메뉴 건너뛰기




Volumn 57, Issue 11, 2009, Pages 4355-4368

Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery

Author keywords

Bayesian inference; Endmember extraction; Hyperspectral imagery; Linear spectral unmixing; MCMC methods

Indexed keywords

BAYESIAN INFERENCE; ENDMEMBER EXTRACTION; HYPERSPECTRAL IMAGERY; LINEAR SPECTRAL UNMIXING; MCMC METHODS;

EID: 70350493345     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2009.2025797     Document Type: Article
Times cited : (331)

References (61)
  • 2
    • 33644623772 scopus 로고    scopus 로고
    • Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data
    • J. O. Jensen and J. Thériault, Eds. Bellingham,WA: SPIE
    • J. Plaza, R. Pérez, A. Plaza, P. Martínez, and D. Valencia, "Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data," in Chemical and Biological Standoff Detection III, J. O. Jensen and J. Thériault, Eds. Bellingham,WA: SPIE, 2005, vol. 5995, pp. 79-86.
    • (2005) Chemical and Biological Standoff Detection III , vol.5995 , pp. 79-86
    • Plaza, J.1    Pérez, R.2    Plaza, A.3    Martínez, P.4    Valencia, D.5
  • 3
    • 0035392132 scopus 로고    scopus 로고
    • Hyperspectral subpixel target detection using the linear mixing model
    • Jul
    • D. Manolakis, C. Siracusa, and G. Shaw, "Hyperspectral subpixel target detection using the linear mixing model," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 7, pp. 1392-1409, Jul. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.39 , Issue.7 , pp. 1392-1409
    • Manolakis, D.1    Siracusa, C.2    Shaw, G.3
  • 5
    • 0000186045 scopus 로고
    • Mars: Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance
    • Mar
    • R. B. Singer and T. B. McCord, "Mars: Large scale mixing of bright and dark surface materials and implications for analysis of spectral reflectance," in Proc. 10th Lunar and Planet. Sci. Conf., Mar. 1979, pp. 1835-1848.
    • (1979) Proc. 10th Lunar and Planet. Sci. Conf , pp. 1835-1848
    • Singer, R.B.1    McCord, T.B.2
  • 6
    • 0001473286 scopus 로고
    • Bidirectional reflectance spectroscopy. I. theory
    • B. W. Hapke, "Bidirectional reflectance spectroscopy. I. theory," J. Geophys. Res., vol. 86, pp. 3039-3054, 1981.
    • (1981) J. Geophys. Res , vol.86 , pp. 3039-3054
    • Hapke, B.W.1
  • 7
    • 0020737529 scopus 로고
    • A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures
    • P. E. Johnson, M. O. Smith, S. Taylor-George, and J. B. Adams, "A semiempirical method for analysis of the reflectance spectra of binary mineral mixtures," J. Geophys. Res., vol. 88, pp. 3557-3561, 1983.
    • (1983) J. Geophys. Res , vol.88 , pp. 3557-3561
    • Johnson, P.E.1    Smith, M.O.2    Taylor-George, S.3    Adams, J.B.4
  • 8
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • Washington, DC
    • J. Boardman, "Automating spectral unmixing of AVIRIS data using convex geometry concepts," in Proc. Summaries 4th Annu. JPL Air-borne Geosci. Workshop, Washington, DC, 1993, vol. 1, pp. 11-14.
    • (1993) Proc. Summaries 4th Annu. JPL Air-borne Geosci. Workshop , vol.1 , pp. 11-14
    • Boardman, J.1
  • 9
    • 0000385570 scopus 로고    scopus 로고
    • Fast autonomous spectral end-member determination in hyperspectral data
    • Vancouver, BC, Apr
    • M. Winter, "Fast autonomous spectral end-member determination in hyperspectral data," in Proc. 13th Int. Conf. on Appl. Geologic Remote Sens., Vancouver, BC, Apr. 1999, vol. 2, pp. 337-344.
    • (1999) Proc. 13th Int. Conf. on Appl. Geologic Remote Sens , vol.2 , pp. 337-344
    • Winter, M.1
  • 10
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • Apr
    • J. M. Nascimento and J. M. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.1    Bioucas-Dias, J.M.2
  • 11
    • 0028427066 scopus 로고
    • Minimum volume transforms for remotely sensed data
    • M. Craig, "Minimum volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., pp. 542-552, 1994.
    • (1994) IEEE Trans. Geosci. Remote Sens , pp. 542-552
    • Craig, M.1
  • 12
    • 0029514658 scopus 로고
    • Use of filter vectors and fast convex set methods in hyperspectral analysis
    • M. Strojnik and B. F. Andresen, Eds. Philadelphia, PA: SPIE
    • J. H. Bowles, P. J. Palmadesso, J. A. Antoniades, M. M. Baumback, and L. J. Rickard, "Use of filter vectors and fast convex set methods in hyperspectral analysis," in Infrared Spaceborne Remote Sensing III M. Strojnik and B. F. Andresen, Eds. Philadelphia, PA: SPIE, 1995, vol. 2553, pp. 148-157.
    • (1995) Infrared Spaceborne Remote Sensing III , vol.2553 , pp. 148-157
    • Bowles, J.H.1    Palmadesso, P.J.2    Antoniades, J.A.3    Baumback, M.M.4    Rickard, L.J.5
  • 13
    • 67649830104 scopus 로고    scopus 로고
    • Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
    • Boston, MA, Jul
