메뉴 건너뛰기




Volumn 50, Issue 3, 2012, Pages 809-823

Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields

Author keywords

Hyperspectral image segmentation; Markov random field (MRF); Multinomial logistic regression (MLR); Subspace projection method

Indexed keywords

CLASSIFICATION (OF INFORMATION); HYPERSPECTRAL IMAGING; INTEGER PROGRAMMING; MARKOV PROCESSES; OPTIMIZATION; PROBABILITY DISTRIBUTIONS; REGRESSION ANALYSIS; REMOTE SENSING; SPECTROSCOPY; STRUCTURAL FRAMES;

EID: 80052087931     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2011.2162649     Document Type: Article
Times cited : (685)

References (51)
  • 2
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory, vol. IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 3
    • 33846636871 scopus 로고    scopus 로고
    • Extraction of spectral channels from hyperspectral images for classification purposes
    • Feb
    • S. Serpico and G. Moser, "Extraction of spectral channels from hyperspectral images for classification purposes," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 2, pp. 484-495, Feb. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.2 , pp. 484-495
    • Serpico, S.1    Moser, G.2
  • 6
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 7
    • 0040528764 scopus 로고
    • Multinomial logistic regression algorithm
    • D. Böhning, "Multinomial logistic regression algorithm," Ann. Inst. Stat. Math., vol. 44, no. 1, pp. 197-200, 1992.
    • (1992) Ann. Inst. Stat. Math. , vol.44 , Issue.1 , pp. 197-200
    • Böhning, D.1
  • 8
    • 78049282844 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085- 4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 14
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. Generative classifiers: A comparison of logistic regression and naive Bayes
    • Vancouver, BC, Canada
    • A. Ng and M. Jordan, "On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes," in Proc. 16th Annu. Conf. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2002, pp. 841-848.
    • (2002) Proc. 16th Annu. Conf. Neural Inf. Process. Syst , pp. 841-848
    • Ng, A.1    Jordan, M.2
  • 15
    • 14644393596 scopus 로고    scopus 로고
    • Orthogonal subspace projection (OSP) revisited: A comprehensive study and analysis
    • Mar
    • C.-I. Chang, "Orthogonal subspace projection (OSP) revisited: A comprehensive study and analysis," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 502-518, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 502-518
    • Chang, C.-I.1
  • 16
    • 47849113845 scopus 로고    scopus 로고
    • Classification of airborne hyperspectral data based on the average learning subspace method
    • Jul
    • H. Bagan, Y. Yasuoka, T. Endo, X. Wang, and Z. Feng, "Classification of airborne hyperspectral data based on the average learning subspace method," IEEE Geosci. Remote Sens. Lett., vol. 5, no. 3, pp. 368-372, Jul. 2008.
    • (2008) IEEE Geosci. Remote Sens. Lett. , vol.5 , Issue.3 , pp. 368-372
    • Bagan, H.1    Yasuoka, Y.2    Endo, T.3    Wang, X.4    Feng, Z.5
  • 17
    • 77953872402 scopus 로고    scopus 로고
    • A dynamic subspace method for hyperspectral image classification
    • Jul
    • J.-M. Yang, B.-C. Kuo, P.-T. Yu, and C.-H. Chuang, "A dynamic subspace method for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 7, pp. 2840-2853, Jul. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.7 , pp. 2840-2853
    • Yang, J.-M.1    Kuo, B.-C.2    Yu, P.-T.3    Chuang, C.-H.4
  • 18
    • 82355182769 scopus 로고    scopus 로고
    • Evaluation of Bayesian hyperspectral imaging segmentation with a discriminative class learning
    • Barcelona, Spain
    • J. Borges, J. Bioucas-Dias, and A. Marçal, "Evaluation of Bayesian hyperspectral imaging segmentation with a discriminative class learning," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Barcelona, Spain, 2007, pp. 3810-3813.
    • (2007) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 3810-3813
    • Borges, J.1    Bioucas-Dias, J.2    Marçal, A.3
  • 19
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov
    • M. Fauvel, J. Benediktsson, J. Chanussot, and J. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804- 3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.2    Chanussot, J.3    Sveinsson, J.4
