메뉴 건너뛰기




Volumn 49, Issue 11 PART 1, 2011, Pages 4112-4122

Fully constrained least squares spectral unmixing by simplex projection

Author keywords

Hyperspectral imaging; multidimensional signal processing; spectral analysis

Indexed keywords

ARTIFICIAL DATA; CONSTRAINED LEAST SQUARES; GEOMETRICAL PROPERTY; HIGH-DIMENSIONAL; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGING; LARGE DATASETS; LINEAR SPECTRAL MIXTURE ANALYSIS; MULTIDIMENSIONAL SIGNAL PROCESSING; PROCESSING POWER; RECURSIVE ALGORITHMS; SPECTRAL UNMIXING; UNMIXING;

EID: 80455174023     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2155070     Document Type: Article
Times cited : (192)

References (38)
  • 1
    • 85032751930 scopus 로고    scopus 로고
    • Spectral unmixing
    • DOI 10.1109/79.974727
    • N. Keshava and J. F. Mustard, Spectral unmixing, IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002 (Pubitemid 34237207)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 44-57
    • Keshava, N.1    Mustard, J.F.2
  • 2
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. C. Heinz and C.-I. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001 (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 4
    • 70350493345 scopus 로고    scopus 로고
    • Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • Nov
    • N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery, IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355- 4368, Nov. 2009
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.-Y.4    Hero, A.O.5
  • 5
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Mar
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, Mar. 2004
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 6
    • 78649261132 scopus 로고    scopus 로고
    • Survey of geometric and statistical unmixing algorithms for hyperspectral images
    • M. Parente and A. Plaza, Survey of geometric and statistical unmixing algorithms for hyperspectral images, in Proc. 2nd WHISPERS, 2010, pp. 1-4
    • (2010) Proc. 2nd WHISPERS , pp. 1-4
    • Parente, M.1    Plaza, A.2
  • 8
    • 0028742731 scopus 로고
    • Geometric mixture analysis of imaging spectrometry data
    • J. W. Boardman, Geometric mixture analysis of imaging spectrometry data, in Proc. Int. GRS Symp., 1994, vol. 4, pp. 2369-2371
    • (1994) Proc. Int. GRS Symp , vol.4 , pp. 2369-2371
    • Boardman, J.W.1
  • 9
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
    • E. M. Winter, N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data, in Proc. SPIE, 1999, vol. 3753, pp. 266-275
    • (1999) Proc. SPIE , vol.3753 , pp. 266-275
    • Winter, E.M.1
  • 10
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • Oct
    • C.-I. Chang, C.-C. Wu, W.-M. Liu, and Y.-C. Ouyang, A new growing method for simplex-based endmember extraction algorithm, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, Oct. 2006
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.-I.1    Wu, C.-C.2    Liu, W.-M.3    Ouyang, Y.-C.4
  • 11
    • 0028467206 scopus 로고
    • Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection
    • Jul
    • J. C. Harsanyi and C.-I. Chang, Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection, IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779-785, Jul. 1994
    • (1994) IEEE Trans. Geosci. Remote Sens , vol.32 , Issue.4 , pp. 779-785
    • Harsanyi, J.C.1    Chang, C.-I.2
  • 12
    • 0033099904 scopus 로고    scopus 로고
    • Multispectral and hyperspectral image analysis with convex cones
    • Mar
    • A. Ifarraguerri and C.-I. Chang, Multispectral and hyperspectral image analysis with convex cones, IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 756-770, Mar. 1999
    • (1999) IEEE Trans. Geosci. Remote Sens , vol.37 , Issue.2 , pp. 756-770
    • Ifarraguerri, A.1    Chang, C.-I.2
  • 13
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. M. P. Nascimento and J. M. B. Dias, Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005 (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 14
    • 0027334540 scopus 로고
    • Linear mixing and the estimation of ground cover proportions
    • J. J. Settle and N. A. Drake, Linear mixing and the estimation of ground cover proportions, Int. J. Remote Sens., vol. 14, no. 6, pp. 1159-1177, Apr. 1993 (Pubitemid 23384230)
