodson KE. 1999. Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating. Thin Solid Films 339:160-64
    • (1999) Thin Solid Films , vol.339 , pp. 160-164
    • Ju, Y.S.1    Kurabayashi, K.2    Goodson, K.E.3
  • 126
    • 57049142573 scopus 로고    scopus 로고
    • Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance
    • Schmidt AJ. 2008. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79:114902
    • (2008) Rev. Sci. Instrum. , vol.79 , pp. 114902
    • Schmidt, A.J.1
  • 128
    • 0343635648 scopus 로고
    • Thermal conductivity and diffusivity of free-standing silicon nitride thin films
    • Zhang X, Grigoropoulos C. 1995. Thermal conductivity and diffusivity of free-standing silicon nitride thin films. Rev. Sci. Instrum. 66:1115
    • (1995) Rev. Sci. Instrum. , vol.66 , pp. 1115
    • Zhang, X.1    Grigoropoulos, C.2
  • 130
    • 0021373416 scopus 로고
    • Amethod for themeasurement of thermal-conductivity, thermal-diffusivity, and other transport-coefficients of thin-films
    • Volklein F, Kessler E. 1984. Amethod for themeasurement of thermal-conductivity, thermal-diffusivity, and other transport-coefficients of thin-films. Phys. Status Solidi Appl. Res. 81:585-96
    • (1984) Phys. Status Solidi Appl. Res. , vol.81 , pp. 585-596
    • Volklein, F.1    Kessler, E.2
  • 131
    • 18244390620 scopus 로고
    • Thermal-conductivity of heavily doped low-pressure chemical vapor-deposited polycrystalline silicon films
    • Tai YC, Mastrangelo CH, Muller RS. 1988. Thermal-conductivity of heavily doped low-pressure chemical vapor-deposited polycrystalline silicon films. J. Appl. Phys. 63:1442-47
    • (1988) J. Appl. Phys. , vol.63 , pp. 1442-1447
    • Tai, Y.C.1    Mastrangelo, C.H.2    Muller, R.S.3
  • 132
    • 79955424726 scopus 로고    scopus 로고
    • Non-equilibrium transient thermal grating relaxation in metal
    • Maznev AA, Johnson JA, Nelson KA. 2011. Non-equilibrium transient thermal grating relaxation in metal. J. Appl. Phys. 109:073517
    • (2011) J. Appl. Phys. , vol.109 , pp. 073517
    • Maznev, A.A.1    Johnson, J.A.2    Nelson, K.A.3
  • 133
    • 3743137285 scopus 로고    scopus 로고
    • Contactless measurement of the thermal conductivity of thin SiC layers
    • ed. G Pensl, H Morkoc, B Monemar, E Janzen, Mater. Sci. Forum, Pt. 1, 657-60. Zurich-Uetikon: Transtec Publ. Ltd
    • Rohmfeld S, Hundhausen M, Ley L. 1998. Contactless measurement of the thermal conductivity of thin SiC layers. In Silicon Carbide, III-Nitrides and Related Materials, ed. G Pensl, H Morkoc, B Monemar, E Janzen, Mater. Sci. Forum, Pt. 1, 2, 264-268:657-60. Zurich-Uetikon: Transtec Publ. Ltd.