    • J. Li and J. M. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), Boston, MA, Jul. 2008, vol. 3, pp. 250-253.
    • (2008) Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS) , vol.3 , pp. 250-253
    • Li, J.1    Bioucas-Dias, J.M.2
  • 14
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data
    • Mar
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 650-663, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 17
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least-squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • Mar
    • D. C. Heinz and C.-I Chang, "Fully constrained least-squares linear spectral mixture analysis method for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 29, no. 3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.29 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 18
    • 0030189048 scopus 로고    scopus 로고
    • On the relationship between spectral unmixing and subspace projection
    • Jul
    • J. Settle, "On the relationship between spectral unmixing and subspace projection," IEEE Trans. Geosci. Remote Sens., vol. 34, no. 4, pp. 1045-1046, Jul. 1996.
    • (1996) IEEE Trans. Geosci. Remote Sens , vol.34 , Issue.4 , pp. 1045-1046
    • Settle, J.1
  • 19
    • 46749145829 scopus 로고    scopus 로고
    • Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery
    • Jul
    • N. Dobigeon, J.-Y. Tourneret, and C.-I Chang, "Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery," IEEE Trans. Signal Process., vol. 56, pp. 2684-2695, Jul. 2008.
    • (2008) IEEE Trans. Signal Process , vol.56 , pp. 2684-2695
    • Dobigeon, N.1    Tourneret, J.-Y.2    Chang, C.-I.3
  • 20
    • 0026188054 scopus 로고
    • Blind separation of sources. Part II: Problems statement
    • Jul
    • P. Common, C. Jutten, and J. Herault, "Blind separation of sources. Part II: Problems statement," Signal Process., vol. 24, no. 1, pp. 11-20, Jul. 1991.
    • (1991) Signal Process , vol.24 , Issue.1 , pp. 11-20
    • Common, P.1    Jutten, C.2    Herault, J.3
  • 22
    • 57649229726 scopus 로고    scopus 로고
    • Analyzing hyperspectral data with independent component analysis
    • J. Bayliss, J. A. Gualtieri, and R. Cromp, J. M. Seler, Ed, Washington, DC
    • J. Bayliss, J. A. Gualtieri, and R. Cromp, J. M. Seler, Ed., "Analyzing hyperspectral data with independent component analysis," in Proc. AIPR Workshop Exploiting New Image Sources and Sens., Washington, DC, 1998, vol. 3240, pp. 133-143.
    • (1998) Proc. AIPR Workshop Exploiting New Image Sources and Sens , vol.3240 , pp. 133-143
  • 23
    • 33644523401 scopus 로고    scopus 로고
    • Performance comparison of geometric and statistical methods for endmembers extraction in hyperspectral imagery
    • N. Dobigeon and V. Achard, L. Bruzzone, Ed, Oct
    • N. Dobigeon and V. Achard, L. Bruzzone, Ed., "Performance comparison of geometric and statistical methods for endmembers extraction in hyperspectral imagery," in Proc. Image and Signal Process. Remote Sens. XI, Oct. 2005, vol. 5982, pp. 335-344.
    • (2005) Proc. Image and Signal Process. Remote Sens. XI , vol.5982 , pp. 335-344
  • 24
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • Jan
    • J. M. P. Nascimento and J. M. Bioucas-Dias, "Does independent component analysis play a role in unmixing hyperspectral data?," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Bioucas-Dias, J.M.2
  • 26
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper, "Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values," Environmetrics, vol. 5, pp. 111-126, 1994.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 27
    • 10044269618 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain
    • P. Sajda, S. Du, T. R. Brown, R. Stoyanova, D. C. Shungu, X. Mao, and L. C. Parra, "Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain," IEEE Trans. Med. Imag., vol. 23, no. 12, pp. 1453-1465, 2004.
    • (2004) IEEE Trans. Med. Imag , vol.23 , Issue.12 , pp. 1453-1465
    • Sajda, P.1    Du, S.2    Brown, T.R.3    Stoyanova, R.4    Shungu, D.C.5    Mao, X.6    Parra, L.C.7
  • 29
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • Mar
    • L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 30
    • 22944434926 scopus 로고    scopus 로고
    • A Bayesian approach to blind source separation
    • D. B. Rowe, "A Bayesian approach to blind source separation," J. Interdisciplin. Math., vol. 5, no. 1, pp. 49-76, 2002.
    • (2002) J. Interdisciplin. Math , vol.5 , Issue.1 , pp. 49-76
    • Rowe, D.B.1
  • 31
    • 34347404627 scopus 로고    scopus 로고
    • A Bayesian approach for blind separation of sparse sources
    • Nov
    • C. Févotte and S. J. Godsill, "A Bayesian approach for blind separation of sparse sources," IEEE Trans. Audio, Speech, Language Process., vol. 14, no. 6, pp. 2174-2188, Nov. 2006.
    • (2006) IEEE Trans. Audio, