-
3
-
-
84864223504
-
Microscale conduction
-
ed. LM Jiji, Berlin: Springer. 436
-
Dames C. 2009. Microscale conduction. In Heat Conduction, ed. LM Jiji, pp. 347-401. Berlin: Springer. 436 pp.
-
(2009)
Heat Conduction
, pp. 347-401
-
-
Dames, C.1
-
7
-
-
60949083089
-
-
Cambridge, UK: Cambridge Univ. Press
-
Kaviany M. 2008. Heat Transfer Physics. Cambridge, UK: Cambridge Univ. Press. 688 pp.
-
(2008)
Heat Transfer Physics.
, pp. 688
-
-
Kaviany, M.1
-
8
-
-
0001860254
-
Lattice vibrations and heat transport in crystals and glasses
-
Cahill DG, Pohl RO. 1988. Lattice vibrations and heat transport in crystals and glasses. Annu. Rev. Phys. Chem. 39:93-121
-
(1988)
Annu. Rev. Phys. Chem.
, vol.39
, pp. 93-121
-
-
Cahill, D.G.1
Pohl, R.O.2
-
10
-
-
0342833825
-
Materials for thermoelectric energy-conversion
-
Wood C. 1988. Materials for thermoelectric energy-conversion. Rep. Progress Phys. 51:459-539
-
(1988)
Rep. Progress Phys.
, vol.51
, pp. 459-539
-
-
Wood, C.1
-
11
-
-
0001500616
-
Ambipolar thermodiffusion of electrons and holes in semiconductors
-
Price PJ. 1955. Ambipolar thermodiffusion of electrons and holes in semiconductors. Philos. Mag. 46:1252-60
-
(1955)
Philos. Mag.
, vol.46
, pp. 1252-1260
-
-
Price, P.J.1
-
12
-
-
33645260160
-
Thermal conductivity and anharmonic forces
-
Black MA. 1973. Thermal conductivity and anharmonic forces. Am. J. Phys. 41:691-96
-
(1973)
Am. J. Phys.
, vol.41
, pp. 691-696
-
-
Black, M.A.1
-
13
-
-
0042444077
-
Thermal conductivity and lattice vibrational modes
-
Klemens PG. 1958. Thermal conductivity and lattice vibrational modes. Solid State Phys. Adv. Res. Appl. 7:1-98
-
(1958)
Solid State Phys. Adv. Res. Appl.
, vol.7
, pp. 1-98
-
-
Klemens, P.G.1
-
14
-
-
0018767119
-
The thermal conductivity of nonmetallic crystals
-
eds. F Seitz, D Turnbull, H Ehrenreich,. New York: Academic
-
Slack GA. 1979. The thermal conductivity of nonmetallic crystals. In Solid State Physics, Vol. 34, eds. F Seitz, D Turnbull, H Ehrenreich, pp. 1-71. New York: Academic
-
(1979)
Solid State Physics
, vol.34
, pp. 1-71
-
-
Slack, G.A.1
-
15
-
-
3342959328
-
The scattering of low-frequency lattice waves by static imperfections
-
Klemens PG. 1955. The scattering of low-frequency lattice waves by static imperfections. Proc. Phys. Soc. Sect. A 68:1113
-
(1955)
Proc. Phys. Soc. Sect. A
, vol.68
, pp. 1113
-
-
Klemens, P.G.1
-
16
-
-
36149027789
-
Lattice thermal conductivity of disordered semiconductor alloys at high temperatures
-
Abeles B. 1963. Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Phys. Rev. 131:1906-11
-
(1963)
Phys. Rev.
, vol.131
, pp. 1906-1911
-
-
Abeles, B.1
-
17
-
-
0002379207
-
Theory of thermal conductivity of solids at low temperatures
-
Carruthers P. 1961. Theory of thermal conductivity of solids at low temperatures. Rev. Mod. Phys. 33:92-138
-
(1961)
Rev. Mod. Phys.
, vol.33
, pp. 92-138
-
-
Carruthers, P.1
-
18
-
-
0037821169
-
Nonmetallic crystals with high thermal conductivity
-
Slack GA. 1973. Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34:321-35
-
(1973)
J. Phys. Chem. Solids
, vol.34
, pp. 321-335
-
-
Slack, G.A.1
-
19
-
-
0000055945
-
Thermal conductivity of isotopically enriched Si
-
Capinski WS, Maris HJ, Bauser E, Silier I, Asen-Palmer M, et al. 1997. Thermal conductivity of isotopically enriched Si. J. Appl. Phys. 71:2109
-
(1997)
J. Appl. Phys.
, vol.71
, pp. 2109
-
-
Capinski, W.S.1
Maris, H.J.2
Bauser, E.3
Silier, I.4
Asen-Palmer, M.5
-
20
-
-
3242682545
-
28Si revisited
-
Kremer RK, Graf K, Cardona M, Devyatykh GG, Gusev AV, et al. 2004. Thermal conductivity of isotopically enriched 28Si revisited. Solid State Commun. 131:499-503
-
(2004)
Solid State Commun.
, vol.131
, pp. 499-503
-
-
Kremer, R.K.1
Graf, K.2
Cardona, M.3
Devyatykh, G.G.4
Gusev, A.V.5
-
21
-
-
0000290832
-
Thermal conductivity of pure and impure silicon, silicon carbide, and diamond
-
Slack GA. 1964. Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. J. Appl. Phys. 35:3460
-
(1964)
J. Appl. Phys.
, vol.35
, pp. 3460
-
-
Slack, G.A.1
-
24
-
-
84957271969
-
Thermal-conductivity of thin-films- measurements and understanding
-
Cahill DG, Fischer HE, Klitsner T, Swartz ET, Pohl RO. 1989. Thermal-conductivity of thin-films- measurements and understanding. J. Vac. Sci. Technol. A-Vac. Surf. Films 7:1259-66
-
(1989)
J. Vac. Sci. Technol. A-Vac. Surf. Films
, vol.7
, pp. 1259-1266
-
-
Cahill, D.G.1
Fischer, H.E.2
Klitsner, T.3
Swartz, E.T.4
Pohl, R.O.5
-
25
-
-
32144460107
-
Thermal conductivity of amorphous solids above the plateau
-
Cahill DG, Pohl RO. 1987. Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 35:4067-73
-
(1987)
Phys. Rev. B
, vol.35
, pp. 4067-4073
-
-
Cahill, D.G.1
Pohl, R.O.2
-
26
-
-
0033311240
-
Diffusons, locons and propagons: Character of atomic vibrations in amorphous Si
-
Allen PB, Feldman JL, Fabian J, Wooten F. 1999. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Philos. Mag. Part B 79:1715-31
-
(1999)
Philos. Mag. Part B
, vol.79
, pp. 1715-1731
-
-
Allen, P.B.1
Feldman, J.L.2
Fabian, J.3
Wooten, F.4
-
27
-
-
0001293162
-
Lower limit to the thermal-conductivity of disordered crystals
-
Cahill DG, Watson SK, Pohl RO. 1992. Lower limit to the thermal-conductivity of disordered crystals. Phys. Rev. B 46:6131-40
-
(1992)
Phys. Rev. B
, vol.46
, pp. 6131-6140
-
-
Cahill, D.G.1
Watson, S.K.2
Pohl, R.O.3
-
28
-
-
79961115290
-
Testing the minimum thermal conductivity model for amorphous polymers using high pressure
-
HsiehW-P, Losego MD, Braun PV, Shenogin S, Keblinski P, Cahill DG. 2011. Testing the minimum thermal conductivity model for amorphous polymers using high pressure. Phys. Rev. B 83:174205
-
(2011)
Phys. Rev. B
, vol.83
, pp. 174205
-
-
Hsiehw-P Losego, M.D.1
Braun, P.V.2
Shenogin, S.3
Keblinski, P.4
Cahill, D.G.5
-
30
-
-
33846602674
-
2 crystals
-
Chiritescu C, Cahill DG, Nguyen N, Johnson D, Bodapati A, et al. 2007. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315:351-53
-
(2007)
Science
, vol.315
, pp. 351-353
-
-
Chiritescu, C.1
Cahill, D.G.2
Nguyen, N.3
Johnson, D.4
Bodapati, A.5
-
31
-
-
0032076421
-
Thermal conductivity of thermal barrier coatings
-
Klemens PG, Gell M. 1998. Thermal conductivity of thermal barrier coatings. Mater. Sci. Eng. A 245:143-49
-
(1998)
Mater. Sci. Eng. A
, vol.245
, pp. 143-149
-
-
Klemens, P.G.1
Gell, M.2
-
32
-
-
84864215408
-
C518-10: Standard test method for steady-state thermal transmission properties bymeans of the heat flow meter apparatus
-
ASTM.06. West Conshohocken, PA: ASTM Int
-
ASTM. 2010. C518-10: Standard test method for steady-state thermal transmission properties bymeans of the heat flow meter apparatus. In Annual Book of ASTM Standards, Vol. 4.06. West Conshohocken, PA: ASTM Int. 15 pp.