    • (1993) International Journal of Remote Sensing , vol.14 , Issue.6 , pp. 1159-1177
    • Settle, J.J.1    Drake, N.A.2
  • 15
    • 0006606953 scopus 로고    scopus 로고
    • Least squares subspace projection approach to mixed pixel classification for hyperspectral images
    • May
    • C.-I. Chang, X.-L. Zhao, M. L. G. Althouse, and J. J. Pan, Least squares subspace projection approach to mixed pixel classification for hyperspectral images, IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 898- 912, May 1998
    • (1998) IEEE Trans. Geosci. Remote Sens , vol.36 , Issue.3 , pp. 898-912
    • Chang, C.-I.1    Zhao, X.-L.2    Althouse, M.L.G.3    Pan, J.J.4
  • 16
    • 0025841255 scopus 로고
    • The least-squares mixing models to generate fraction images derived from remote sensing multispectral data
    • Jan
    • Y. E. Shimabukuro and J. A. Smith, The least-squares mixing models to generate fraction images derived from remote sensing multispectral data, IEEE Trans. Geosci. Remote Sens., vol. 29, no. 1, pp. 16-20, Jan. 1991
    • (1991) IEEE Trans. Geosci. Remote Sens , vol.29 , Issue.1 , pp. 16-20
    • Shimabukuro, Y.E.1    Smith, J.A.2
  • 18
    • 15944427807 scopus 로고    scopus 로고
    • Simplex projection methods for selection of endmembers in hyperspectral imagery
    • 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004
    • P. Bajorski, Simplex projection methods for selection of endmembers in hyperspectral imagery, in Proc. IEEE IGARSS, 2004, vol. 5, pp. 3207-3210 (Pubitemid 40437775)
    • (2004) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.5 , pp. 3207-3210
    • Bajorski, P.1
  • 19
    • 34547229626 scopus 로고    scopus 로고
    • Sparsity promoting iterated endmember detection in hyperspectral imagery
    • Jul
    • A. Zare and P. D. Gader, Sparsity promoting iterated endmember detection in hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-451, Jul. 2007
    • (2007) IEEE Geosci. Remote Sens. Lett , vol.4 , Issue.3 , pp. 446-451
    • Zare, A.1    Gader, P.D.2
  • 20
    • 67651166641 scopus 로고    scopus 로고
    • Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures
    • Jul
    • J. Chen, X. Jia, W. Yang, and B. Matsushita, Generalization of subpixel analysis for hyperspectral data with flexibility in spectral similarity measures, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 7, pp. 2165-2171, Jul. 2009
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.7 , pp. 2165-2171
    • Chen, J.1    Jia, X.2    Yang, W.3    Matsushita, B.4
  • 21
    • 15944419508 scopus 로고    scopus 로고
    • Solving adundance estimation in hyperspectral unmixing as a least distance problem
    • 2004 IEEE International Geoscience and Remote Sensing Symposium Proceedings: Science for Society: Exploring and Managing a Changing Planet. IGARSS 2004
    • M. Velez-Reyes and S. Rosario, Solving abundance estimation in hyperspectral unmixing as a least distance problem, in Proc. IEEE IGARSS, 2004, vol. 5, pp. 3276-3278 (Pubitemid 40437793)
    • (2004) International Geoscience and Remote Sensing Symposium (IGARSS) , vol.5 , pp. 3276-3278
    • Velez-Reyes, M.1    Rosario, S.2
  • 22
    • 46749145829 scopus 로고    scopus 로고
    • Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery
    • Jul
    • N. Dobigeon, J.-Y. Tourneret, and C.-I. Chang, Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery, IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2684-2695, Jul. 2008
    • (2008) IEEE Trans. Signal Process , vol.56 , Issue.7 , pp. 2684-2695
    • Dobigeon, N.1    Tourneret, J.-Y.2    Chang, C.-I.3
  • 23
    • 33750402597 scopus 로고    scopus 로고
    • Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling
    • DOI 10.1109/TSP.2006.880310
    • S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. Carteret, Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling, IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4133-4145, Nov. 2006 (Pubitemid 44637747)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4133-4145
    • Moussaoui, S.1    Brie, D.2    Mohammad-Djafari, A.3    Carteret, C.4
  • 26
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan
    • S. Jia and Y. Qian, Constrained nonnegative matrix factorization for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 27
    • 58149520173 scopus 로고    scopus 로고
    • Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing
