메뉴 건너뛰기




Volumn 65, Issue 3, 2011, Pages 479-496

Unmixing of Hyperspectral images using bayesian non-negative matrix factorization with volume prior

Author keywords

Bayesian source separation; Gibbs sampling; Hyperspectral image analysis; Volume regularization

Indexed keywords

CONSTRAINED METHOD; CREDIBLE INTERVAL; EFFICIENT ALGORITHM; ENDMEMBERS; GIBBS SAMPLING; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGE ANALYSIS; HYPERSPECTRAL IMAGING; NONNEGATIVE MATRIX FACTORIZATION; OBSERVED DATA; SOURCE SEPARATION; SPECTRAL UNMIXING; UNMIXING; VOLUME CONSTRAINT; VOLUME REGULARIZATION; WHEAT KERNELS;

EID: 81855194806     PISSN: 19398018     EISSN: 19398115     Source Type: Journal    
DOI: 10.1007/s11265-010-0533-2     Document Type: Article
Times cited : (69)

References (31)
  • 1
    • 77950919715 scopus 로고    scopus 로고
    • Bayesian nonnegative matrix factorization with volume prior for unmixing of hyperspectral images
    • doi:10.1109/MLSP.2009.5306262
    • Arngren, M., Schmidt, M., & Larsen, J. (2009). Bayesian nonnegative matrix factorization with volume prior for unmixing of hyperspectral images. In Machine learning for signal processing, IEEE workshop on (MLSP). doi: 10.1109/MLSP.2009.5306262.
    • (2009) Machine Learning for Signal Processing, IEEE Workshop on (MLSP)
    • Arngren, M.1    Schmidt, M.2    Larsen, J.3
  • 7
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • 2683183 10.1109/TSP.2009.2025802
    • TH Chan CY Chi YM Huang WK Ma 2009 A convex analysis-based minimum-volume enclosing simplex algorithm for hyperspectral unmixing IEEE Transactions on Signal Processing 57 11 4418 4432 2683183 10.1109/TSP.2009.2025802
    • (2009) IEEE Transactions on Signal Processing , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.H.1    Chi, C.Y.2    Huang, Y.M.3    Ma, W.K.4
  • 8
    • 70350493345 scopus 로고    scopus 로고
    • Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • 2744097 10.1109/TSP.2009.2025797
    • N Dobigeon S Moussaoui M Coulon JY Tourneret AO Hero 2009 Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery IEEE Transactions on Signal Processings 57 11 4355 4368 2744097 10.1109/TSP.2009. 2025797
    • (2009) IEEE Transactions on Signal Processings , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.Y.4    Hero, A.O.5
  • 9
    • 67651111832 scopus 로고    scopus 로고
    • Bayesian separation of spectral sources under non-negativity and full additivity constraints
    • 1197.94045 10.1016/j.sigpro.2009.05.005
    • N Dobigeon S Moussaoui JYY Tourneret C Carteret 2009 Bayesian separation of spectral sources under non-negativity and full additivity constraints Signal Processing 89 12 2657 2669 1197.94045 10.1016/j.sigpro.2009.05.005
    • (2009) Signal Processing , vol.89 , Issue.12 , pp. 2657-2669
    • Dobigeon, N.1    Moussaoui, S.2    Tourneret, J.Y.Y.3    Carteret, C.4
  • 10
    • 77951120173 scopus 로고    scopus 로고
    • Efficient sampling according to a multivariate Gaussian distribution truncated on a simplex
    • Dobigeon, N., & Tourneret, J. Y. (2007). Efficient sampling according to a multivariate Gaussian distribution truncated on a simplex. Tech. Rep., IRIT/ENSEEIHT/TeSA.
    • (2007) Tech. Rep., IRIT/ENSEEIHT/TeSA
    • Dobigeon, N.1    Tourneret, J.Y.2
  • 11
    • 77952595305 scopus 로고    scopus 로고
    • Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical Bayesian algorithm
    • 10.1109/JSTSP.2009.2038212
    • O Eches N Dobigeon JY Tourneret 2010 Estimating the number of endmembers in hyperspectral images using the normal compositional model and a hierarchical Bayesian algorithm IEEE Journal of Selected Topics in Signal Processing 4 3 582 591 10.1109/JSTSP.2009.2038212
    • (2010) IEEE Journal of Selected Topics in Signal Processing , vol.4 , Issue.3 , pp. 582-591
    • Eches, O.1    Dobigeon, N.2    Tourneret, J.Y.3
  • 12
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • 1141740 0702.62020 10.2307/2289776
    • AE Gelfand AFM Smith 1990 Sampling-based approaches to calculating marginal densities Journal of the American Statistical Association 85 410 398 401 1141740 0702.62020 10.2307/2289776
    • (1990) Journal of the American Statistical Association , vol.85 , Issue.410 , pp. 398-401
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 13
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images
    • S Geman D Geman 1984 Stochastic relaxation, gibbs distributions, and the Bayesian restoration of images IEEE Transactions on Pattern Analysis and Machine Intelligence 6 721 741 10.1109/TPAMI.1984.4767596 0573.62030 10.1109/TPAMI.1984.4767596 (Pubitemid 15453722)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman Stuart1    Geman Donald2
  • 14
    • 0001878857 scopus 로고
    • Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints and the evaluation of constraint probabilities
    • doi:10.1.1.26.6892
