메뉴 건너뛰기




Volumn 49, Issue 11 PART 1, 2011, Pages 4282-4297

Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization

Author keywords

Hyperspectral unmixing; nonnegative matrix factorization (NMF); sparse coding

Indexed keywords

FACTORIZATION; ITERATIVE METHODS; SPECTROSCOPY;

EID: 80455174031     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2144605     Document Type: Article
Times cited : (534)

References (50)
  • 1
    • 8144231500 scopus 로고    scopus 로고
    • A survey of spectral unmixing algorithms
    • Jan
    • N. Keshava, A survey of spectral unmixing algorithms, Lincoln Lab. J., vol. 14, no. 1, pp. 55-78, Jan. 2003
    • (2003) Lincoln Lab. J , vol.14 , Issue.1 , pp. 55-78
    • Keshava, N.1
  • 2
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • M. E. Winter, N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data, in Proc. SPIE Conf. Imaging Spectrometry V,1999, pp. 266-275
    • (1999) Proc. SPIE Conf. Imaging Spectrometry v , pp. 266-275
    • Winter, M.E.1
  • 3
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. P. Nascimento and J. M. B. Dias, Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005 (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 4
    • 33748312145 scopus 로고    scopus 로고
    • Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery
    • DOI 10.1109/TGRS.2006.874135, 1677768
    • J. Wang and C.-I. Chang, Applications of independent component analysis in endmember extraction and abundance quantification for hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 9, pp. 2601-2616, Sep. 2006 (Pubitemid 44321553)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.9 , pp. 2601-2616
    • Wang, J.1    Chang, C.-I.2
  • 6
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • Jan
    • M. D. Craig, Minimum-volume transforms for remotely sensed data, IEEE Trans. Geosci. Remote Sens., vol. 32, no. 1, pp. 99-109, Jan. 1994
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.1 , pp. 99-109
    • Craig, M.D.1
  • 7
    • 70350509388 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
    • J. Li and J. Bioucas-Dias, Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data, in Proc. IGARSS, 2008, pp. 4418-4432.
    • (2008) Proc. IGARSS , pp. 4418-4432
    • Li, J.1    Bioucas-Dias, J.2
  • 8
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov.
    • T.-H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing, IEEE Trans. Signal Process., vol. 47, no. 11, pp. 4418-4432, Nov. 2009
    • (2009) IEEE Trans. Signal Process , vol.47 , Issue.11 , pp. 4418-4432
    • Chan, T.-H.1    Chi, C.-Y.2    Huang, Y.-M.3    Ma, W.-K.4
  • 11
    • 67651166641 scopus 로고    scopus 로고
    • Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures
    • Jul
    • J. Chen, X. Jia, W. Yang, and B. Matsushita, Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2165-2171, Jul. 2009
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.7 , pp. 2165-2171
    • Chen, J.1    Jia, X.2    Yang, W.3    Matsushita, B.4
  • 12
    • 36348990884 scopus 로고    scopus 로고
    • Spectral and spatial complexity-based hyperspectral unmixing
    • Dec
    • S. Jia and Y. Qian, Spectral and spatial complexity-based hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3867- 3879, Dec. 2007
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.12 , pp. 3867-3879
    • Jia, S.1    Qian, Y.2
  • 13
    • 78650914434 scopus 로고    scopus 로고
    • Noise-robust subband decomposition blind signal separation for hyperspectral unmixing
    • Y. Qian and Q. Wang, Noise-robust subband decomposition blind signal separation for hyperspectral unmixing, in Proc. IGARSS, 2010, pp. 983-986
    • (2010) Proc. IGARSS , pp. 983-986
    • Qian, Y.1    Wang, Q.2
  • 14
    • 1542346779 scopus 로고    scopus 로고
    • LDA/QR: An efficient and effective dimension reduction algorithm and its theoretical foundation
    • DOI 10.1016/j.patcog.2003.08.006
    • J. Ye and Q. Li, LDA/ QR: An efficient and effective dimension reduction algorithm and its theoretical foundation, Pattern Recognit., vol. 37, no. 4, pp. 851-854, Apr. 2004 (Pubitemid 38301060)
    • (2004) Pattern Recognition , vol.37 , Issue.4 , pp. 851-854
    • Ye, J.1    Li, Q.2
  • 16
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • Jun
    • P. Paatero and U. Tapper, Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values, Environmetrics, vol. 5, no. 2, pp. 111-126, Jun. 1994
    • (1994) Environmetrics , vol.5 , Issue.2 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 17
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct
    • D. D. Lee and H. S. Seung, Learning the parts of objects by nonnegative matrix factorization, Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 18
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • V. P. Pauca, J. Piper, and R. J. Plemmons, Nonnegative matrix factorization for spectral data analysis, Linear Algebra Appl., vol. 416, no. 1, pp. 29-47, Jul. 2006 (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 20
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan
    • S. Jia and Y. Qian, Constrained nonnegative matrix factorization for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 21
    • 77952582975 scopus 로고    scopus 로고
    • Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
    • Jun.
    • A. Huck, M. Guillaume, and J. Blanc-Talon, Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2590-2602, Jun. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.6 , pp. 2590-2602
    • Huck, A.1    Guillaume, M.2    Blanc-Talon, J.3
  • 22