-
(2010)
Annual Book of ASTM Standards
, vol.4
, pp. 15
-
-
-
33
-
-
0003784924
-
-
Hoboken, NJ: Wiley
-
Incropera FP, DeWitt DP, Bergman TL, Lavine AS. 2006. Introduction to Heat Transfer. Hoboken, NJ: Wiley. 912 pp.
-
(2006)
Introduction to Heat Transfer
, pp. 912
-
-
Incropera, F.P.1
Dewitt, D.P.2
Bergman, T.L.3
Lavine, A.S.4
-
34
-
-
84864199657
-
E1225-09: Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique
-
ASTM.02. West Conshohocken, PA: ASTM Int
-
ASTM. 2009. E1225-09: Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique. In Annual Book of ASTM Standards, Vol. 14.02. West Conshohocken, PA: ASTM Int. 15 pp.
-
(2009)
Annual Book of ASTM Standards
, vol.14
, pp. 15
-
-
-
35
-
-
36849003894
-
Intrinsic lattice thermal conductivity of semiconductors from first principles
-
Broido DA, Malorny M, Birner G, Mingo N, Stewart DA. 2007. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91:231922
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 231922
-
-
Broido, D.A.1
Malorny, M.2
Birner, G.3
Mingo, N.4
Stewart, D.A.5
-
36
-
-
34548781831
-
Dumbbell rattling in thermoelectric zinc antimony
-
Schweika W, Hermann RP, Prager M, Persson J, Keppens V. 2007. Dumbbell rattling in thermoelectric zinc antimony. Phys. Rev. Lett. 99:125501
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 125501
-
-
Schweika, W.1
Hermann, R.P.2
Prager, M.3
Persson, J.4
Keppens, V.5
-
37
-
-
79955737553
-
2+m observed by inelastic neutron scattering
-
ManleyME,Shapiro S, Li Q, LlobetA,HagenME.2011. Lattice dynamical origin of peak thermoelectric performance in AgPbmSbTe2+m observed by inelastic neutron scattering. J. Appl. Phys. 109:083722
-
(2011)
J. Appl. Phys.
, vol.109
, pp. 083722
-
-
Manley, M.E.1
Shapiro, S.2
Li, Q.3
Llobet, A.4
Hagen, M.E.5
-
38
-
-
79961233306
-
12 (M=Ca, Sr, Ba, and Yb): Temperature response, dispersion relation, and material properties
-
Koza MM, Leithe-Jasper A, Rosner H, Schnelle W, Mutka H, et al. 2011. Vibrational dynamics of the filled skutterudites M1?xFe4Sb12 (M=Ca, Sr, Ba, and Yb): Temperature response, dispersion relation, and material properties. Phys. Rev. B 84:014306
-
(2011)
Phys. Rev. B
, vol.84
, pp. 014306
-
-
Koza, M.M.1
Leithe-Jasper, A.2
Rosner, H.3
Schnelle, W.4
Mutka, H.5
-
39
-
-
79960638343
-
Giant anharmonic phonon scattering in PbTe
-
Delaire O, Ma J, Marty K, May AF, McGuire MA, et al. 2011. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10:614-19
-
(2011)
Nat. Mater.
, vol.10
, pp. 614-619
-
-
Delaire, O.1
Ma, J.2
Marty, K.3
May, A.F.4
McGuire, M.A.5
-
40
-
-
73249146638
-
4
-
Delaire O, May AF, McGuire MA, Porter WD, Lucas MS, et al. 2009. Phonon density of states and heat capacity of La3?xTe4. Phys. Rev. B 80:184302
-
(2009)
Phys. Rev. B
, vol.80
, pp. 184302
-
-
Delaire, O.1
May, A.F.2
McGuire, M.A.3
Porter, W.D.4
Lucas, M.S.5
-
41
-
-
52549095862
-
Avoided crossing of rattler modes in thermoelectric materials
-
ChristensenM, Abrahamsen AB, ChristensenNB, Juranyi F, AndersenNH, et al. 2008. Avoided crossing of rattler modes in thermoelectric materials. Nat. Mater. 7:811-15
-
(2008)
Nat. Mater.
, vol.7
, pp. 811-815
-
-
Christensen, M.1
Abrahamsen, A.B.2
Christensen, N.B.3
Juranyi, F.4
Andersen, N.H.5
-
42
-
-
30344447263
-
2
-
Li D, Qin XY, Gu YJ. 2006. The effects of bismuth intercalation on structure and thermal conductivity of TiS2. Mater. Res. Bull. 41:282-90
-
(2006)
Mater. Res. Bull.
, vol.41
, pp. 282-290
-
-
Li, D.1
Qin, X.Y.2
Gu, Y.J.3
-
43
-
-
77955745596
-
Investigation on thermal conductivity of aluminum nitride ceramics by FT-Raman spectroscopy
-
Lee HK, Kim DK. 2010. Investigation on thermal conductivity of aluminum nitride ceramics by FT-Raman spectroscopy. J. Am. Ceram. Soc. 93:2167-70
-
(2010)
J. Am. Ceram. Soc.
, vol.93
, pp. 2167-2170
-
-
Lee, H.K.1
Kim, D.K.2
-
44
-
-
79952689975
-
Thermal conductivity of chalcogenide material with superlatticelike structure
-
Tong H, Miao XS, Cheng XM, Wang H, Zhang L, et al. 2011. Thermal conductivity of chalcogenide material with superlatticelike structure. Appl. Phys. Lett. 98:101904
-
(2011)
Appl. Phys. Lett.
, vol.98
, pp. 101904
-
-
Tong, H.1
Miao, X.S.2
Cheng, X.M.3
Wang, H.4
Zhang, L.5
-
45
-
-
84892315372
-
Inelastic X-ray scattering from collective atom dynamics
-
ed. F Hippert,. Dordrecht: Springer. 590
-
Sette F, Krisch M. 2006. Inelastic X-ray scattering from collective atom dynamics. In Neutron and X-ray Spectroscopy, ed. F Hippert, pp. 169-88. Dordrecht: Springer. 590 pp.
-
(2006)
Neutron and X-ray Spectroscopy
, pp. 169-188
-
-
Sette, F.1
Krisch, M.2
-
46
-
-
1642462317
-
Neutron scattering: A primer
-
Pynn R. 1990. Neutron scattering: a primer. Los Alamos Science 19:1-33
-
(1990)
Los Alamos Science
, vol.19
, pp. 1-33
-
-
Pynn, R.1
-
47
-
-
85038989388
-
12
-
Feldman JL, Singh DJ, Kendziora C, MandrusD, Sales BC. 2003. Lattice dynamics of filled skutterudites: La(Fe,Co)4Sb12. Phys. Rev. B 68:094301
-
(2003)
Phys. Rev. B
, vol.68
, pp. 094301
-
-
Feldman, J.L.1
Singh, D.J.2
Kendziora, C.3
Mandrus, D.4
Sales, B.C.5
-
48
-
-
0034664447
-
Raman scattering study of Ge and Sn compounds with type-I clathrate hydrate crystal structure
-
Nolas GS, Kendziora CA. 2000. Raman scattering study of Ge and Sn compounds with type-I clathrate hydrate crystal structure. Phys. Rev. B 62:7157-61
-
(2000)
Phys. Rev. B
, vol.62
, pp. 7157-7161
-
-
Nolas, G.S.1
Kendziora, C.A.2
-
49
-
-
77955757688
-
30
-
Suekuni K, Takasu Y, Hasegawa T, Ogita N, Udagawa M, et al. 2010. Off-center rattling modes and glasslike thermal conductivity in the type-I clathrate Ba8Ga16Sn30. Phys. Rev. B 81:205207
-
(2010)
Phys. Rev. B
, vol.81
, pp. 205207
-
-
Suekuni, K.1
Takasu, Y.2
Hasegawa, T.3
Ogita, N.4
Udagawa, M.5
-
50
-
-
33751329744
-
30 (X = Eu,Sr,Ba) investigated by Raman scattering
-
Takasu Y, Hasegawa T, OgitaN, Udagawa M, Avila MA, et al. 2006. Dynamical properties of guest ions in the type-I clathrate compounds X8Ga16Ge30 (X = Eu,Sr,Ba) investigated by Raman scattering. Phys. Rev. B 74:174303
-
(2006)
Phys. Rev. B
, vol.74
, pp. 174303
-
-
Takasu, Y.1
Hasegawa, T.2
Ogitan Udagawa, M.3
Avila, M.A.4
-
52
-
-
80052476976
-
Thermoelectric properties and investigations of low thermal conductivity in Ga-doped Cu2GeSe3
-
Cho JY, Shi X, Salvador JR,Meisner GP, Yang J, et al. 2011. Thermoelectric properties and investigations of low thermal conductivity in Ga-doped Cu2GeSe3. Phys. Rev. B 84:085207
-
(2011)
Phys. Rev. B
, vol.84
, pp. 085207
-
-
Cho, J.Y.1
Shi, X.2
Salvador, J.R.3
Meisner, G.P.4
Yang, J.5
-
53
-
-
33746050718
-
136: Theoretical and experimental study of the type-II clathrate polymorph of Si
-
Tang XL, Dong JJ, Hutchins P, Shebanova O, Gryko J, et al. 2006. Thermal properties of Si136: theoretical and experimental study of the type-II clathrate polymorph of Si. Phys. Rev. B 74:014109
-
(2006)
Phys. Rev. B
, vol.74
, pp. 014109
-
-
Tang, X.L.1
Dong, J.J.2
Hutchins, P.3
Shebanova, O.4
Gryko, J.5
-
55
-
-
77957555865
-
Thermal behavior of vibrational phonons and hydroxyls ofmuscovite in dehydroxylation: In situ high-temperature infrared spectroscopic investigations
-
ZhangM,Redfern SAT, SaljeEKH,Carpenter MA,Hayward CL. 2010. Thermal behavior of vibrational phonons and hydroxyls ofmuscovite in dehydroxylation: in situ high-temperature infrared spectroscopic investigations. Am. Mineral. 95:1444-57
-
(2010)
Am. Mineral.
