-
1
-
-
8144231500
-
A survey of spectral unmixing algorithms
-
Jan
-
N. Keshava, A survey of spectral unmixing algorithms, Lincoln Lab. J., vol. 14, no. 1, pp. 55-78, Jan. 2003
-
(2003)
Lincoln Lab. J
, vol.14
, Issue.1
, pp. 55-78
-
-
Keshava, N.1
-
2
-
-
0033310314
-
N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
-
M. E. Winter, N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data, in Proc. SPIE Conf. Imaging Spectrometry V,1999, pp. 266-275
-
(1999)
Proc. SPIE Conf. Imaging Spectrometry v
, pp. 266-275
-
-
Winter, M.E.1
-
3
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
DOI 10.1109/TGRS.2005.844293
-
J. M. P. Nascimento and J. M. B. Dias, Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005 (Pubitemid 40476033)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
4
-
-
33748312145
-
Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
-
DOI 10.1109/TGRS.2006.874135, 1677768
-
J. Wang and C.-I. Chang, Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2601-2616, Sep. 2006 (Pubitemid 44321553)
-
(2006)
IEEE Transactions on Geoscience and Remote Sensing
, vol.44
, Issue.9
, pp. 2601-2616
-
-
Wang, J.1
Chang, C.-I.2
-
5
-
-
50249160592
-
Hyperspectral image unmixing via alternating projected subgradients
-
A. Zymnis, S. Kim, J. Skaf, M. Parente, and S. Boyd, Hyperspectral image unmixing via alternating projected subgradients, in Proc. 41st Asilomar Conf. Signals, Syst., Comput., 2007, pp. 1164-1168
-
(2007)
Proc. 41st Asilomar Conf. Signals, Syst., Comput
, pp. 1164-1168
-
-
Zymnis, A.1
Kim, S.2
Skaf, J.3
Parente, M.4
Boyd, S.5
-
6
-
-
0028427066
-
Minimum-volume transforms for remotely sensed data
-
Jan
-
M. D. Craig, Minimum-volume transforms for remotely sensed data, IEEE Trans. Geosci. Remote Sens., vol. 32, no. 1, pp. 99-109, Jan. 1994
-
(1994)
IEEE Trans. Geosci. Remote Sens
, vol.32
, Issue.1
, pp. 99-109
-
-
Craig, M.D.1
-
7
-
-
70350509388
-
Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
-
J. Li and J. Bioucas-Dias, Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data, in Proc. IGARSS, 2008, pp. 4418-4432.
-
(2008)
Proc. IGARSS
, pp. 4418-4432
-
-
Li, J.1
Bioucas-Dias, J.2
-
8
-
-
70350488509
-
A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing
-
Nov.
-
T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing, IEEE Trans. Signal Process., vol. 47, no. 11, pp. 4418-4432, Nov. 2009
-
(2009)
IEEE Trans. Signal Process
, vol.47
, Issue.11
, pp. 4418-4432
-
-
Chan, T.-H.1
Chi, C.-Y.2
Huang, Y.-M.3
Ma, W.-K.4
-
10
-
-
78649255014
-
A robust alternating volume maximization algorithm for endmember extraction in hyperspectral images
-
A. Ambikapathi, T. Chan, W. Ma, and C. Chi, A robust alternating volume maximization algorithm for endmember extraction in hyperspectral images, in Proc. IEEE Workshop Hyperspectral Image Signal Process.: Evolution Remote Sens., 2010, pp. 1-4
-
(2010)
Proc IEEE Workshop Hyperspectral Image Signal Process.: Evolution Remote Sens
, pp. 1-4
-
-
Ambikapathi, A.1
Chan, T.2
Ma, W.3
Chi, C.4
-
11
-
-
67651166641
-
Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures
-
Jul
-
J. Chen, X. Jia, W. Yang, and B. Matsushita, Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2165-2171, Jul. 2009
-
(2009)
IEEE Trans. Geosci. Remote Sens
, vol.47
, Issue.7
, pp. 2165-2171
-
-
Chen, J.1
Jia, X.2
Yang, W.3
Matsushita, B.4
-
12
-
-
36348990884
-
Spectral and spatial complexity-based hyperspectral unmixing
-
Dec
-
S. Jia and Y. Qian, Spectral and spatial complexity-based hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3867- 3879, Dec. 2007
-
(2007)
IEEE Trans. Geosci. Remote Sens
, vol.45
, Issue.12
, pp. 3867-3879
-
-
Jia, S.1
Qian, Y.2
-
13
-
-
78650914434
-
Noise-robust subband decomposition blind signal separation for hyperspectral unmixing
-
Y. Qian and Q. Wang, Noise-robust subband decomposition blind signal separation for hyperspectral unmixing, in Proc. IGARSS, 2010, pp. 983-986