    • (1998) Silicon Carbide, III-Nitrides and Related Materials , vol.2 , pp. 264-268
    • Rohmfeld, S.1    Hundhausen, M.2    Ley, L.3
  • 135
    • 77952410071 scopus 로고    scopus 로고
    • Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
    • Cai W, Moore AL, Zhu Y, Li X, Chen S, et al. 2010. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10:1645-51
    • (2010) Nano Lett. , vol.10 , pp. 1645-1651
    • Cai, W.1    Moore, A.L.2    Zhu, Y.3    Li, X.4    Chen, S.5
  • 136
    • 77950791436 scopus 로고    scopus 로고
    • Two-dimensional phonon transport in supported graphene
    • Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, et al. 2010. Two-dimensional phonon transport in supported graphene. Science 328:213-16
    • (2010) Science , vol.328 , pp. 213-216
    • Seol, J.H.1    Jo, I.2    Moore, A.L.3    Lindsay, L.4    Zh, A.5
  • 137
    • 77958050751 scopus 로고    scopus 로고
    • Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite
    • Jang W, Chen Z, Bao W, Lau CN, Dames C. 2010. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 10:3909-13
    • (2010) Nano Lett. , vol.10 , pp. 3909-3913
    • Jang, W.1    Chen, Z.2    Bao, W.3    Lau, C.N.4    Dames, C.5
  • 138
    • 0242349591 scopus 로고    scopus 로고
    • Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device
    • Shi L, Li DY, Yu CH, JangWY, Kim D, et al. 2003. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 125:881-88
    • (2003) J. Heat Transf. , vol.125 , pp. 881-888
    • Shi, L.1    Li, D.Y.2    Yu, C.H.3    Jangwy Kim, D.4
  • 139
    • 34047181101 scopus 로고    scopus 로고
    • Four-probe measurements of the in-plane thermoelectric properties of nanofilms
    • Mavrokefalos A, Pettes MT, Zhou F, Shi L. 2007. Four-probe measurements of the in-plane thermoelectric properties of nanofilms. Rev. Sci. Instrum. 78:034901
    • (2007) Rev. Sci. Instrum. , vol.78 , pp. 034901
    • Mavrokefalos, A.1    Pettes, M.T.2    Zhou, F.3    Shi, L.4
  • 140
    • 31544438604 scopus 로고    scopus 로고
    • Thermal conductance of an individual single-wall carbon nanotube above room temperature
    • Pop E,Mann D,Wang Q, Goodson K, Dai HJ. 2006. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6:96-100
    • (2006) Nano Lett. , vol.6 , pp. 96-100
    • Pop, E.1    Mann, D.2    Wang, Q.3    Goodson, K.4    Dai, H.J.5
  • 141
    • 24144461338 scopus 로고    scopus 로고
    • Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-omega method
    • Choi TY, Poulikakos D, Tharian J, Sennhauser U. 2005. Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-omega method. Appl. Phys. Lett. 87:013108
    • (2005) Appl. Phys. Lett. , vol.87 , pp. 013108
    • Choi, T.Y.1    Poulikakos, D.2    Tharian, J.3    Sennhauser, U.4
  • 142
    • 27144490668 scopus 로고    scopus 로고
    • Measuring the thermal conductivity of a single carbon nanotube
    • Fujii M, Zhang X, Xie HQ, Ago H, Takahashi K, et al. 2005. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95:065502
    • (2005) Phys. Rev. Lett. , vol.95 , pp. 065502
    • Fujii, M.1    Zhang, X.2    Xie, H.Q.3    Ago, H.4    Takahashi, K.5
  • 143
    • 36148970107 scopus 로고    scopus 로고
    • Ahot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope
    • DamesC,Chen S,HarrisCT, Huang JY, RenZF, et al. 2007.Ahot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope. Rev. Sci. Instrum. 78:104903
    • (2007) Rev. Sci. Instrum. , vol.78 , pp. 104903
    • Dames, C.1    Chen, S.2    Harris, C.T.3    Huang, J.Y.4    Ren, Z.F.5
  • 144
    • 20844456220 scopus 로고    scopus 로고
    • Thermal and electrical conductivity of a suspended platinum nanofilm
    • Zhang X, Xie H, Fujii M, Ago H, Takahashi K, et al. 2005. Thermal and electrical conductivity of a suspended platinum nanofilm. Appl. Phys. Lett. 86:171912
    • (2005) Appl. Phys. Lett. , vol.86 , pp. 171912
    • Zhang, X.1    Xie, H.2    Fujii, M.3    Ago, H.4    Takahashi, K.5