, vol.95
, pp. 1444-1457
-
-
Zhang, M.1
Sat, R.2
Ekh, S.3
Carpenter, M.A.4
Hayward, C.L.5
-
56
-
-
0000608060
-
Mode Grüneisen parameter dispersion relation of RbI determined by neutron scattering
-
Blaschko O, Ernst G, Quittner G, KressW, Lechner RE. 1975. Mode Grüneisen parameter dispersion relation of RbI determined by neutron scattering. Phys. Rev. B 11:3960-65
-
(1975)
Phys. Rev. B
, vol.11
, pp. 3960-3965
-
-
Blaschko, O.1
Ernst, G.2
Quittner, G.3
Kress, W.4
Lechner, R.E.5
-
58
-
-
79960644631
-
Thermal properties of graphene and nanostructured carbon materials
-
Balandin AA. 2011. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10:569-81
-
(2011)
Nat. Mater.
, vol.10
, pp. 569-581
-
-
Balandin, A.A.1
-
59
-
-
84864217806
-
Thermal and thermoelectric transport in low-dimensional and nanostructrured materials
-
In press
-
Shi L. 2012. Thermal and thermoelectric transport in low-dimensional and nanostructrured materials. Nanoscale Microscale Thermophys. Eng. In press
-
(2012)
Nanoscale Microscale Thermophys. Eng.
-
-
Shi, L.1
-
60
-
-
79958845378
-
Thermal conductivity of nanocrystalline silicon: Importance of grain size and frequency-dependent mean free paths
-
Wang Z, Alaniz JE, JangW, Garay JE, Dames C. 2011. Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. Nano Lett. 11:2206-13
-
(2011)
Nano Lett.
, vol.11
, pp. 2206-2213
-
-
Wang, Z.1
Alaniz, J.E.2
Jang, W.3
Garay, J.E.4
Dames, C.5
-
61
-
-
0542378949
-
Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
-
Chen G. 1998. Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices. Phys. Rev. B 57:14958-73
-
(1998)
Phys. Rev. B
, vol.57
, pp. 14958-14973
-
-
Chen, G.1
-
62
-
-
33748263468
-
Thermal conductivity of nanostructured materials
-
ed. DM Rowe,. Boca Raton: CRC Press. 1, 014
-
DamesC,ChenG. 2005. Thermal conductivity of nanostructured materials. In ThermoelectricsHandbook: Macro to Nano, ed. DM Rowe, 42:1-11. Boca Raton: CRC Press. 1,014 pp.
-
(2005)
ThermoelectricsHandbook: Macro to Nano
, vol.42
, pp. 1-11
-
-
Dames, C.1
Chen, G.2
-
64
-
-
77949560538
-
Marked effects of alloying on the thermal conductivity of nanoporous materials
-
Bera C, Mingo N, Volz S. 2010. Marked effects of alloying on the thermal conductivity of nanoporous materials. Phys. Rev. Lett. 104:115502
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 115502
-
-
Bera, C.1
Mingo, N.2
Volz, S.3
-
65
-
-
47149105630
-
Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics
-
Henry AS, Chen G. 2008. Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanosci. 5:141-52
-
(2008)
J. Comput. Theor. Nanosci.
, vol.5
, pp. 141-152
-
-
Henry, A.S.1
Chen, G.2
-
66
-
-
34548216859
-
Frequency dependence of the thermal conductivity of semiconductor alloys
-
Koh YK, Cahill DG. 2007. Frequency dependence of the thermal conductivity of semiconductor alloys. Phys. Rev. B 76:075207
-
(2007)
Phys. Rev. B
, vol.76
, pp. 075207
-
-
Koh, Y.K.1
Cahill, D.G.2
-
67
-
-
80052237942
-
Thermal conductivity spectroscopy technique to measure phonon mean free paths
-
Minnich AJ, Johnson JA, Schmidt AJ, Esfarjani K, Dresselhaus MS, et al. 2011. Thermal conductivity spectroscopy technique to measure phonon mean free paths. Phys. Rev. Lett. 107:095901
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 095901
-
-
Minnich, A.J.1
Johnson, J.A.2
Schmidt, A.J.3
Esfarjani, K.4
Dresselhaus, M.S.5
-
68
-
-
0039702996
-
Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures
-
Chen G. 1997. Size and interface effects on thermal conductivity of superlattices and periodic thin-film structures. J. Heat Transf. Trans. ASME 119:220-29
-
(1997)
J. Heat Transf. Trans. ASME
, vol.119
, pp. 220-229
-
-
Chen, G.1
-
69
-
-
0000061661
-
The transport of heat between dissimilar solids at low temperatures
-
Little WA. 1959. The transport of heat between dissimilar solids at low temperatures. Can. J. Phys. 37:334-49
-
(1959)
Can. J. Phys.
, vol.37
, pp. 334-349
-
-
Little, W.A.1
-
71
-
-
79958187283
-
Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices
-
Huxtable ST, Abramson AR, Tien CL, Majumdar A, LaBounty C, et al. 2002. Thermal conductivity of Si/SiGe and SiGe/SiGe superlattices. Appl. Phys. Lett. 80:1737-39
-
(2002)
Appl. Phys. Lett.
, vol.80
, pp. 1737-1739
-
-
Huxtable, S.T.1
Abramson, A.R.2
Tien, C.L.3
Majumdar, A.4
Labounty, C.5
-
72
-
-
0009647268
-
Heat transport through helium II: Kapitza conductance
-
Snyder NS. 1970. Heat transport through helium II: Kapitza conductance. Cryogenics 10:89-95
-
(1970)
Cryogenics
, vol.10
, pp. 89-95
-
-
Snyder, N.S.1
-
73
-
-
0742285722
-
Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires
-
Dames C, Chen G. 2004. Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires. J. Appl. Phys. 95:682-93
-
(2004)
J. Appl. Phys.
, vol.95
, pp. 682-693
-
-
Dames, C.1
Chen, G.2
-
74
-
-
0037439322
-
Nanoscale thermal transport
-
Cahill DG, Ford WK,Goodson KE,Mahan GD, Majumdar A, et al. 2003. Nanoscale thermal transport. J. Appl. Phys. 93:793-818
-
(2003)
J. Appl. Phys.
, vol.93
, pp. 793-818
-
-
Cahill, D.G.1
Ford, W.K.2
Goodson, K.E.3
Mahan, G.D.4
Majumdar, A.5
-
75
-
-
0013497476
-
Heat conduction in novel electronic films
-
Goodson KE, Ju YS. 1999. Heat conduction in novel electronic films. Annu. Rev. Mater. Sci. 29:261-93
-
(1999)
Annu. Rev. Mater. Sci.
, vol.29
, pp. 261-293
-
-
Goodson, K.E.1
Ju, Y.S.2
-
76
-
-
0040151682
-
Heat transport in dielectric thin films and at solid-solid interfaces
-
Cahill DG. 1997. Heat transport in dielectric thin films and at solid-solid interfaces. Microscale Thermophys. Eng. 1:85-109
-
(1997)
Microscale Thermophys. Eng.
, vol.1
, pp. 85-109
-
-
Cahill, D.G.1
-
77
-
-
0000953459
-
Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures
-
Venkatasubramanian R. 2000. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61:3091-97
-
(2000)
Phys. Rev. B
, vol.61
, pp. 3091-3097
-
-
Venkatasubramanian, R.1
-
78
-
-
0000881998
-
Thermal-conductivity measurements of GaAs/AIAs superlattices using a picosecond optical pump-and-probe technique
-
Capinski WS, Maris HJ, Ruf T, Cardona M, Ploog K, Katzer DS. 1999. Thermal-conductivity measurements of GaAs/AIAs superlattices using a picosecond optical pump-and-probe technique. Phys. Rev. B 59:8105-13
-
(1999)
Phys. Rev. B
, vol.59
, pp. 8105-8113
-
-
Capinski, W.S.1
Maris, H.J.2
Ruf, T.3
Cardona, M.4
Ploog, K.5
Katzer, D.S.6
-
79
-
-
0034273743
-
Thermal conductivity of symmetrically strained Si/Ge superlattices
-
Borca-Tasciuc T, Liu WL, Liu JL, Zeng TF, Song DW, et al. 2000. Thermal conductivity of symmetrically strained Si/Ge superlattices. Superlattices Microstruct. 28:199-206
-
(2000)
Superlattices Microstruct.