  • 21
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Jul
    • Y. Tarabalka, J. Chanussot, and J. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognit., vol. 43, no. 7, pp. 2367-2379, Jul. 2010.
    • (2010) Pattern Recognit. , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.3
  • 22
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Hyperspectral image segmentation using a new Bayesian approach with active learning," IEEE Trans. Geosci. Remote Sens., 2011, DOI: 10.1109/TGRS.2011.2128330.
    • (2011) IEEE Trans. Geosci. Remote Sens
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 23
    • 0038387419 scopus 로고    scopus 로고
    • Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields
    • Mar
    • R. Fjortoft, Y. Delignon, W. Pieczynski, M. Sigelle, and F. Tupin, "Unsupervised classification of radar images using hidden Markov chains and hidden Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 3, pp. 675-686, Mar. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.3 , pp. 675-686
    • Fjortoft, R.1    Delignon, Y.2    Pieczynski, W.3    Sigelle, M.4    Tupin, F.5
  • 24
    • 34247530976 scopus 로고    scopus 로고
    • Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features
    • May
    • Y. Zhao, L. Zhang, P. Li, and B. Huang, "Classification of high spatial resolution imagery using improved Gaussian Markov random-field-based texture features," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 5, pp. 1458-1468, May 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.5 , pp. 1458-1468
    • Zhao, Y.1    Zhang, L.2    Li, P.3    Huang, B.4
  • 25
    • 0035509961 scopus 로고    scopus 로고
    • Efficient approximate energy minimization via graph cuts
    • Nov
    • Y. Boykov, O. Veksler, and R. Zabih, "Efficient approximate energy minimization via graph cuts," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 12, pp. 1222-1239, Nov. 2001.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.12 , pp. 1222-1239
    • Boykov, Y.1    Veksler, O.2    Zabih, R.3
  • 27
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms
    • Mar
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 28
    • 0035481565 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks
    • Oct
    • K. Guilfoyle, M. Althouse, and C.-I. Chang, "A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 10, pp. 2314-2318, Oct. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.10 , pp. 2314-2318
    • Guilfoyle, K.1    Althouse, M.2    Chang, C.-I.3
  • 29
    • 0028389048 scopus 로고
    • Nonlinear spectral mixing models for vegetative and soil surfaces
    • C. Borel and S. Gerslt, "Nonlinear spectral mixing models for vegetative and soil surfaces," Remote Sens. Environ., vol. 47, no. 3, pp. 403-416, 1994.
    • (1994) Remote Sens. Environ. , vol.47 , Issue.3 , pp. 403-416
    • Borel, C.1    Gerslt, S.2
  • 30
    • 21244437589 scopus 로고    scopus 로고
    • Sparse multinomial logistic regression: Fast algorithms and generalization bounds
    • Jun
    • B. Krishnapuram, L. Carin, M. Figueiredo, and A. Hartemink, "Sparse multinomial logistic regression: Fast algorithms and generalization bounds," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 6, pp. 957- 968, Jun. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.6 , pp. 957-968
    • Krishnapuram, B.1    Carin, L.2    Figueiredo, M.3    Hartemink, A.4
  • 31
    • 1342332031 scopus 로고    scopus 로고
    • A tutorial on MM algorithms
    • D. Hunter and K. Lange, "A tutorial on MM algorithms," Amer. Statistician, vol. 58, no. 1, pp. 30-37, 2004.
    • (2004) Amer. Statistician , vol.58 , Issue.1 , pp. 30-37
    • Hunter, D.1    Lange, K.2
  • 32
    • 36749072615 scopus 로고    scopus 로고
    • Majorization- minimization algorithms for wavelet-based image restoration
    • Dec
    • M. Figueiredo, J. Bioucas-Dias, and R. Nowak, "Majorization- minimization algorithms for wavelet-based image restoration," IEEE Trans. Image Process., vol. 16, no. 12, pp. 2980-2991, Dec. 2007.
    • (2007) IEEE Trans. Image Process. , vol.16 , Issue.12 , pp. 2980-2991