  • 145
  • 146
    • 79960014774 scopus 로고    scopus 로고
    • Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy
    • Soudi A, Dawson RD, Gu Y. 2010. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy. ACS Nano 5:255-62
    • (2010) ACS Nano , vol.5 , pp. 255-262
    • Soudi, A.1    Dawson, R.D.2    Gu, Y.3
  • 147
    • 78650122378 scopus 로고    scopus 로고
    • Single nanowire thermal conductivity measurements by Raman thermography
    • Doerk GS, Carraro C, Maboudian R. 2010. Single nanowire thermal conductivity measurements by Raman thermography. ACS Nano 4:4908-14
    • (2010) ACS Nano , vol.4 , pp. 4908-4914
    • Doerk, G.S.1    Carraro, C.2    Maboudian, R.3
  • 153
    • 33750019836 scopus 로고    scopus 로고
    • Observation and tuning of hypersonic bandgaps in colloidal crystals
    • ChengW,Wang JJ, JonasU, FytasG, StefanouN. 2006. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5:830-36
    • (2006) Nat. Mater. , vol.5 , pp. 830-836
    • Cheng, W.1    Wang, J.J.2    Jonas, U.3    Fytas, G.4    Stefanou, N.5
  • 154
  • 155
    • 60449109154 scopus 로고    scopus 로고
    • On the negative effective mass density in acousticmetamaterials
    • Huang HH, Sun CT, HuangGL. 2009. On the negative effective mass density in acousticmetamaterials. Int. J. Eng. Sci. 47:610-17
    • (2009) Int. J. Eng. Sci. , vol.47 , pp. 610-617
    • Huang, H.H.1    Sun, C.T.2    Huang, G.L.3
  • 156
    • 77955215753 scopus 로고    scopus 로고
    • Band gaps in a multiresonator acoustic metamaterial
    • Huang GL, Sun CT. 2010. Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoustics 132:031003
    • (2010) J. Vib. Acoustics , vol.132 , pp. 031003
    • Huang, G.L.1    Sun, C.T.2
  • 158
    • 65249134866 scopus 로고    scopus 로고
    • Structure, heat capacity, and high-temperature thermal properties of Yb14Mn1?xAlxSb11
    • Cox CA, Toberer ES, Levchenko AA, Brown SR, Snyder GJ, et al. 2009. Structure, heat capacity, and high-temperature thermal properties of Yb14Mn1?xAlxSb11. Chem. Mater. 21:1354-60
    • (2009) Chem. Mater. , vol.21 , pp. 1354-1360
    • Cox, C.A.1    Toberer, E.S.2    Levchenko, A.A.3    Brown, S.R.4    Snyder, G.J.5
  • 159
    • 78650373760 scopus 로고    scopus 로고
    • The Zintl compound Ca5Al2Sb6 for low-cost thermoelectric power generation
    • Toberer ES, Zevalkink A, Crisosto N, Snyder GJ. 2010. The Zintl compound Ca5Al2Sb6 for low-cost thermoelectric power generation. Adv. Funct. Mater. 20:4375-80
    • (2010) Adv. Funct. Mater. , vol.20 , pp. 4375-4380
    • Toberer, E.S.1    Zevalkink, A.2    Crisosto, N.3    Snyder, G.J.4
  • 163
    • 79952157780 scopus 로고    scopus 로고
    • Reduction of lattice thermal conductivity from planar faults in the layered Zintl compound SrZnSb2
    • Prytz O, Flage-Larsen E, TobererES, Snyder GJ, Tafto J. 2011. Reduction of lattice thermal conductivity from planar faults in the layered Zintl compound SrZnSb2. J. Appl. Phys. 109:043509
    • (2011) J. Appl. Phys. , vol.109 , pp. 043509
    • Prytz, O.1    Flage-Larsen, E.2    Toberer, E.S.3    Snyder, G.J.4    Tafto, J.5
  • 164
    • 0037066420 scopus 로고    scopus 로고
    • Materials science-thermal barrier coatings for gas-turbine engine applications
    • Padture NP, Gell M, Jordan EH. 2002. Materials science-thermal barrier coatings for gas-turbine engine applications. Science 296:280-84
    • (2002) Science , vol.296 , pp. 280-284
    • Padture, N.P.1    Gell, M.2    Jordan, E.H.3
  • 165
    • 33846533564 scopus 로고    scopus 로고
    • Oxide materials with low thermal conductivity
    • Winter MR, Clarke DR. 2007. Oxide materials with low thermal conductivity. J. Am. Ceram. Soc. 90:533-40
    • (2007) J. Am. Ceram. Soc. , vol.90 , pp. 533-540
    • Winter, M.R.1    Clarke, D.R.2
  • 166
    • 77951680817 scopus 로고    scopus 로고
    • Thermal conductivity of the rare-earth strontium aluminates