, vol.28
, pp. 199-206
-
-
Borca-Tasciuc, T.1
Liu, W.L.2
Liu, J.L.3
Zeng, T.F.4
Song, D.W.5
-
80
-
-
0001248353
-
Minimum thermal conductivity of superlattices
-
Simkin MV,Mahan GD. 2000. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84:927-30
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 927-930
-
-
Simkin, M.V.1
Mahan, G.D.2
-
81
-
-
0037826935
-
Partially coherent phonon heat conduction in superlattices
-
Yang B, Chen G. 2003. Partially coherent phonon heat conduction in superlattices.Phys. Rev. B 67:195311
-
(2003)
Phys. Rev. B
, vol.67
, pp. 195311
-
-
Yang, B.1
Chen, G.2
-
82
-
-
0027576198
-
Thermal-conductivities of quantum-well structures
-
Chen G, Tien CL. 1993. Thermal-conductivities of quantum-well structures. J. Thermophys.Heat Transf. 7:311-18
-
(1993)
J. Thermophys.Heat Transf.
, vol.7
, pp. 311-318
-
-
Chen, G.1
Tien, C.L.2
-
85
-
-
29744465652
-
Thermal conductivity measurements of ultra-thin single crystal silicon layers
-
LiuW, Asheghi M. 2006. Thermal conductivity measurements of ultra-thin single crystal silicon layers. J. Heat Transf. 128:75-83
-
(2006)
J. Heat Transf.
, vol.128
, pp. 75-83
-
-
Liu, W.1
Asheghi, M.2
-
86
-
-
84933207793
-
The mean free path of electrons in metals
-
Sondheimer EH. 1952. The mean free path of electrons in metals. Adv. Phys. 1:1-42
-
(1952)
Adv. Phys.
, vol.1
, pp. 1-42
-
-
Sondheimer, E.H.1
-
87
-
-
0142167495
-
Thermal conductivity of individual silicon nanowires
-
Li DY, Wu YY, Kim P, Shi L, Yang PD,Majumdar A. 2003. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83:2934-36
-
(2003)
Appl. Phys. Lett.
, vol.83
, pp. 2934-2936
-
-
Li, D.Y.1
Wu, Y.Y.2
Kim, P.3
Shi, L.4
Yang, P.D.5
Majumdar, A.6
-
88
-
-
79961110456
-
Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases
-
Zhou F, Moore AL, Bolinsson J, Persson A, Fr öberg L, et al. 2011. Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases. Phys. Rev. B 83:205416
-
(2011)
Phys. Rev. B
, vol.83
, pp. 205416
-
-
Zhou, F.1
Moore, A.L.2
Bolinsson, J.3
Persson, A.4
Fröberg, L.5
-
89
-
-
2442493039
-
Phonon thermal conductivity of superlattice nanowires for thermoelectric applications
-
ed.GSNolas. Boston,MA: Mater. Res. Soc
-
Dames C, Dresselhaus MS, Chen G. 2003. Phonon thermal conductivity of superlattice nanowires for thermoelectric applications. In Thermoelectric Materials 2003. Research and Applications, Proc. Mater. Res. Soc. Fall Meeting, ed.GSNolas. Boston,MA: Mater. Res. Soc
-
(2003)
Thermoelectric Materials 2003. Research and Applications, Proc. Mater. Res. Soc. Fall Meeting
-
-
Dames, C.1
Dresselhaus, M.S.2
Chen, G.3
-
90
-
-
0242595934
-
Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations
-
Mingo N. 2003. Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B 68:113308
-
(2003)
Phys. Rev. B
, vol.68
, pp. 113308
-
-
Mingo, N.1
-
91
-
-
66449114263
-
Mesoscopic size effects on the thermal conductance of silicon nanowire
-
Heron JS, Fournier T, MingoN, BourgeoisO. 2009. Mesoscopic size effects on the thermal conductance of silicon nanowire. Nano Lett. 9:1861-65
-
(2009)
Nano Lett.
, vol.9
, pp. 1861-1865
-
-
Heron, J.S.1
Fournier, T.2
Bourgeoiso, M.3
-
93
-
-
78449275196
-
Fabrication ofmicrodevices with integrated nanowires for investigating low-dimensional phonon transport
-
Hippalgaonkar K, Huang B,ChenR, SawyerK,Ercius P,MajumdarA. 2010. Fabrication ofmicrodevices with integrated nanowires for investigating low-dimensional phonon transport. Nano Lett. 10:4341-48
-
(2010)
Nano Lett.
, vol.10
, pp. 4341-4348
-
-
Hippalgaonkar, K.1
Huang, B.2
Chen, R.3
Sawyer, K.4
Ercius, P.5
Majumdar, A.6
-
94
-
-
38049143961
-
Enhanced thermoelectric performance of rough silicon nanowires
-
Hochbaum AI, Chen RK, Delgado RD, Liang WJ, Garnett EC, et al. 2008. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451:163-67
-
(2008)
Nature
, vol.451
, pp. 163-167
-
-
Hochbaum, A.I.1
Chen, R.K.2
Delgado, R.D.3
Liang, W.J.4
Garnett, E.C.5
-
95
-
-
64149110758
-
Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires
-
Martin P, Aksamija Z, Pop E, Ravaioli U. 2009. Impact of phonon-surface roughness scattering on thermal conductivity of thin Si nanowires. Phys. Rev. Lett. 102:125503
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 125503
-
-
Martin, P.1
Aksamija, Z.2
Pop, E.3
Ravaioli, U.4
-
96
-
-
35448989286
-
Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires
-
Murphy PG, Moore JE. 2007. Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires. Phys. Rev. B 76:155313
-
(2007)
Phys. Rev. B
, vol.76
, pp. 155313
-
-
Murphy, P.G.1
Moore, J.E.2
-
97
-
-
51149097756
-
Thermal conductance of thin silicon nanowires
-
Chen R, Hochbaum AI, Murphy P, Moore J, Yang P, Majumdar A. 2008. Thermal conductance of thin silicon nanowires. Phys. Rev. Lett. 101:105501
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 105501
-
-
Chen, R.1
Hochbaum, A.I.2
Murphy, P.3
Moore, J.4
Yang, P.5
Majumdar, A.6
-
98
-
-
46449085036
-
High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys
-
Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, et al. 2008. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634-38
-
(2008)
Science
, vol.320
, pp. 634-638
-
-
Poudel, B.1
Hao, Q.2
Ma, Y.3
Lan, Y.4
Minnich, A.5
-
99
-
-
68249125385
-
Nanostructured bulk silicon as an effective thermoelectric material
-
Bux SK, Blair RG, Gogna PK, Lee H, Chen G, et al. 2009. Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19:2445-52
-
(2009)
Adv. Funct. Mater.
, vol.19
, pp. 2445-2452
-
-
Bux, S.K.1
Blair, R.G.2
Gogna, P.K.3
Lee, H.4
Chen, G.5
-
100
-
-
0842331448
-
Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit
-
Hsu KF, Loo S, Guo F, Chen W, Dyck JS, et al. 2004. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303:818-21
-
(2004)
Science
, vol.303
, pp. 818-821
-
-
Hsu, K.F.1
Loo, S.2
Guo, F.3
Chen, W.4
Dyck, J.S.5
-
101
-
-
79251622230
-
Strained endotaxial nanostructures with high thermoelectric figure of merit
-
Biswas K, He J, Zhang Q, Wang G, Uher C, et al. 2011. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 3:160-66
-
(2011)
Nat. Chem.
, vol.3
, pp. 160-166
-
-
Biswas, K.1
He, J.2
Zhang, Q.3
Wang, G.4
Uher, C.5
-
102
-
-
33947113376
-
Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces
-
Ikeda T, Collins LA, Ravi VA, Gascoin FS, Haile SM, Snyder GJ. 2007. Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces. Chem. Mater. 19:763-67
-
(2007)
Chem. Mater.
, vol.19
, pp. 763-767
-
-
Ikeda, T.1
Collins, L.A.2
Ravi, V.A.3
Gascoin, F.S.4
Haile, S.M.5
Snyder, G.J.6
-
103
-
-
77955856357
-
Effective thermal conductivity of polycrystalline materials with randomly oriented superlattice grains
-
Yang F, Ikeda T, Snyder GJ, Dames C. 2010. Effective thermal conductivity of polycrystalline materials with randomly oriented superlattice grains. J. Appl. Phys. 108:034310
-
(2010)
J. Appl. Phys.
, vol.108
, pp. 034310
-
-
Yang, F.1
Ikeda, T.2
Snyder, G.J.3
Dames, C.4
-
104
-
-
58049209774
-
3 Widmanstätten precipitates in thermoelectric PbTe
-
Ikeda T, Ravi VA, Snyder GJ. 2009. Formation of Sb2Te3 Widmanstätten precipitates in thermoelectric PbTe. Acta Mater. 57:666-72
-
(2009)
Acta Mater.