    • 49149085985 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • D. Donoho and V. Stodden, When does non-negative matrix factorization give a correct decomposition into parts? in Proc. NIPS16, 2004, pp. 1141-1148
    • (2004) Proc. NIPS16 , pp. 1141-1148
    • Donoho, D.1    Stodden, V.2
  • 23
    • 78650876624 scopus 로고    scopus 로고
    • Recent developments in sparse hyperspectral unmixing
    • M. D. Iordache, A. Plaza, and J. Bioucas-Dias, Recent developments in sparse hyperspectral unmixing, in Proc. IGARSS, 2010, pp. 1281-1284
    • (2010) Proc. IGARSS , pp. 1281-1284
    • Iordache, M.D.1    Plaza, A.2    Bioucas-Dias, J.3
  • 25
    • 34547198396 scopus 로고    scopus 로고
    • Algorithms and applications for approximate nonnegative matrix factorization
    • DOI 10.1016/j.csda.2006.11.006, PII S0167947306004191
    • M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons, Algorithms and applications for approximate nonnegative matrix factorization, Comput. Statist. Data Anal., vol. 52, no. 1, pp. 155-173, Sep. 2007 (Pubitemid 47331703)
    • (2007) Computational Statistics and Data Analysis , vol.52 , Issue.1 , pp. 155-173
    • Berry, M.W.1    Browne, M.2    Langville, A.N.3    Pauca, V.P.4    Plemmons, R.J.5
  • 26
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Nov
    • P. O. Hoyer, Non-negative matrix factorization with sparseness constraints, J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Nov. 2004
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 28
    • 64149126207 scopus 로고    scopus 로고
    • Hyperspectral band selection and endmember detection using sparsity promoting priors
    • Apr
    • A. Zare and P. Gader, Hyperspectral band selection and endmember detection using sparsity promoting priors, IEEE Geosci. Remote Sens. Lett., vol. 5, no. 2, pp. 256-260, Apr. 2008
    • (2008) IEEE Geosci. Remote Sens. Lett , vol.5 , Issue.2 , pp. 256-260
    • Zare, A.1    Gader, P.2
  • 31
    • 34547229626 scopus 로고    scopus 로고
    • Sparsity promoting iterated constrained endmember detection in hyperspeetral imagery
    • DOI 10.1109/LGRS.2007.895727
    • A. Zare and P. Gader, Sparsity promoting iterated constrained endmember detection for hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-450, Jul. 2007 (Pubitemid 47117457)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.3 , pp. 446-450
    • Zare, A.1    Gader, P.2
  • 33
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Stat. Assoc., vol. 96, no. 456, pp. 1348- 1360, Dec. 2001 (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 34
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalty likelihood with a diverging number of parameters
    • Jun
    • J. Fan and P. Heng, Nonconcave penalty likelihood with a diverging number of parameters, Ann. Statist., vol. 32, no. 3, pp. 928- 961, Jun. 2004
    • (2004) Ann. Statist , vol.32 , Issue.3 , pp. 928-961
    • Fan, J.1    Heng, P.2
  • 36
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Cambridge, MA: MIT Press
    • D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 2001, pp. 556-562
    • (2001) Advances in Neural Information Processing Systems , pp. 556-562
    • Lee, D.D.1    Seung, H.S.2
  • 37
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • DOI 10.1038/381607a0
    • B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol. 381, no. 6583, pp. 607-609, Jun. 1996 (Pubitemid 26177476)
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 38
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Apr
    • D. Donoho, Compressed sensing, IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.1
  • 39
    • 1342332031 scopus 로고    scopus 로고
    • A tutorial on MM algorithms
    • D. R. Hunter and K. Lange, A tutorial on MM algorithms, Amer. Statistician, vol. 58, no. 1, pp. 30-37, Feb. 2004 (Pubitemid 38260327)
    • (2004) American Statistician , vol.58 , Issue.1 , pp. 30-37
    • Hunter, D.R.1    Lange, K.2
  • 41
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C.-I. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001 (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 42
    • 82355182723 scopus 로고    scopus 로고
    • Hyperspectral unmixing algorithm via dependent component analysis
    • J. M. P. Nascimento and J. M. B. Dias, Hyperspectral unmixing algorithm via dependent component analysis, in Proc. IGARSS, 2007, pp. 4033-4036
    • (2007) Proc. IGARSS , pp. 4033-4036
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 43
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar
    • L. D. Miao and H. R. Qi, Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.D.1    Qi, H.R.2
  • 44
    • 48849088937 scopus 로고    scopus 로고
    • Hyperspectral subspace identification
    • Aug
    • J. M. B. Dias and J. M. P. Nascimento, Hyperspectral subspace identification, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435-2445, Aug. 2008
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.8 , pp. 2435-2445
    • Dias, J.M.B.1    Nascimento, J.M.P.2
  • 45
    • 78650953920 scopus 로고    scopus 로고
    • Data modeling: Visual psychology approach and L1/2 regularization theory
    • Z. Xu, Data modeling: Visual psychology approach and L1/2 regularization theory, in Proc. Int. Congr. Mathematicians, 2010, pp. 1-34
    • Proc. Int. Congr. Mathematicians , pp. 1-34
    • Xu, Z.1
  • 49
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Feb.
    • X. Liu, W. Xie, B. Wang, and L. Zhang, An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.1    Xie, W.2    Wang, B.3    Zhang, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.