-
(2010)
Proc. IGARSS
, pp. 983-986
-
-
Qian, Y.1
Wang, Q.2
-
14
-
-
1542346779
-
LDA/QR: An efficient and effective dimension reduction algorithm and its theoretical foundation
-
DOI 10.1016/j.patcog.2003.08.006
-
J. Ye and Q. Li, LDA/ QR: An efficient and effective dimension reduction algorithm and its theoretical foundation, Pattern Recognit., vol. 37, no. 4, pp. 851-854, Apr. 2004 (Pubitemid 38301060)
-
(2004)
Pattern Recognition
, vol.37
, Issue.4
, pp. 851-854
-
-
Ye, J.1
Li, Q.2
-
16
-
-
0028561099
-
Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
-
Jun
-
P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, vol. 5, no. 2, pp. 111-126, Jun. 1994
-
(1994)
Environmetrics
, vol.5
, Issue.2
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
17
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
Oct
-
D. D. Lee and H. S. Seung, Learning the parts of objects by nonnegative matrix factorization, Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
18
-
-
33646682646
-
Nonnegative matrix factorization for spectral data analysis
-
DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
-
V. P. Pauca, J. Piper, and R. J. Plemmons, Nonnegative matrix factorization for spectral data analysis, Linear Algebra Appl., vol. 416, no. 1, pp. 29-47, Jul. 2006 (Pubitemid 43737212)
-
(2006)
Linear Algebra and Its Applications
, vol.416
, Issue.1
, pp. 29-47
-
-
Pauca, V.P.1
Piper, J.2
Plemmons, R.J.3
-
19
-
-
84891283756
-
-
Hoboken, NJ: Wiley
-
A. Cichocki, R. Zdunek, A. H. Phan, and S. Amari, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation. Hoboken, NJ: Wiley, 2009
-
(2009)
Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation
-
-
Cichocki, A.1
Zdunek, R.2
Phan, A.H.3
Amari, S.4
-
20
-
-
58149131252
-
Constrained nonnegative matrix factorization for hyperspectral unmixing
-
Jan
-
S. Jia and Y. Qian, Constrained nonnegative matrix factorization for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009
-
(2009)
IEEE Trans. Geosci. Remote Sens
, vol.47
, Issue.1
, pp. 161-173
-
-
Jia, S.1
Qian, Y.2
-
21
-
-
77952582975
-
Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
-
Jun.
-
A. Huck, M. Guillaume, and J. Blanc-Talon, Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2590-2602, Jun. 2010
-
(2010)
IEEE Trans. Geosci. Remote Sens
, vol.48
, Issue.6
, pp. 2590-2602
-
-
Huck, A.1
Guillaume, M.2
Blanc-Talon, J.3
-
22
-
-
49149085985
-
When does non-negative matrix factorization give a correct decomposition into parts?
-
D. Donoho and V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts? in Proc. NIPS16, 2004, pp. 1141-1148
-
(2004)
Proc. NIPS16
, pp. 1141-1148
-
-
Donoho, D.1
Stodden, V.2
-
23
-
-
78650876624
-
Recent developments in sparse hyperspectral unmixing
-
M. D. Iordache, A. Plaza, and J. Bioucas-Dias, Recent developments in sparse hyperspectral unmixing, in Proc. IGARSS, 2010, pp. 1281-1284
-
(2010)
Proc. IGARSS
, pp. 1281-1284
-
-
Iordache, M.D.1
Plaza, A.2
Bioucas-Dias, J.3
-
24
-
-
72049133435
-
Sparse superpixel unmixing for exploratory analysis of CRISM hyperspectral images
-
D. Thompson, R. Castao, and M. Gilmore, Sparse superpixel unmixing for exploratory analysis of CRISM hyperspectral images, in Proc. IEEE Workshop Hyperspectral Image Signal Process.: Evolution Remote Sens., 2009, pp. 1-4
-
(2009)
Proc IEEE Workshop Hyperspectral Image Signal Process.: Evolution Remote Sens
, pp. 1-4
-
-
Thompson, D.1
Castao, R.2
Gilmore, M.3
-
25
-
-
34547198396
-
Algorithms and applications for approximate nonnegative matrix factorization
-
DOI 10.1016/j.csda.2006.11.006, PII S0167947306004191
-
M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, Algorithms and applications for approximate nonnegative matrix factorization, Comput. Statist. Data Anal., vol. 52, no. 1, pp. 155-173, Sep. 2007 (Pubitemid 47331703)
-
(2007)
Computational Statistics and Data Analysis
, vol.52
, Issue.1
, pp. 155-173
-
-
Berry, M.W.1