, vol.57
, pp. 666-672
-
-
Ikeda, T.1
Ravi, V.A.2
Snyder, G.J.3
-
105
-
-
78650702071
-
2Te precipitates and la doping
-
Pei YZ, Lensch-Falk J, Toberer ES, Medlin DL, Snyder GJ. 2011. High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping. Adv. Funct. Mater. 21:241-49
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 241-249
-
-
Pei, Y.Z.1
Lensch-Falk, J.2
Toberer, E.S.3
Medlin, D.L.4
Snyder, G.J.5
-
106
-
-
27944490819
-
Exchange bias in nanostructures
-
Nogué s J, Sort J, Langlais V, Skumryev V, Suri ñach S, et al. 2005. Exchange bias in nanostructures. Phys. Rep. 422:65-117
-
(2005)
Phys. Rep.
, vol.422
, pp. 65-117
-
-
Nogués, J.1
Sort, J.2
Langlais, V.3
Skumryev, V.4
Suriñach, S.5
-
108
-
-
33144473476
-
Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors
-
Kim W, Zide J, Gossard A, Klenov D, Stemmer S, et al. 2006. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96:045901
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 045901
-
-
Kim, W.1
Zide, J.2
Gossard, A.3
Klenov, D.4
Stemmer, S.5
-
109
-
-
0001289631
-
Boundary scattering of phonons in solid solutions
-
GoldsmidHJ, PennAW.1968. Boundary scattering of phonons in solid solutions. Phys. Lett. A27:523-24
-
(1968)
Phys. Lett. A27
, pp. 523-524
-
-
Goldsmid, H.J.1
Penn, A.W.2
-
110
-
-
44649176898
-
The brick layer model revisited: Introducing the nano-grain composite model
-
Kidner NJ, Perry NH, Mason TO, Garboczi EJ. 2008. The brick layer model revisited: introducing the nano-grain composite model. J. Am. Ceram. Soc. 91:1733-46
-
(2008)
J. Am. Ceram. Soc.
, vol.91
, pp. 1733-1746
-
-
Kidner, N.J.1
Perry, N.H.2
Mason, T.O.3
Garboczi, E.J.4
-
111
-
-
33646722130
-
Phonon scattering cross section of polydispersed spherical nanoparticles
-
Kim W, Majumdar A. 2006. Phonon scattering cross section of polydispersed spherical nanoparticles. J. Appl. Phys. 99:084306-7
-
(2006)
J. Appl. Phys.
, vol.99
, pp. 084306-084307
-
-
Kim, W.1
Majumdar, A.2
-
112
-
-
77957909092
-
Reduction of thermal conductivity in phononic nanomesh structures
-
Yu J-K, Mitrovic S, Tham D, Varghese J,Heath JR. 2010. Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nano 5:718-21
-
(2010)
Nat. Nano
, vol.5
, pp. 718-721
-
-
Yu, J.-K.1
Mitrovic, S.2
Tham, D.3
Varghese, J.4
Heath, J.R.5
-
113
-
-
77958033784
-
Holey silicon as an efficient thermoelectric material
-
Tang JY, Wang HT, Lee DH, Fardy M, Huo ZY, et al. 2010. Holey silicon as an efficient thermoelectric material. Nano Lett. 10:4279-83
-
(2010)
Nano Lett.
, vol.10
, pp. 4279-4283
-
-
Tang, J.Y.1
Wang, H.T.2
Lee, D.H.3
Fardy, M.4
Huo, Z.Y.5
-
114
-
-
1242286933
-
Thermal conductivity of periodic microporous silicon films
-
Song D, Chen G. 2004. Thermal conductivity of periodic microporous silicon films. Appl. Phys. Lett. 84:687-89
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 687-689
-
-
Song, D.1
Chen, G.2
-
115
-
-
84864184540
-
Experimental techniques for thin-film thermal conductivity characterization
-
ed. TM Tritt,. New York: Kluwer Acad./ Plenum
-
Borca-Tasciuc T, Chen G. 2004. Experimental techniques for thin-film thermal conductivity characterization. In Thermal Conductivity: Theory, Properties, and Applications, ed. TM Tritt, pp. 205-37. New York: Kluwer Acad./Plenum
-
(2004)
Thermal Conductivity: Theory, Properties, and Applications
, pp. 205-237
-
-
Borca-Tasciuc, T.1
Chen, G.2
-
116
-
-
0028403721
-
Solid layer thermal-conductivity measurement techniques
-
Goodson KE, Flik MI. 1994. Solid layer thermal-conductivity measurement techniques. Appl.Mech. Rev. 47:101-12
-
(1994)
Appl.Mech. Rev.
, vol.47
, pp. 101-112
-
-
Goodson, K.E.1
Flik, M.I.2
-
118
-
-
29744438825
-
1ω, 2ω, and 3ωmethods for measurements of thermal properties
-
Dames C, Chen G. 2005. 1ω, 2ω, and 3ωmethods for measurements of thermal properties. Rev. Sci. Instrum. 76:124902
-
(2005)
Rev. Sci. Instrum.
, vol.76
, pp. 124902
-
-
Dames, C.1
Chen, G.2
-
119
-
-
36549099049
-
Thermal conductivity measurement from 30 K to 750 K: The 3ωmethod
-
Cahill DG. 1990. Thermal conductivity measurement from 30 K to 750 K: the 3ωmethod. Rev. Sci. Instrum. 61:802-8
-
(1990)
Rev. Sci. Instrum.
, vol.61
, pp. 802-808
-
-
Cahill, D.G.1
-
120
-
-
0035306385
-
Data reduction in 3 omega method for thin-film thermal conductivity determination
-
Borca-Tasciuc T, Kumar AR, Chen G. 2001. Data reduction in 3 omega method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 72:2139-47
-
(2001)
Rev. Sci. Instrum.
, vol.72
, pp. 2139-2147
-
-
Borca-Tasciuc, T.1
Kumar, A.R.2
Chen, G.3
-
121
-
-
0031094623
-
Heat transport in thin dielectric films
-
Lee SM, Cahill DG. 1997. Heat transport in thin dielectric films. J. Appl. Phys. 81:2590-95
-
(1997)
J. Appl. Phys.
, vol.81
, pp. 2590-2595
-
-
Lee, S.M.1
Cahill, D.G.2
-
122
-
-
70350393233
-
Thermal contact resistance between graphene and silicon dioxide
-
Chen Z, Jang W, BaoW, Lau CN, Dames C. 2009. Thermal contact resistance between graphene and silicon dioxide. Appl. Phys. Lett. 95:161910
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 161910
-
-
Chen, Z.1
Jang, W.2
Baow Lau, C.N.3
Dames, C.4
-
123
-
-
0001292732
-
Transient thermoreflectance from thinmetal films
-
Paddock CA, Eesley GL. 1986. Transient thermoreflectance from thinmetal films. J. Appl. Phys. 60:285-90
-
(1986)
J. Appl. Phys.
, vol.60
, pp. 285-290
-
-
Paddock, C.A.1
Eesley, G.L.2
-
124
-
-
0037280530
-
Femtosecond pumpprobe nondestructive examination of materials
-
Norris PM, Caffrey AP, Stevens RJ, Klopf JM, McLeskey JT, Smith AN. 2003. Femtosecond pumpprobe nondestructive examination of materials. Rev. Sci. Instrum. 74:400-6
-
(2003)
Rev. Sci. Instrum.
, vol.74
, pp. 400-406
-
-
Norris, P.M.1
Caffrey, A.P.2
Stevens, R.J.3
Klopf, J.M.4
McLeskey, J.T.5
Smith, A.N.6
-
125
-
-
0033534934
-
Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating
-
Ju YS, Kurabayashi K, Goodson KE. 1999. Thermal characterization of anisotropic thin dielectric films using harmonic Joule heating. Thin Solid Films 339:160-64
-
(1999)
Thin Solid Films
, vol.339
, pp. 160-164
-
-
Ju, Y.S.1
Kurabayashi, K.2
Goodson, K.E.3
-
126
-
-
57049142573
-
Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance
-
Schmidt AJ. 2008. Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Rev. Sci. Instrum. 79:114902
-
(2008)
Rev. Sci. Instrum.
, vol.79
, pp. 114902
-
-
Schmidt, A.J.1
-
127
-
-
0031998367
-
Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates
-
Asheghi M, Touzelbaev MN, Goodson KE, Leung YK,Wong SS. 1998. Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates. J. Heat Transf. Trans. ASME 120:30-36
-
(1998)
J. Heat Transf. Trans. ASME
, vol.120
, pp. 30-36
-
-
Asheghi, M.1
Touzelbaev, M.N.2
Goodson, K.E.3
Leung Ykwong, S.S.4
-
128
-
-
0343635648
-
Thermal conductivity and diffusivity of free-standing silicon nitride thin films
-
Zhang X, Grigoropoulos C. 1995. Thermal conductivity and diffusivity of free-standing silicon nitride thin films. Rev. Sci. Instrum. 66:1115
-
(1995)
Rev. Sci. Instrum.
