메뉴 건너뛰기




Volumn 3, Issue 1, 2008, Pages

Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data

Author keywords

Hyperspectral unmixing; Minimum volume simplex; Source separation

Indexed keywords

ENDMEMBER; FAST ALGORITHMS; HARD CONSTRAINTS; HYPERSPECTRAL; HYPERSPECTRAL DATA; HYPERSPECTRAL UNMIXING; LINEAR MIXTURES; LOSS FUNCTIONS; MINIMUM VOLUME SIMPLEX; MIXING MODELS; OPTIMIZATION PROBLEMS; PURE PIXEL; REALISTIC SCENARIO; SIMULATED DATASETS; SOURCE SEPARATION; STATE-OF-THE-ART PERFORMANCE; SUB-PROBLEMS; UNMIXING;

EID: 67649830104     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IGARSS.2008.4779330     Document Type: Conference Paper
Times cited : (385)

References (18)
  • 1
    • 0033686694 scopus 로고    scopus 로고
    • D.G. Manolakis N. Keshava, J.P. kerekes and G.A. Shaw, Algorithm taxonomy for hyperspectral unmixing, Proc. SPIE 4049, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery, VI, pp. 42, 2000.
    • D.G. Manolakis N. Keshava, J.P. kerekes and G.A. Shaw, "Algorithm taxonomy for hyperspectral unmixing," Proc. SPIE Vol.4049, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery, vol. VI, pp. 42, 2000.
  • 3
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmembr extraction algorithms from hyperspectral data
    • R.M. Perez A. Plaza, P. Martinez and J. Plaza, "A quantitative and comparative analysis of endmembr extraction algorithms from hyperspectral data," IEEE Transactions on Geoscience and Remote Sensing, vol. 42, pp. 650-663, 2004.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 650-663
    • Perez, R.M.1    Plaza, A.2    Martinez, P.3    Plaza, J.4
  • 5
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonegative matrix factorization
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonegative matrix factorization," IEEE Transactions on Geoscience and Remote Sensing, vol. 45, pp. 765-777, 2007.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 8
    • 46749145829 scopus 로고    scopus 로고
    • Semisupervised linear spectral unmixing using a hierarchical bayesian model for hyperspectral imagery
    • N. Dobigeon, J.-Y. Tourneret, and C.-I Chang, "Semisupervised linear spectral unmixing using a hierarchical bayesian model for hyperspectral imagery," IEEE Transactions on Signal Processing, vol. 56, no. 1, pp. 2684-2695, 2008.
    • (2008) IEEE Transactions on Signal Processing , vol.56 , Issue.1 , pp. 2684-2695
    • Dobigeon, N.1    Tourneret, J.-Y.2    Chang, C.-I.3
  • 10
    • 0033310314 scopus 로고    scopus 로고
    • M. E. Winter, N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data, in Proc. of the SPIE conference on Imaging Spectrometry V, 3753, pp. 266-275, 1999.
    • M. E. Winter, "N-FINDR: an algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. of the SPIE conference on Imaging Spectrometry V, vol. 3753, pp. 266-275, 1999.
  • 11
    • 0002081183 scopus 로고
    • Automating spectral unmixing of aviris data using convex geometry concepts
    • J. Boardman, "Automating spectral unmixing of aviris data using convex geometry concepts," in JPL Pub.93-26,AVIRIS Workshop, vol. 1, pp. 11-14, 1993.
    • (1993) JPL Pub.93-26,AVIRIS Workshop , vol.1 , pp. 11-14
    • Boardman, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.