메뉴 건너뛰기




Volumn 5806, Issue PART I, 2005, Pages 342-351

Manifold learning techniques for the analysis of hyperspectral ocean data

Author keywords

Hyperspectral; Manifold learning; Nonlinear analysis

Indexed keywords

HIGH DIMENSIONAL DATA; LINEAR MIXING; NONLINEAR MANIFOLDS;

EID: 27544509579     PISSN: 0277786X     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1117/12.601834     Document Type: Conference Paper
Times cited : (21)

References (15)
  • 1
    • 0036907371 scopus 로고    scopus 로고
    • Automated Gaussian spectral clustering of hyperspectral data
    • S. Beaven, G. Hazel, and A. Stocker, "Automated Gaussian spectral clustering of hyperspectral data. Proc. SPIE Int. Soc. Opt. Eng. 4725, 254 (2002)
    • (2002) Proc. SPIE Int. Soc. Opt. Eng. , vol.4725 , pp. 254
    • Beaven, S.1    Hazel, G.2    Stocker, A.3
  • 2
    • 10444280883 scopus 로고    scopus 로고
    • Using elliptically contoured distributions to model hyperspectral imaging data and generate statistically similar synthetic data
    • Algorithms and Techniques for Multispectral, Hyperspectral, and Ultraspectral Imagery X, edited by S. Shen, P. Lewis
    • D. Marden and D. Manolakis, "Using elliptically contoured distributions to model hyperspectral imaging data and generate statistically similar synthetic data", in Algorithms and Techniques for Multispectral, Hyperspectral, and Ultraspectral Imagery X, edited by S. Shen, P. Lewis, Proc. SPIE Int. Soc. Opt. Eng. Vol. 5425 (2004)
    • (2004) Proc. SPIE Int. Soc. Opt. Eng. , vol.5425
    • Marden, D.1    Manolakis, D.2
  • 3
    • 1642556709 scopus 로고    scopus 로고
    • Dimensionality reduction in hyperspectral imagery
    • Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery IX. Sylvia S. Shen, Paul Lewis Eds.
    • D. Gillis, J. Bowles, and M. Winter,"Dimensionality reduction in hyperspectral imagery", in Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery IX. Sylvia S. Shen, Paul Lewis Eds. Proc. SPIE Vol. 5093. pp. 45-56 (2003).
    • (2003) Proc. SPIE , vol.5093 , pp. 45-56
    • Gillis, D.1    Bowles, J.2    Winter, M.3
  • 4
    • 0002165320 scopus 로고
    • Remote geochemical analysis: Elemental and mineralogical composition
    • C. M.Pieters and P. A. Englert, Ed. Cambridge: Cambridge Univ. Press
    • J. B. Adams, M. O. Smith, and A. R. Gillespie, "Remote geochemical analysis: Elemental and mineralogical composition," Imaging spectroscopy: interpretation based on spectral mixture analysis, C. M.Pieters and P. A. Englert, Ed. Cambridge: Cambridge Univ. Press, 1993, pp. 145-166.
    • (1993) Imaging Spectroscopy: Interpretation Based on Spectral Mixture Analysis , pp. 145-166
    • Adams, J.B.1    Smith, M.O.2    Gillespie, A.R.3
  • 6
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • Imaging Spectrometry V (Descour and Shen editors)
    • Winter. Michael E., "N-FINDR: an Algorithm for Fast Autonomous Spectral End-member Determination in Hyperspectral Data", Proc of SPIE Vol 3753, Imaging Spectrometry V (Descour and Shen editors) pp 266-277, 1999
    • (1999) Proc of SPIE , vol.3753 , pp. 266-277
    • Winter, M.E.1
  • 8
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • January
    • A.A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal." IEEE Trans. on Geoscience and Remote Sensing 26. pp. 65-74. January 1988.
    • (1988) IEEE Trans. on Geoscience and Remote Sensing , vol.26 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 9
    • 0033821083 scopus 로고    scopus 로고
    • An information theoretic comparison of projection pursuit and principal component features for classification of Landsat TM imagery of central Colorado
    • C Bachmann and T. Donato, "An information theoretic comparison of projection pursuit and principal component features for classification of Landsat TM imagery of central Colorado". Int. J. Remote Sensing. Vol. 21, No. 15 2000
    • (2000) Int. J. Remote Sensing , vol.21 , Issue.15
    • Bachmann, C.1    Donato, T.2
  • 11
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. de Suva, and J. Langford, "A Global Geometric Framework for Nonlinear Dimensionality Reduction". Science. Vol. 290, pp. 2319-2323, 2000.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    De Suva, V.2    Langford, J.3
  • 12
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis and L. Saul, "Nonlinear Dimensionality Reduction by Locally Linear Embedding". Science. Vol. 290, pp. 2323-2326, 2000.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.