, vol.66
, pp. 1115
-
-
Zhang, X.1
Grigoropoulos, C.2
-
129
-
-
77952808389
-
x superlattice thin films
-
Mavrokefalos A, Lin Q, Beekman M, Seol JH, Lee YJ, et al. 2010. In-plane thermal and thermoelectric properties of misfit-layered [(PbSe)0.99]x(WSe2)x superlattice thin films. Appl. Phys. Lett. 96:181908
-
(2010)
Appl. Phys. Lett.
, vol.96
, pp. 181908
-
-
Mavrokefalos, A.1
Lin, Q.2
Beekman, M.3
Seol, J.H.4
Lee, Y.J.5
-
130
-
-
0021373416
-
Amethod for themeasurement of thermal-conductivity, thermal-diffusivity, and other transport-coefficients of thin-films
-
Volklein F, Kessler E. 1984. Amethod for themeasurement of thermal-conductivity, thermal-diffusivity, and other transport-coefficients of thin-films. Phys. Status Solidi Appl. Res. 81:585-96
-
(1984)
Phys. Status Solidi Appl. Res.
, vol.81
, pp. 585-596
-
-
Volklein, F.1
Kessler, E.2
-
131
-
-
18244390620
-
Thermal-conductivity of heavily doped low-pressure chemical vapor-deposited polycrystalline silicon films
-
Tai YC, Mastrangelo CH, Muller RS. 1988. Thermal-conductivity of heavily doped low-pressure chemical vapor-deposited polycrystalline silicon films. J. Appl. Phys. 63:1442-47
-
(1988)
J. Appl. Phys.
, vol.63
, pp. 1442-1447
-
-
Tai, Y.C.1
Mastrangelo, C.H.2
Muller, R.S.3
-
132
-
-
79955424726
-
Non-equilibrium transient thermal grating relaxation in metal
-
Maznev AA, Johnson JA, Nelson KA. 2011. Non-equilibrium transient thermal grating relaxation in metal. J. Appl. Phys. 109:073517
-
(2011)
J. Appl. Phys.
, vol.109
, pp. 073517
-
-
Maznev, A.A.1
Johnson, J.A.2
Nelson, K.A.3
-
133
-
-
3743137285
-
Contactless measurement of the thermal conductivity of thin SiC layers
-
ed. G Pensl, H Morkoc, B Monemar, E Janzen, Mater. Sci. Forum, Pt. 1, 657-60. Zurich-Uetikon: Transtec Publ. Ltd
-
Rohmfeld S, Hundhausen M, Ley L. 1998. Contactless measurement of the thermal conductivity of thin SiC layers. In Silicon Carbide, III-Nitrides and Related Materials, ed. G Pensl, H Morkoc, B Monemar, E Janzen, Mater. Sci. Forum, Pt. 1, 2, 264-268:657-60. Zurich-Uetikon: Transtec Publ. Ltd.
-
(1998)
Silicon Carbide, III-Nitrides and Related Materials
, vol.2
, pp. 264-268
-
-
Rohmfeld, S.1
Hundhausen, M.2
Ley, L.3
-
134
-
-
42349087225
-
Superior thermal conductivity of single-layer graphene
-
Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, et al. 2008. Superior thermal conductivity of single-layer graphene. Nano Lett. 8:902-7
-
(2008)
Nano Lett.
, vol.8
, pp. 902-907
-
-
Balandin, A.A.1
Ghosh, S.2
Bao, W.3
Calizo, I.4
Teweldebrhan, D.5
-
135
-
-
77952410071
-
Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition
-
Cai W, Moore AL, Zhu Y, Li X, Chen S, et al. 2010. Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett. 10:1645-51
-
(2010)
Nano Lett.
, vol.10
, pp. 1645-1651
-
-
Cai, W.1
Moore, A.L.2
Zhu, Y.3
Li, X.4
Chen, S.5
-
136
-
-
77950791436
-
Two-dimensional phonon transport in supported graphene
-
Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, et al. 2010. Two-dimensional phonon transport in supported graphene. Science 328:213-16
-
(2010)
Science
, vol.328
, pp. 213-216
-
-
Seol, J.H.1
Jo, I.2
Moore, A.L.3
Lindsay, L.4
Zh, A.5
-
137
-
-
77958050751
-
Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite
-
Jang W, Chen Z, Bao W, Lau CN, Dames C. 2010. Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett. 10:3909-13
-
(2010)
Nano Lett.
, vol.10
, pp. 3909-3913
-
-
Jang, W.1
Chen, Z.2
Bao, W.3
Lau, C.N.4
Dames, C.5
-
138
-
-
0242349591
-
Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device
-
Shi L, Li DY, Yu CH, JangWY, Kim D, et al. 2003. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 125:881-88
-
(2003)
J. Heat Transf.
, vol.125
, pp. 881-888
-
-
Shi, L.1
Li, D.Y.2
Yu, C.H.3
Jangwy Kim, D.4
-
139
-
-
34047181101
-
Four-probe measurements of the in-plane thermoelectric properties of nanofilms
-
Mavrokefalos A, Pettes MT, Zhou F, Shi L. 2007. Four-probe measurements of the in-plane thermoelectric properties of nanofilms. Rev. Sci. Instrum. 78:034901
-
(2007)
Rev. Sci. Instrum.
, vol.78
, pp. 034901
-
-
Mavrokefalos, A.1
Pettes, M.T.2
Zhou, F.3
Shi, L.4
-
140
-
-
31544438604
-
Thermal conductance of an individual single-wall carbon nanotube above room temperature
-
Pop E,Mann D,Wang Q, Goodson K, Dai HJ. 2006. Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett. 6:96-100
-
(2006)
Nano Lett.
, vol.6
, pp. 96-100
-
-
Pop, E.1
Mann, D.2
Wang, Q.3
Goodson, K.4
Dai, H.J.5
-
141
-
-
24144461338
-
Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-omega method
-
Choi TY, Poulikakos D, Tharian J, Sennhauser U. 2005. Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-omega method. Appl. Phys. Lett. 87:013108
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 013108
-
-
Choi, T.Y.1
Poulikakos, D.2
Tharian, J.3
Sennhauser, U.4
-
142
-
-
27144490668
-
Measuring the thermal conductivity of a single carbon nanotube
-
Fujii M, Zhang X, Xie HQ, Ago H, Takahashi K, et al. 2005. Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett. 95:065502
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 065502
-
-
Fujii, M.1
Zhang, X.2
Xie, H.Q.3
Ago, H.4
Takahashi, K.5
-
143
-
-
36148970107
-
Ahot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope
-
DamesC,Chen S,HarrisCT, Huang JY, RenZF, et al. 2007.Ahot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope. Rev. Sci. Instrum. 78:104903
-
(2007)
Rev. Sci. Instrum.
, vol.78
, pp. 104903
-
-
Dames, C.1
Chen, S.2
Harris, C.T.3
Huang, J.Y.4
Ren, Z.F.5
-
144
-
-
20844456220
-
Thermal and electrical conductivity of a suspended platinum nanofilm
-
Zhang X, Xie H, Fujii M, Ago H, Takahashi K, et al. 2005. Thermal and electrical conductivity of a suspended platinum nanofilm. Appl. Phys. Lett. 86:171912
-
(2005)
Appl. Phys. Lett.
, vol.86
, pp. 171912
-
-
Zhang, X.1
Xie, H.2
Fujii, M.3
Ago, H.4
Takahashi, K.5
-
145
-
-
39349103052
-
Optical measurement of thermal transport in suspended carbon nanotubes
-
Hsu I, Kumar R, Bushmaker A, Cronin SB, Pettes MT, et al. 2008. Optical measurement of thermal transport in suspended carbon nanotubes. Appl. Phys. Lett. 92:063119
-
(2008)
Appl. Phys. Lett.
, vol.92
, pp. 063119
-
-
Hsu, I.1
Kumar, R.2
Bushmaker, A.3
Cronin, S.B.4
Pettes, M.T.5
-
146
-
-
79960014774
-
Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy
-
Soudi A, Dawson RD, Gu Y. 2010. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy. ACS Nano 5:255-62
-
(2010)
ACS Nano
, vol.5
, pp. 255-262
-
-
Soudi, A.1
Dawson, R.D.2
Gu, Y.3
-
147
-
-
78650122378
-
Single nanowire thermal conductivity measurements by Raman thermography
-
Doerk GS, Carraro C, Maboudian R. 2010. Single nanowire thermal conductivity measurements by Raman thermography. ACS Nano 4:4908-14
-
(2010)
ACS Nano
, vol.4
, pp. 4908-4914
-
-
Doerk, G.S.1
Carraro, C.2
Maboudian, R.3
-
148
-
-
0029775271
-
Group velocity in strongly scattering media
-
Page JH, Sheng P, Schriemer HP, Jones I, Jing XD, Weitz DA. 1996. Group velocity in strongly scattering media. Science 271:634-37
-
(1996)
Science
, vol.271
, pp. 634-637
-
-
Page, J.H.1
Sheng, P.2
Schriemer, H.P.3
Jones, I.4
Jing, X.D.5
Weitz, D.A.6
-
151
-
-
0034622972
-
Locally resonant sonic materials
-
Liu ZY, Zhang XX, Mao YW, Zhu YY, Yang ZY, et al. 2000. Locally resonant sonic materials. Science 289:1734-36
-
(2000)
Science
, vol.289
, pp. 1734-1736
-
-
Liu, Z.Y.1
Zhang, X.X.2
Mao, Y.W.3
Zhu, Y.Y.4
Yang, Z.Y.5
-
152
-
-
18044379359
-
Hypersonic phononic crystals
-
Gorishnyy T, Ullal CK, Maldovan M, Fytas G, Thomas EL. 2005. Hypersonic phononic crystals. Phys. Rev. Lett. 94:115501
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 115501
-
-
Gorishnyy, T.1
Ullal, C.K.2
Maldovan, M.3
Fytas, G.4
Thomas, E.L.5
-
153
-
-
33750019836
-
Observation and tuning of hypersonic bandgaps in colloidal crystals
-
ChengW,Wang JJ, JonasU, FytasG, StefanouN. 2006. Observation and tuning of hypersonic bandgaps in colloidal crystals. Nat. Mater. 5:830-36
-
(2006)
Nat. Mater.