    • Wan CL, Sparks TD, Wei P, Clarke DR. 2010. Thermal conductivity of the rare-earth strontium aluminates. J. Am. Ceram. Soc. 93:1457-60
    • (2010) J. Am. Ceram. Soc. , vol.93 , pp. 1457-1460
    • Wan, C.L.1    Sparks, T.D.2    Wei, P.3    Clarke, D.R.4
  • 167
    • 79955568135 scopus 로고    scopus 로고
    • Thermal conductivity of the gadolinium calcium silicate apatites: Effect of different point defect types
    • Qu ZX, Sparks TD, PanW, Clarke DR. 2011. Thermal conductivity of the gadolinium calcium silicate apatites: effect of different point defect types. Acta Mater. 59:3841-50
    • (2011) Acta Mater. , vol.59 , pp. 3841-3850
    • Qu, Z.X.1    Sparks, T.D.2    Pan, W.3    Clarke, D.R.4
  • 168
    • 70350507520 scopus 로고    scopus 로고
    • 4 (RE = La, Ce, Nd, Sm, Eu, Gd)
    • Du AB, Wan CL, Qu ZX, Pan W. 2009. Thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu, Gd). J. Am. Ceram. Soc. 92:2687-92
    • (2009) J. Am. Ceram. Soc. , vol.92 , pp. 2687-2692
    • Du, A.B.1    Wan, C.L.2    Qu, Z.X.3    Pan, W.4
  • 171
    • 33750016390 scopus 로고    scopus 로고
    • Thermal conductivity of yttria-stabilized zirconia-hafnia solid solutions
    • Winter MR, Clarke DR. 2006. Thermal conductivity of yttria-stabilized zirconia-hafnia solid solutions. Acta Mater. 54:5051-59
    • (2006) Acta Mater. , vol.54 , pp. 5051-5059
    • Winter, M.R.1    Clarke, D.R.2
  • 172
    • 79751486684 scopus 로고    scopus 로고
    • Order-disorder transition and unconventional thermal conductivities of the (Sm1?xYbx)2Zr2O7 series
    • WanC,Qu Z,Du A, Pan W. 2011. Order-disorder transition and unconventional thermal conductivities of the (Sm1?xYbx)2Zr2O7 series. J. Am. Ceram. Soc. 94:592-96
    • (2011) J. Am. Ceram. Soc. , vol.94 , pp. 592-596
    • Wan, C.1    Qu, Z.2    Du, A.3    Pan, W.4
  • 173
    • 79958093486 scopus 로고    scopus 로고
    • Glass-like thermal conductivity in ytterbiumdoped lanthanum zirconate pyrochlore
    • WanCL, ZhangW,Wang YF, Qu ZX,Du AB, et al. 2010. Glass-like thermal conductivity in ytterbiumdoped lanthanum zirconate pyrochlore. Acta Mater. 58:6166-72
    • (2010) Acta Mater. , vol.58 , pp. 6166-6172
    • Wan, C.L.1    Zhang, W.2    Wang, Y.F.3    Qu, Z.X.4    Du, A.B.5
  • 175
    • 79955552384 scopus 로고    scopus 로고
    • 2.5-stabilized tetragonal zirconia ceramics
    • Shen Y, Leckie RM, Levi CG, Clarke DR. 2010. Low thermal conductivity without oxygen vacancies in equimolar YO1.5 + TaO2.5- and YbO1.5 + TaO2.5-stabilized tetragonal zirconia ceramics. Acta Mater. 58:4424-31
    • (2010) Acta Mater. , vol.58 , pp. 4424-4431
    • Shen, Y.1    Leckie, R.M.2    Levi, C.G.3    Clarke, D.R.4
  • 179
    • 77955182083 scopus 로고    scopus 로고
    • Calculations of dynamical properties of skutterudites: Thermal conductivity, thermal expansivity, and atomic mean-square displacement
    • BernsteinN, Feldman JL, Singh DJ. 2010. Calculations of dynamical properties of skutterudites: thermal conductivity, thermal expansivity, and atomic mean-square displacement. Phys. Rev. B 81:134301
    • (2010) Phys. Rev. B , vol.81 , pp. 134301
    • Bernstein, N.1    Feldman, J.L.2    Singh, D.J.3
  • 180
    • 77956665553 scopus 로고    scopus 로고
    • Skutterudites: Prospective novel thermoelectrics
    • ed. TM Tritt,. San Diego: Academic
    • Uher C. 2001. Skutterudites: prospective novel thermoelectrics. In Semiconductors and Semimetals, ed. TM Tritt, 69:139-253. San Diego: Academic
    • (2001) Semiconductors and Semimetals , vol.69 , pp. 139-253
    • Uher, C.1
  • 181
    • 79953648863 scopus 로고    scopus 로고
    • 12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb)
    • Qiu PF, Yang J, LiuRH, Shi X, HuangXY, et al. 2011. High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J. Appl. Phys. 109:063713
    • (2011) J. Appl. Phys. , vol.109 , pp. 063713
    • Qiu, P.F.1    Yang, J.2    Liu, R.H.3    Shi, X.4    Huang, X.Y.5