    • Figueiredo, M.1    Bioucas-Dias, J.2    Nowak, R.3
  • 33
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images
    • Nov
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 6, pp. 721-741, Nov. 1984.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 35
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • J. Besag, "Spatial interaction and the statistical analysis of lattice systems," J. R. Stat. Soc. B, vol. 36, no. 2, pp. 192-236, 1974.
    • (1974) J. R. Stat. Soc. B , vol.36 , Issue.2 , pp. 192-236
    • Besag, J.1
  • 36
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of mincut/ max-flow algorithms for energy minimization in vision
    • Sep
    • Y. Boykov and V. Kolmogorov, "An experimental comparison of mincut/ max-flow algorithms for energy minimization in vision," IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124-1137, Sep. 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 37
    • 0742286180 scopus 로고    scopus 로고
    • What energy functions can be minimized via graph cuts?
    • Feb. San Mateo, CA: Morgan Kaufmann
    • V. Kolmogorov and R. Zabih, "What energy functions can be minimized via graph cuts?" IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 147-159, Feb. 2004, San Mateo, CA: Morgan Kaufmann.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.2 , pp. 147-159
    • Kolmogorov, V.1    Zabih, R.2
  • 39
    • 23744513375 scopus 로고    scopus 로고
    • Constructing free energy approximations and generalized belief propagation algorithms
    • Jul
    • J. Yedidia, W. Freeman, and Y. Weiss, "Constructing free energy approximations and generalized belief propagation algorithms," IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2282-2312, Jul. 2005.
    • (2005) IEEE Trans. Inf. Theory , vol.51 , Issue.7 , pp. 2282-2312
    • Yedidia, J.1    Freeman, W.2    Weiss, Y.3
  • 40
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • Oct
    • V. Kolmogorov, "Convergent tree-reweighted message passing for energy minimization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1568-1583, Oct. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.10 , pp. 1568-1583
    • Kolmogorov, V.1
  • 41
    • 51949111834 scopus 로고    scopus 로고
    • Dec.. [Online]. Available
    • S. Bagon, MatlabWrapper for Graph Cut, Dec. 2006. [Online]. Available: Http://www.wisdom.weizmann.ac.il/~bagon
    • (2006) MatlabWrapper for Graph Cut
    • Bagon, S.1
  • 43
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Proc. Int. Joint Conf. Artif. Intell., 1995, pp. 1137-1143.
    • (1995) Proc. Int. Joint Conf. Artif. Intell , pp. 1137-1143
    • Kohavi, R.1
  • 44
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. Fisher, "The use of multiple measurements in taxonomic problems," Ann. Eugenics, vol. 7, pp. 179-188, 1936.
    • (1936) Ann. Eugenics , vol.7 , pp. 179-188
    • Fisher, R.1
  • 47
    • 61349199062 scopus 로고    scopus 로고
    • Classification of hyperspectral images with regularized linear discriminant analysis
    • Mar
    • T. Bandos, L. Bruzzone, and G. Camps-Valls, "Classification of hyperspectral images with regularized linear discriminant analysis," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 3, pp. 862-873, Mar. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.3 , pp. 862-873
    • Bandos, T.1    Bruzzone, L.2    Camps-Valls, G.3
  • 48
    • 63849138580 scopus 로고    scopus 로고
    • On the performance improvement for linear discriminant analysis-based hyperspectral image classification
    • Q. Du and N. Younan, "On the performance improvement for linear discriminant analysis-based hyperspectral image classification," in Proc. IAPR Workshop Pattern Recognit. Remote Sens., 2008, pp. 1-4.
    • (2008) Proc. IAPR Workshop Pattern Recognit. Remote Sens , pp. 1-4
    • Du, Q.1    Younan, N.2
  • 49
  • 50
    • 77958017904 scopus 로고    scopus 로고
    • SVM- and MRF-based method for accurate classification of hyperspectral images
    • Oct
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. Benediktsson, "SVM- and MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.4
  • 51
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973- 2987, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.