메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Robust hyperspectral data unmixing with spatial and spectral regularized NMF

Author keywords

Non negative matrix factorization (NMF); Projected gradient; Regularization; Spectral unmixing

Indexed keywords

ENDMEMBERS; ERROR RECONSTRUCTION FUNCTIONS; HYPERSPECTRAL DATA; ILL POSED; LINEAR SPECTRAL MIXING MODELS; LOW COMPLEXITY; NONNEGATIVE MATRIX FACTORIZATION; PHYSICAL CONSTRAINTS; PROJECTED GRADIENT; PURE PIXEL; REGULARIZATION; SPATIAL DISPERSION; SPECTRAL DISPERSIONS; SPECTRAL UNMIXING; UNMIXING;

EID: 78649269649     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WHISPERS.2010.5594915     Document Type: Conference Paper
Times cited : (19)

References (17)
  • 2
    • 0002596793 scopus 로고    scopus 로고
    • Mapping targets signatures via partial unmixing of aviris data
    • Pasaneda, Ed., Dec.
    • J. Boardman, F. Kruse, and R. Green, "Mapping targets signatures via partial unmixing of aviris data," in Summaries, JPL Airborne Geoscience Workshop, Pasaneda, Ed., Dec. 1997, pp. 23-26.
    • (1997) Summaries, JPL Airborne Geoscience Workshop , pp. 23-26
    • Boardman, J.1    Kruse, F.2    Green, R.3
  • 3
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • April
    • J. Nascimento and J. Dias, "Vertex component analysis: a fast algorithm to unmix hyperspectral data," Geosc. and Remote Sensing, IEEE Trans. on, vol. 43, no. 4, pp. 898-910, April 2005.
    • (2005) Geosc. and Remote Sensing, IEEE Trans. on , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.1    Dias, J.2
  • 4
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • mar
    • D. C. Heinz and C. I. Chang, "Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geoscience and Remote Sensing, vol. 39, no. 3, pp. 529-545, mar 2001.
    • (2001) IEEE Trans. Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.I.2
  • 5
    • 0028427066 scopus 로고
    • Minimum-volume transforms for remotely sensed data
    • M. Craig, "Minimum-volume transforms for remotely sensed data," Geascience and remote sensing, IEEE trans. on, vol. 32, no. 3, pp. 542-552, 1994.
    • (1994) Geascience and Remote Sensing, IEEE Trans. on , vol.32 , Issue.3 , pp. 542-552
    • Craig, M.1
  • 6
    • 78649269654 scopus 로고    scopus 로고
    • A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • T. H. Chan, W. Ma, C. Chi, and Y. Wang, "A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," Geosc. and Remote Sensing , IEEE Trans. on, 2009.
    • (2009) Geosc. and Remote Sensing, IEEE Trans. on
    • Chan, T.H.1    Ma, W.2    Chi, C.3    Wang, Y.4
  • 8
    • 33750402597 scopus 로고    scopus 로고
    • Separation of non-negative mixture of non-negative sources using a bayesian approach and mcmc sampling
    • Nov.
    • S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. Carteret, "Separation of non-negative mixture of non-negative sources using a bayesian approach and mcmc sampling," Signal Processing, IEEE Trans. on, vol. 54, no. 11, pp. 4133-4145, Nov. 2006.
    • (2006) Signal Processing, IEEE Trans. on , vol.54 , Issue.11 , pp. 4133-4145
    • Moussaoui, S.1    Brie, D.2    Mohammad-Djafari, A.3    Carteret, C.4
  • 10
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • jul
    • V. P. Pauca, J. Piper, and R. J. Plemmons, "Nonnegative matrix factorization for spectral data analysis," Linear Algebra and its Applications, vol. 416, no. 1, pp. 29-47, jul 2006.
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 11
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • March
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," Geoscience and Remote Sensing, IEEE Transactions on, vol. 45, no. 3, pp. 765-777, March 2007.
    • (2007) Geoscience and Remote Sensing, IEEE Transactions on , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 12
    • 77952582975 scopus 로고    scopus 로고
    • Minimum dispersion constrained - Non negative matrix factorization to unmix hyperspectral data
    • A. Huck and M. Guillaume, "Minimum dispersion constrained - non negative matrix factorization to unmix hyperspectral data," Geoscience and Remote Sensing, IEEE Trans., vol. 48, no. 6, pp. 2590-2602, 2010.
    • (2010) Geoscience and Remote Sensing, IEEE Trans. , vol.48 , Issue.6 , pp. 2590-2602
    • Huck, A.1    Guillaume, M.2
  • 13
    • 77952585985 scopus 로고    scopus 로고
    • Non-negative matrix factorization based on projected nonlinear conjugate gradient algorithm
    • Liverpool, UK, September 25-26
    • W. Wang and X. Zou, "Non-negative matrix factorization based on projected nonlinear conjugate gradient algorithm," in ICA Research Network InternationalWorkshop (ICARN 2008), pp. 5-8, Liverpool, UK, September 25-26, 2008.
    • (2008) ICA Research Network InternationalWorkshop (ICARN 2008) , pp. 5-8
    • Wang, W.1    Zou, X.2
  • 14
    • 54749083549 scopus 로고    scopus 로고
    • A convex analysis framework for bind separation of non-negative sources
    • Oct.
    • T. H. Chan, W. Ma, C. Chi, and Y. Wang, "A convex analysis framework for bind separation of non-negative sources," Signal Processing, IEEE Trans. on, vol. 56, no. 10, pp. 5120-5134, Oct. 2008.
    • (2008) Signal Processing, IEEE Trans. on , vol.56 , Issue.10 , pp. 5120-5134
    • Chan, T.H.1    Ma, W.2    Chi, C.3    Wang, Y.4
  • 16
    • 78649246631 scopus 로고    scopus 로고
    • Http://speclab.cr.usgs.gov/spectral-lib.html.
  • 17
    • 78649233862 scopus 로고    scopus 로고
    • Http://aviris.jpl.nasa.gov/.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.