, vol.5
, pp. 830-836
-
-
Cheng, W.1
Wang, J.J.2
Jonas, U.3
Fytas, G.4
Stefanou, N.5
-
155
-
-
60449109154
-
On the negative effective mass density in acousticmetamaterials
-
Huang HH, Sun CT, HuangGL. 2009. On the negative effective mass density in acousticmetamaterials. Int. J. Eng. Sci. 47:610-17
-
(2009)
Int. J. Eng. Sci.
, vol.47
, pp. 610-617
-
-
Huang, H.H.1
Sun, C.T.2
Huang, G.L.3
-
156
-
-
77955215753
-
Band gaps in a multiresonator acoustic metamaterial
-
Huang GL, Sun CT. 2010. Band gaps in a multiresonator acoustic metamaterial. J. Vib. Acoustics 132:031003
-
(2010)
J. Vib. Acoustics
, vol.132
, pp. 031003
-
-
Huang, G.L.1
Sun, C.T.2
-
157
-
-
77957909092
-
Reduction of thermal conductivity in phononic nanomesh structures
-
Yu JK,Mitrovic S, ThamD, Varghese J,Heath JR. 2010. Reduction of thermal conductivity in phononic nanomesh structures. Nat. Nanotechnol. 5:718-21
-
(2010)
Nat. Nanotechnol.
, vol.5
, pp. 718-721
-
-
Yu, J.K.1
Mitrovic, S.2
Tham, D.3
Varghese, J.4
Heath, J.R.5
-
158
-
-
65249134866
-
Structure, heat capacity, and high-temperature thermal properties of Yb14Mn1?xAlxSb11
-
Cox CA, Toberer ES, Levchenko AA, Brown SR, Snyder GJ, et al. 2009. Structure, heat capacity, and high-temperature thermal properties of Yb14Mn1?xAlxSb11. Chem. Mater. 21:1354-60
-
(2009)
Chem. Mater.
, vol.21
, pp. 1354-1360
-
-
Cox, C.A.1
Toberer, E.S.2
Levchenko, A.A.3
Brown, S.R.4
Snyder, G.J.5
-
160
-
-
79851482814
-
Ca3AlSb3: An inexpensive, non-toxic thermoelectric material for waste heat recovery
-
Zevalkink A, Toberer ES, Zeier WG, Flage-Larsen E, Snyder GJ. 2011. Ca3AlSb3: an inexpensive, non-toxic thermoelectric material for waste heat recovery. Energy Environ. Sci. 4:510-8
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 510-518
-
-
Zevalkink, A.1
Toberer, E.S.2
Zeier, W.G.3
Flage-Larsen, E.4
Snyder, G.J.5
-
161
-
-
0037428744
-
Thermal conductivity of elemental crystalline silicon clathrate Si-136
-
Nolas GS, BeekmanM, Gryko J, Lamberton GA, Tritt TM, McMillan PF. 2003. Thermal conductivity of elemental crystalline silicon clathrate Si-136. Appl. Phys. Lett. 82:910-12
-
(2003)
Appl. Phys. Lett.
, vol.82
, pp. 910-912
-
-
Nolas, G.S.1
Beekman, M.2
Gryko, J.3
Lamberton, G.A.4
Tritt, T.M.5
McMillan, P.F.6
-
162
-
-
78049353863
-
Composition and the thermoelectric performance of beta-Zn4Sb3
-
Toberer ES, Rauwel P, Gariel S, Tafto J, Snyder GJ. 2010. Composition and the thermoelectric performance of beta-Zn4Sb3. J. Mater. Chem. 20:9877-85
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 9877-9885
-
-
Toberer, E.S.1
Rauwel, P.2
Gariel, S.3
Tafto, J.4
Snyder, G.J.5
-
163
-
-
79952157780
-
Reduction of lattice thermal conductivity from planar faults in the layered Zintl compound SrZnSb2
-
Prytz O, Flage-Larsen E, TobererES, Snyder GJ, Tafto J. 2011. Reduction of lattice thermal conductivity from planar faults in the layered Zintl compound SrZnSb2. J. Appl. Phys. 109:043509
-
(2011)
J. Appl. Phys.
, vol.109
, pp. 043509
-
-
Prytz, O.1
Flage-Larsen, E.2
Toberer, E.S.3
Snyder, G.J.4
Tafto, J.5
-
164
-
-
0037066420
-
Materials science-thermal barrier coatings for gas-turbine engine applications
-
Padture NP, Gell M, Jordan EH. 2002. Materials science-thermal barrier coatings for gas-turbine engine applications. Science 296:280-84
-
(2002)
Science
, vol.296
, pp. 280-284
-
-
Padture, N.P.1
Gell, M.2
Jordan, E.H.3
-
165
-
-
33846533564
-
Oxide materials with low thermal conductivity
-
Winter MR, Clarke DR. 2007. Oxide materials with low thermal conductivity. J. Am. Ceram. Soc. 90:533-40
-
(2007)
J. Am. Ceram. Soc.
, vol.90
, pp. 533-540
-
-
Winter, M.R.1
Clarke, D.R.2
-
167
-
-
79955568135
-
Thermal conductivity of the gadolinium calcium silicate apatites: Effect of different point defect types
-
Qu ZX, Sparks TD, PanW, Clarke DR. 2011. Thermal conductivity of the gadolinium calcium silicate apatites: effect of different point defect types. Acta Mater. 59:3841-50
-
(2011)
Acta Mater.
, vol.59
, pp. 3841-3850
-
-
Qu, Z.X.1
Sparks, T.D.2
Pan, W.3
Clarke, D.R.4
-
168
-
-
70350507520
-
4 (RE = La, Ce, Nd, Sm, Eu, Gd)
-
Du AB, Wan CL, Qu ZX, Pan W. 2009. Thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu, Gd). J. Am. Ceram. Soc. 92:2687-92
-
(2009)
J. Am. Ceram. Soc.
, vol.92
, pp. 2687-2692
-
-
Du, A.B.1
Wan, C.L.2
Qu, Z.X.3
Pan, W.4
-
169
-
-
70350409656
-
Crossover in thermal transport properties of natural, perovskite-structured superlattices
-
Chernatynskiy A, Grimes RW, Zurbuchen MA, Clarke DR, Phillpot SR. 2009. Crossover in thermal transport properties of natural, perovskite-structured superlattices. Appl. Phys. Lett. 95:161906
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 161906
-
-
Chernatynskiy, A.1
Grimes, R.W.2
Zurbuchen, M.A.3
Clarke, D.R.4
Phillpot, S.R.5
-
171
-
-
33750016390
-
Thermal conductivity of yttria-stabilized zirconia-hafnia solid solutions
-
Winter MR, Clarke DR. 2006. Thermal conductivity of yttria-stabilized zirconia-hafnia solid solutions. Acta Mater. 54:5051-59
-
(2006)
Acta Mater.
, vol.54
, pp. 5051-5059
-
-
Winter, M.R.1
Clarke, D.R.2
-
172
-
-
79751486684
-
Order-disorder transition and unconventional thermal conductivities of the (Sm1?xYbx)2Zr2O7 series
-
WanC,Qu Z,Du A, Pan W. 2011. Order-disorder transition and unconventional thermal conductivities of the (Sm1?xYbx)2Zr2O7 series. J. Am. Ceram. Soc. 94:592-96
-
(2011)
J. Am. Ceram. Soc.
, vol.94
, pp. 592-596
-
-
Wan, C.1
Qu, Z.2
Du, A.3
Pan, W.4
-
173
-
-
79958093486
-
Glass-like thermal conductivity in ytterbiumdoped lanthanum zirconate pyrochlore
-
WanCL, ZhangW,Wang YF, Qu ZX,Du AB, et al. 2010. Glass-like thermal conductivity in ytterbiumdoped lanthanum zirconate pyrochlore. Acta Mater. 58:6166-72
-
(2010)
Acta Mater.