    • Geweke, J. (1991). Efficient simulation from the multivariate normal and student-t distributions subject to linear constraints and the evaluation of constraint probabilities. In Proceedings the 23rd symposium on the interface between computer sciences and statistics (pp. 571-578). doi: 10.1.1.26.6892.
    • (1991) Proceedings the 23rd Symposium on the Interface between Computer Sciences and Statistics , pp. 571-578
    • Geweke, J.1
  • 17
    • 33947145721 scopus 로고    scopus 로고
    • Simulation of positive normal variables using several proposal distributions
    • 1628560, 2005 IEEE/SP 13th Workshop on Statistical Signal Processing - Book of Abstracts
    • Mazet, V., Brie, D., & Idier, J. (2005). Simulation of postive normal variables using several proposal distributions. In IEEE workshop on statistical signal processing (pp. 37-42). doi: 10.1109/SSP.2005.1628560. (Pubitemid 46402203)
    • (2005) IEEE Workshop on Statistical Signal Processing Proceedings , vol.2005 , pp. 37-42
    • Mazet, V.1    Brie, D.2    Idler, J.3
  • 18
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L Miao H Qi 2007 Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization IEEE Transactions on Geoscience and Remote Sensing 45 3 765 777 10.1109/TGRS.2006.888466 (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 19
    • 33750402597 scopus 로고    scopus 로고
    • Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling
    • DOI 10.1109/TSP.2006.880310
    • S Moussaoui D Brie A Mohammad-Djafari C Carteret 2006 Separation of non-negative mixture of non-negative sources using a Bayesian approach and mcmc sampling IEEE Transactions on Signal Processing 54 11 4133 4145 10.1109/TSP.2006.880310 (Pubitemid 44637747)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4133-4145
    • Moussaoui, S.1    Brie, D.2    Mohammad-Djafari, A.3    Carteret, C.4
  • 20
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • JMP Nascimento JMB Dias 2005 Vertex component analysis: A fast algorithm to unmix hyperspectral data IEEE Transactions on Geoscience and Remote Sensing 43 4 898 910 10.1109/TGRS.2005.844293 (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 21
    • 0033093826 scopus 로고    scopus 로고
    • A New Method for Spectral Decomposition Using a Bilinear Bayesian Approach
    • MF Ochs RS Stoyanova F Arias-Mendoza TR Brown 1999 A new method for spectral decomposition using a bilinear bayesian approach Journal of Magnetic Resonance 137 1 161 176 10.1006/jmre.1998.1639 (Pubitemid 129608238)
    • (1999) Journal of Magnetic Resonance , vol.137 , Issue.1 , pp. 161-176
    • Ochs, M.F.1    Stoyanova, R.S.2    Arias-Mendoza, F.3    Brown, T.R.4
  • 22
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • 10.1002/env.3170050203
    • P Paatero U Tapper 1994 Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values Environmetricsm 5 2 111 126 10.1002/env.3170050203
    • (1994) Environmetricsm , vol.5 , Issue.2 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 24
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • VP Pauca J Piper RJ Plemmons 2006 Nonnegative matrix factorization for spectral data analysis Linear Algebra and Its Applications 416 1 29 47 2232918 1096.65033 10.1016/j.laa.2005.06.025 (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 25
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • 10.1109/TGRS.2003.820314
    • A Plaza P Martnez R Prez J Plaza 2004 A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data IEEE Transactions on Geoscience and Remote Sensing 42 3 650 663 10.1109/TGRS.2003. 820314
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martnez, P.2    Prez, R.3    Plaza, J.4
  • 27
    • 67149144290 scopus 로고    scopus 로고
    • Minimum determinant constraint for non-negative matrix factorization
    • 10.1007/978-3-642-00599-2-14
    • R Schachtner G Pppel AM Tom EW Lang 2009 Minimum determinant constraint for non-negative matrix factorization Lecture Notes in Computer Science 5441/2009 106 113 10.1007/978-3-642-00599-2-14
    • (2009) Lecture Notes in Computer Science , vol.5441 , Issue.2009 , pp. 106-113
    • Schachtner, R.1    Pppel, G.2    Tom, A.M.3    Lang, E.W.4
  • 28
    • 81855214546 scopus 로고    scopus 로고
    • VLinearly constrained bayesian matrix factorization for blind source separation
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, A. Culotta (Eds.)
    • Schmidt, M. N. (2009). Linearly constrained bayesian matrix factorization for blind source separation. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in neural information processing systems (Vol. 22, pp. 1624-1632).
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 1624-1632
    • Schmidt, M.N.1
  • 31
    • 0033310314 scopus 로고    scopus 로고
    • N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • ME Winter 1999 N-findr: An algorithm for fast autonomous spectral end-member determination in hyperspectral data Proceedings of SPIE - The International Society for Optical Engineering 3753 266 275
    • (1999) Proceedings of SPIE - The International Society for Optical Engineering , vol.3753 , pp. 266-275
    • Winter, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.