    • Jan
    • S. A. Robila and L. G. Maciak, Considerations on parallelizing nonnegative matrix factorization for hyperspectral data unmixing, IEEE Geosci. Remote Sens. Lett., vol. 6, no. 1, pp. 57-61, Jan. 2009
    • (2009) IEEE Geosci. Remote Sens. Lett , vol.6 , Issue.1 , pp. 57-61
    • Robila, S.A.1    MacIak, L.G.2
  • 28
    • 78049320782 scopus 로고    scopus 로고
    • Fully constrained linear spectral unmixing: Analytic solution using fuzzy sets
    • Nov.
    • J. L. Silvn-Cardenas and L. Wang, Fully constrained linear spectral unmixing: Analytic solution using fuzzy sets, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 3992-4002, Nov. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.11 , pp. 3992-4002
    • Silvn-Cardenas, J.L.1    Wang, L.2
  • 29
    • 0036980768 scopus 로고    scopus 로고
    • Using endmembers as a coordinate system in hyperspectral imagery
    • D. Gillis, J. Bowles, and M. E. Winter, Using endmembers as a coordinate system in hyperspectral imagery, in Proc. SPIE, Imaging Spectrometry VIII, 2002, vol. 4816, pp. 346-354
    • (2002) Proc. SPIE, Imaging Spectrometry VIII , vol.4816 , pp. 346-354
    • Gillis, D.1    Bowles, J.2    Winter, M.E.3
  • 30
    • 0022751477 scopus 로고
    • Finite algorithm for finding the projection of a point onto the canonical simplex of R
    • C. Michelot, A finite algorithm for finding the projection of a point onto the canonical simplex of ?n, J. Optim. Theory Appl., vol. 50, no. 1, pp. 195-200, Jul. 1986 (Pubitemid 16612112)
    • (1986) Journal of Optimization Theory and Applications , vol.50 , Issue.1 , pp. 195-200
    • Michelot, C.1
  • 31
    • 29044431639 scopus 로고    scopus 로고
    • The minimum L2-distance projection onto the canonical simplex: A simple algorithm
    • Dec
    • H. J. H. Tuenter, The minimum L2-distance projection onto the canonical simplex: A simple algorithm, Algo Research Quarterly, vol. 4, pp. 53- 55, Dec. 2001
    • (2001) Algo Research Quarterly , vol.4 , pp. 53-55
    • Tuenter, H.J.H.1
  • 33
    • 33745800276 scopus 로고    scopus 로고
    • Efficient learning of label ranking by soft projections onto polyhedra
    • S. S. Shwartz, Y. Singer, P. Bennett, and E. Parrado-Hernandez, Efficient learning of label ranking by soft projections onto polyhedra, J. Mach. Learn. Res., vol. 7, pp. 1567-1599, Dec. 2006 (Pubitemid 44024590)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1567-1599
    • Shaley-Shwartz, S.1    Singer, Y.2
  • 34
    • 56449092085 scopus 로고    scopus 로고
    • Efficient projections onto the l1-ball for learning in high dimensions
    • J. Duchi, S. S. Shwartz, Y. Singer, and T. Chandra, Efficient projections onto the l1-ball for learning in high dimensions, in Proc. ICML, 2008, pp. 272-279
    • (2008) Proc. ICML , pp. 272-279
    • Duchi, J.1    Shwartz, S.S.2    Singer, Y.3    Chandra, T.4
  • 35
    • 0042739634 scopus 로고    scopus 로고
    • Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping
    • Jun
    • F. Kruse, J. Boardman, and J. Huntington, Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping, IEEE Trans. Geosci. Remote Sens., vol. 41, no. 6, pp. 1388-1400, Jun. 2003
    • (2003) IEEE Trans. Geosci. Remote Sens , vol.41 , Issue.6 , pp. 1388-1400
    • Kruse, F.1    Boardman, J.2    Huntington, J.3
  • 36
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • DOI 10.1109/TGRS.2006.864389
    • C.-I. Chang and S. Wang, Constrained band selection for hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1575- 1585, Jun. 2006 (Pubitemid 43824504)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 37
    • 84945308844 scopus 로고    scopus 로고
    • Application of the normal compositional model to the analysis of hyperspectral imagery
    • D. Stein, Application of the normal compositional model to the analysis of hyperspectral imagery, in Proc. IEEE Workshop Adv. Tech. Anal. Remotely Sens. Data, 2003, pp. 44-51
    • (2003) Proc IEEE Workshop Adv. Tech. Anal. Remotely Sens. Data , pp. 44-51
    • Stein, D.1
  • 38
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of the number of spectrally distinct signal sources in hyperspectral imagery
    • Mar
    • C.-I. Chang and Q. Du, Estimation of the number of spectrally distinct signal sources in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.