, vol.58
, pp. 6166-6172
-
-
Wan, C.L.1
Zhang, W.2
Wang, Y.F.3
Qu, Z.X.4
Du, A.B.5
-
174
-
-
79961174279
-
7 (L = La, Nd, Sm, Eu, Gd, Dy)
-
Feng J, Wan CL, Xiao B, Zhou R, PanW, Clarke DR. 2011. Calculation of the thermal conductivity of L2SrAl2O7 (L = La, Nd, Sm, Eu, Gd, Dy). Phys. Rev. B 84:024302
-
(2011)
Phys. Rev. B
, vol.84
, pp. 024302
-
-
Feng, J.1
Wan, C.L.2
Xiao, B.3
Zhou, R.4
Pan, W.5
Clarke, D.R.6
-
175
-
-
79955552384
-
2.5-stabilized tetragonal zirconia ceramics
-
Shen Y, Leckie RM, Levi CG, Clarke DR. 2010. Low thermal conductivity without oxygen vacancies in equimolar YO1.5 + TaO2.5- and YbO1.5 + TaO2.5-stabilized tetragonal zirconia ceramics. Acta Mater. 58:4424-31
-
(2010)
Acta Mater.
, vol.58
, pp. 4424-4431
-
-
Shen, Y.1
Leckie, R.M.2
Levi, C.G.3
Clarke, D.R.4
-
176
-
-
85038989388
-
Lattice dynamics of filled skutterudites: La(Fe,Co)4Sb12
-
Feldman JL, Singh DJ, Kendziora C, MandrusD, Sales BC. 2003. Lattice dynamics of filled skutterudites: La(Fe,Co)4Sb12. Phys. Rev. B 68:094301
-
(2003)
Phys. Rev. B
, vol.68
, pp. 094301
-
-
Feldman, J.L.1
Singh, D.J.2
Kendziora, C.3
Mandrus, D.4
Sales, B.C.5
-
177
-
-
0032578763
-
Localized vibrational modes in metallic solids
-
Keppens V, Mandrus D, Sales BC, Chakoumakos BC, Dai P, et al. 1998. Localized vibrational modes in metallic solids. Nature 395:876-78
-
(1998)
Nature
, vol.395
, pp. 876-878
-
-
Keppens, V.1
Mandrus, D.2
Sales, B.C.3
Chakoumakos, B.C.4
Dai, P.5
-
178
-
-
0033601562
-
Glasslike heat conduction in highmobility crystalline semiconductors
-
Cohn JL, Nolas GS, Fessatidis V, Metcalf TH, Slack GA. 1999. Glasslike heat conduction in highmobility crystalline semiconductors. Phys. Rev. Lett. 82:779-82
-
(1999)
Phys. Rev. Lett.
, vol.82
, pp. 779-782
-
-
Cohn, J.L.1
Nolas, G.S.2
Fessatidis, V.3
Metcalf, T.H.4
Slack, G.A.5
-
179
-
-
77955182083
-
Calculations of dynamical properties of skutterudites: Thermal conductivity, thermal expansivity, and atomic mean-square displacement
-
BernsteinN, Feldman JL, Singh DJ. 2010. Calculations of dynamical properties of skutterudites: thermal conductivity, thermal expansivity, and atomic mean-square displacement. Phys. Rev. B 81:134301
-
(2010)
Phys. Rev. B
, vol.81
, pp. 134301
-
-
Bernstein, N.1
Feldman, J.L.2
Singh, D.J.3
-
180
-
-
77956665553
-
Skutterudites: Prospective novel thermoelectrics
-
ed. TM Tritt,. San Diego: Academic
-
Uher C. 2001. Skutterudites: prospective novel thermoelectrics. In Semiconductors and Semimetals, ed. TM Tritt, 69:139-253. San Diego: Academic
-
(2001)
Semiconductors and Semimetals
, vol.69
, pp. 139-253
-
-
Uher, C.1
-
181
-
-
79953648863
-
12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb)
-
Qiu PF, Yang J, LiuRH, Shi X, HuangXY, et al. 2011. High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J. Appl. Phys. 109:063713
-
(2011)
J. Appl. Phys.
, vol.109
, pp. 063713
-
-
Qiu, P.F.1
Yang, J.2
Liu, R.H.3
Shi, X.4
Huang, X.Y.5
-
182
-
-
0346665859
-
Thermal conductivity of germanium, silicon, and carbon nitrides
-
Morelli DT,Heremans JP. 2002. Thermal conductivity of germanium, silicon, and carbon nitrides. Appl. Phys. Lett. 81:5126-28
-
(2002)
Appl. Phys. Lett.
, vol.81
, pp. 5126-5128
-
-
Morelli, D.T.1
Heremans, J.P.2
-
183
-
-
84864247913
-
-
Accessed Feb. 25, 2012
-
Cahill D. 2010. http://users.mrl.uiuc.edu/cahill/tcdata/tcdata.html. Accessed Feb. 25, 2012
-
(2010)
-
-
Cahill, D.1
-
184
-
-
0342414564
-
Low temperature system for thermal conductivity measurements
-
Klein MV, Caldwell RF. 1966. Low temperature system for thermal conductivity measurements. Rev. Sci. Instrum. 37:1291-17
-
(1966)
Rev. Sci. Instrum.
, vol.37
, pp. 1291-1317
-
-
Klein, M.V.1
Caldwell, R.F.2
-
186
-
-
0031070224
-
Improved growth morphology of Si-Ge-C heterostructures through the use of Sb surfactant-assisted molecular beam epitaxy
-
Croke ET, Hunter AT, Pettersson PO, Ahn CC, McGill TC. 1997. Improved growth morphology of Si-Ge-C heterostructures through the use of Sb surfactant-assisted molecular beam epitaxy. Thin Solid Films 294:105-11
-
(1997)
Thin Solid Films
, vol.294
, pp. 105-111
-
-
Croke, E.T.1
Hunter, A.T.2
Pettersson, P.O.3
Ahn, C.C.4
McGill, T.C.5
-
187
-
-
24944469583
-
Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles
-
Zide JM, Klenov DO, Stemmer S, Gossard AC, Zeng G, et al. 2005. Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles. Appl. Phys. Lett. 87:112102
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 112102
-
-
Zide, J.M.1
Klenov, D.O.2
Stemmer, S.3
Gossard, A.C.4
Zeng, G.5
-
188
-
-
0001246055
-
Phonon scattering in silicon films with thickness of order 100 nm
-
Ju YS, Goodson KE. 1999. Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett. 74:3005-7
-
(1999)
Appl. Phys. Lett.
, vol.74
, pp. 3005-3007
-
-
Ju, Y.S.1
Goodson, K.E.2
-
189
-
-
38049148246
-
Silicon nanowires as efficient thermoelectric materials
-
Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard WA, Heath JR. 2008. Silicon nanowires as efficient thermoelectric materials. Nature 451:168-71
-
(2008)
Nature
, vol.451
, pp. 168-171
-
-
Boukai, A.I.1
Bunimovich, Y.2
Tahir-Kheli, J.3
Yu, J.K.4
Goddard, W.A.5
Heath, J.R.6
-
190
-
-
77953636772
-
Energy dissipation and transport in nanoscale devices
-
Pop E. 2010. Energy dissipation and transport in nanoscale devices. Nano Res. 3:147-69
-
(2010)
Nano Res.
, vol.3
, pp. 147-169
-
-
Pop, E.1
-
191
-
-
38849174818
-
Complex thermoelectric materials
-
Snyder JG, Toberer ES. 2008. Complex thermoelectric materials. Nat. Mat. 7:105-14
-
(2008)
Nat. Mat.
, vol.7
, pp. 105-114
-
-
Snyder, J.G.1
Toberer, E.S.2
-
192
-
-
70350650522
-
Characterization and analysis of thermoelectric transport in n-type BaGaGe
-
May AF, Toberer ES, Saramat A, Snyder GJ. 2009. Characterization and analysis of thermoelectric transport in n-type BaGaGe. Phys. Rev. B 80:125205
-
(2009)
Phys. Rev. B
, vol.80
, pp. 125205
-
-
May, A.F.1
Toberer, E.S.2
Saramat, A.3
Snyder, G.J.4
-
193
-
-
51749107216
-
12): A natural nanostructured superlattice
-
Shen Y, Clarke DR, Fuierer PA. 2008. Anisotropic thermal conductivity of the Aurivillus phase, bismuth titanate (Bi4Ti3O12): a natural nanostructured superlattice. Appl. Phys. Lett. 93:102907
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 102907
-
-
Shen, Y.1
Clarke, D.R.2
Fuierer, P.A.3
-
194
-
-
50249146293
-
Ultralow thermal conductivity in highly anion-defective aluminates
-
Wan C, Qu Z, He Y, Luan D, Pan W. 2008. Ultralow thermal conductivity in highly anion-defective aluminates. Phys. Rev. Lett. 101:085901
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 085901
-
-
Wan, C.1
Qu, Z.2
He, Y.3
Luan, D.4
Pan, W.5
|