Browne, M.2
Langville, A.N.3
Pauca, V.P.4
Plemmons, R.J.5
-
26
-
-
84900510076
-
Non-negative matrix factorization with sparseness constraints
-
Nov
-
P. O. Hoyer, Non-negative matrix factorization with sparseness constraints, J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Nov. 2004
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.O.1
-
27
-
-
31544468696
-
Nonsmooth nonnegative matrix factorization (nsNMF)
-
DOI 10.1109/TPAMI.2006.60
-
A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann, and R. D. Pascual-Marqui, Nonsmooth nonnegative matrix factorization (nsNMF), IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 3, pp. 403-415, Mar. 2006 (Pubitemid 43159636)
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.3
, pp. 403-415
-
-
Pascual-Montano, A.1
Carazo, J.M.2
Kochi, K.3
Lehmann, D.4
Pascual-Marqui, R.D.5
-
28
-
-
64149126207
-
Hyperspectral band selection and endmember detection using sparsity promoting priors
-
Apr
-
A. Zare and P. Gader, Hyperspectral band selection and endmember detection using sparsity promoting priors, IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 256-260, Apr. 2008
-
(2008)
IEEE Geosci. Remote Sens. Lett
, vol.5
, Issue.2
, pp. 256-260
-
-
Zare, A.1
Gader, P.2
-
29
-
-
79957667304
-
Sparse unmixing of hyperspectral data
-
Jun.
-
M. D. Iordache, J. Bioucas-Dias, and A. Plaza, Sparse unmixing of hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2014-2039, Jun. 2011
-
(2011)
IEEE Trans. Geosci. Remote Sens
, vol.49
, Issue.6
, pp. 2014-2039
-
-
Iordache, M.D.1
Bioucas-Dias, J.2
Plaza, A.3
-
30
-
-
69949128613
-
L1 unmixing and its application to hyperspectral image enhancement
-
Z. Guo, T. Wittman, and S. Osher, L1 unmixing and its application to hyperspectral image enhancement, in Proc. SPIE-Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, 2009, p. 733 41M
-
(2009)
Proc. SPIE-Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery
-
-
Guo, Z.1
Wittman, T.2
Osher, S.3
-
31
-
-
34547229626
-
Sparsity promoting iterated constrained endmember detection in hyperspeetral imagery
-
DOI 10.1109/LGRS.2007.895727
-
A. Zare and P. Gader, Sparsity promoting iterated constrained endmember detection for hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-450, Jul. 2007 (Pubitemid 47117457)
-
(2007)
IEEE Geoscience and Remote Sensing Letters
, vol.4
, Issue.3
, pp. 446-450
-
-
Zare, A.1
Gader, P.2
-
32
-
-
7044222060
-
ICE: A statistical approach to identifying endmembers in hyperspectral images
-
Oct
-
M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J. F. Huntington, ICE: A statistical approach to identifying endmembers in hyperspectral images, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2085-2095, Oct. 2004
-
(2004)
IEEE Trans. Geosci. Remote Sens
, vol.42
, Issue.10
, pp. 2085-2095
-
-
Berman, M.1
Kiiveri, H.2
Lagerstrom, R.3
Ernst, A.4
Dunne, R.5
Huntington, J.F.6
-
33
-
-
1542784498
-
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
-
J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Stat. Assoc., vol. 96, no. 456, pp. 1348- 1360, Dec. 2001 (Pubitemid 33695585)
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
34
-
-
24344502730
-
Nonconcave penalty likelihood with a diverging number of parameters
-
Jun
-
J. Fan and P. Heng, Nonconcave penalty likelihood with a diverging number of parameters, Ann. Statist., vol. 32, no. 3, pp. 928- 961, Jun. 2004
-
(2004)
Ann. Statist
, vol.32
, Issue.3
, pp. 928-961
-
-
Fan, J.1
Heng, P.2
-
35
-
-
84860280270
-
L1/2 regularizer
-
Z. Xu, H. Zhang, Y. Wang, and Y. L. X. Y. Chang, L1/2 regularizer, Sci. China, Ser. F, vol. 53, pp. 1159-1169, 2010
-
Sci. China, Ser. F
, vol.53
, Issue.2010
, pp. 1159-1169
-
-
Xu, Z.1
Zhang, H.2
Wang, Y.3
Chang, Y.L.X.Y.4
-
36
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
Cambridge, MA: MIT Press
-
D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, pp. 556-562
-
(2001)