  • 182
    • 0346665859 scopus 로고    scopus 로고
    • Thermal conductivity of germanium, silicon, and carbon nitrides
    • Morelli DT,Heremans JP. 2002. Thermal conductivity of germanium, silicon, and carbon nitrides. Appl. Phys. Lett. 81:5126-28
    • (2002) Appl. Phys. Lett. , vol.81 , pp. 5126-5128
    • Morelli, D.T.1    Heremans, J.P.2
  • 183
    • 84864247913 scopus 로고    scopus 로고
    • Accessed Feb. 25, 2012
    • Cahill D. 2010. http://users.mrl.uiuc.edu/cahill/tcdata/tcdata.html. Accessed Feb. 25, 2012
    • (2010)
    • Cahill, D.1
  • 184
    • 0342414564 scopus 로고
    • Low temperature system for thermal conductivity measurements
    • Klein MV, Caldwell RF. 1966. Low temperature system for thermal conductivity measurements. Rev. Sci. Instrum. 37:1291-17
    • (1966) Rev. Sci. Instrum. , vol.37 , pp. 1291-1317
    • Klein, M.V.1    Caldwell, R.F.2
  • 186
    • 0031070224 scopus 로고    scopus 로고
    • Improved growth morphology of Si-Ge-C heterostructures through the use of Sb surfactant-assisted molecular beam epitaxy
    • Croke ET, Hunter AT, Pettersson PO, Ahn CC, McGill TC. 1997. Improved growth morphology of Si-Ge-C heterostructures through the use of Sb surfactant-assisted molecular beam epitaxy. Thin Solid Films 294:105-11
    • (1997) Thin Solid Films , vol.294 , pp. 105-111
    • Croke, E.T.1    Hunter, A.T.2    Pettersson, P.O.3    Ahn, C.C.4    McGill, T.C.5
  • 187
    • 24944469583 scopus 로고    scopus 로고
    • Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles
    • Zide JM, Klenov DO, Stemmer S, Gossard AC, Zeng G, et al. 2005. Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles. Appl. Phys. Lett. 87:112102
    • (2005) Appl. Phys. Lett. , vol.87 , pp. 112102
    • Zide, J.M.1    Klenov, D.O.2    Stemmer, S.3    Gossard, A.C.4    Zeng, G.5
  • 188
    • 0001246055 scopus 로고    scopus 로고
    • Phonon scattering in silicon films with thickness of order 100 nm
    • Ju YS, Goodson KE. 1999. Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74:3005-7
    • (1999) Appl. Phys. Lett. , vol.74 , pp. 3005-3007
    • Ju, Y.S.1    Goodson, K.E.2
  • 190
    • 77953636772 scopus 로고    scopus 로고
    • Energy dissipation and transport in nanoscale devices
    • Pop E. 2010. Energy dissipation and transport in nanoscale devices. Nano Res. 3:147-69
    • (2010) Nano Res. , vol.3 , pp. 147-169
    • Pop, E.1
  • 191
    • 38849174818 scopus 로고    scopus 로고
    • Complex thermoelectric materials
    • Snyder JG, Toberer ES. 2008. Complex thermoelectric materials. Nat. Mat. 7:105-14
    • (2008) Nat. Mat. , vol.7 , pp. 105-114
    • Snyder, J.G.1    Toberer, E.S.2
  • 192
    • 70350650522 scopus 로고    scopus 로고
    • Characterization and analysis of thermoelectric transport in n-type BaGaGe
    • May AF, Toberer ES, Saramat A, Snyder GJ. 2009. Characterization and analysis of thermoelectric transport in n-type BaGaGe. Phys. Rev. B 80:125205
    • (2009) Phys. Rev. B , vol.80 , pp. 125205
    • May, A.F.1    Toberer, E.S.2    Saramat, A.3    Snyder, G.J.4
  • 193
    • 51749107216 scopus 로고    scopus 로고
    • 12): A natural nanostructured superlattice
    • Shen Y, Clarke DR, Fuierer PA. 2008. Anisotropic thermal conductivity of the Aurivillus phase, bismuth titanate (Bi4Ti3O12): a natural nanostructured superlattice. Appl. Phys. Lett. 93:102907
    • (2008) Appl. Phys. Lett. , vol.93 , pp. 102907
    • Shen, Y.1    Clarke, D.R.2    Fuierer, P.A.3
  • 194
    • 50249146293 scopus 로고    scopus 로고
    • Ultralow thermal conductivity in highly anion-defective aluminates
    • Wan C, Qu Z, He Y, Luan D, Pan W. 2008. Ultralow thermal conductivity in highly anion-defective aluminates. Phys. Rev. Lett. 101:085901
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 085901
    • Wan, C.1    Qu, Z.2    He, Y.3    Luan, D.4    Pan, W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.