Advances in Neural Information Processing Systems
, pp. 556-562
-
-
Lee, D.D.1
Seung, H.S.2
-
37
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
DOI 10.1038/381607a0
-
B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol. 381, no. 6583, pp. 607-609, Jun. 1996 (Pubitemid 26177476)
-
(1996)
Nature
, vol.381
, Issue.6583
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
38
-
-
33645712892
-
Compressed sensing
-
Apr
-
D. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.1
-
39
-
-
1342332031
-
A tutorial on MM algorithms
-
D. R. Hunter and K. Lange, A tutorial on MM algorithms, Amer. Statistician, vol. 58, no. 1, pp. 30-37, Feb. 2004 (Pubitemid 38260327)
-
(2004)
American Statistician
, vol.58
, Issue.1
, pp. 30-37
-
-
Hunter, D.R.1
Lange, K.2
-
41
-
-
0035273728
-
Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
-
DOI 10.1109/36.911111, PII S0196289201020861
-
D. C. Heinz and C.-I. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001 (Pubitemid 32400422)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.3
, pp. 529-545
-
-
Heinz, D.C.1
Chang, C.-I.2
-
42
-
-
82355182723
-
Hyperspectral unmixing algorithm via dependent component analysis
-
J. M. P. Nascimento and J. M. B. Dias, Hyperspectral unmixing algorithm via dependent component analysis, in Proc. IGARSS, 2007, pp. 4033-4036
-
(2007)
Proc. IGARSS
, pp. 4033-4036
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
43
-
-
33847733865
-
Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
-
Mar
-
L. D. Miao and H. R. Qi, Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007
-
(2007)
IEEE Trans. Geosci. Remote Sens
, vol.45
, Issue.3
, pp. 765-777
-
-
Miao, L.D.1
Qi, H.R.2
-
44
-
-
48849088937
-
Hyperspectral subspace identification
-
Aug
-
J. M. B. Dias and J. M. P. Nascimento, Hyperspectral subspace identification, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435-2445, Aug. 2008
-
(2008)
IEEE Trans. Geosci. Remote Sens
, vol.46
, Issue.8
, pp. 2435-2445
-
-
Dias, J.M.B.1
Nascimento, J.M.P.2
-
45
-
-
78650953920
-
Data modeling: Visual psychology approach and L1/2 regularization theory
-
Z. Xu, Data modeling: Visual psychology approach and L1/2 regularization theory, in Proc. Int. Congr. Mathematicians, 2010, pp. 1-34
-
Proc. Int. Congr. Mathematicians
, pp. 1-34
-
-
Xu, Z.1
-
47
-
-
78649723716
-
Hyperspectral unmixing: Geometrical, statistical and sparse regression-based approaches
-
J. Bioucas-Dias and A. Plaza, Hyperspectral unmixing: Geometrical, statistical and sparse regression-based approaches, in Proc. SPIE Remote Sens. Eur., Image Signal Process. Remote Sens. Conf., 2010, p. 783 00A
-
(2010)
Proc. SPIE Remote Sens. Eur., Image Signal Process. Remote Sens. Conf.
-
-
Bioucas-Dias, J.1
Plaza, A.2
-
48
-
-
0003751241
-
-
Version 1: 0.2 to 3.0 microns, U.S. Geol. Surv., Denver, CO, Open File Rep
-
R. N. Clark, G. A. Swayze, A. Gallagher, T. V. King, and W. M. Calvin, The U.S. geological survey digital spectral library: Version 1: 0.2 to 3.0 microns, U.S. Geol. Surv., Denver, CO, Open File Rep. 93-592, 1993
-
(1993)
The U.S. Geological Survey Digital Spectral Library
, pp. 93-592
-
-
Clark, R.N.1
Swayze, G.A.2
Gallagher, A.3
King, T.V.4
Calvin, W.M.5
-
49
-
-
85027952549
-
An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
-
Feb.
-
X. Liu, W. Xie, B. Wang, and L. Zhang, An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011
-
(2011)
IEEE Trans. Geosci. Remote Sens
, vol.49
, Issue.2
, pp. 757-772
-
-
Liu, X.1
Xie, W.2
Wang, B.3
Zhang, L.4
-
50
-
-
0002433940
-
Groundtruthing AVIRIS mineral mapping at Cuprite, Nevada
-
G. A. Swayze, R. L. Clark, S. Sutley, and A. J. Gallagher, Groundtruthing AVIRIS mineral mapping at Cuprite, Nevada, in Proc. Summ. 3rd Annu. JPL Airborne Geosci. Workshop, 1992, vol. 1, pp. 47-49
-
(1992)
Proc. Summ. 3rd Annu. JPL Airborne Geosci. Workshop
, vol.1
, pp. 47-49
-
-
Swayze, G.A.1
Clark, R.L.2
Sutley, S.3
Gallagher, A.J.4
|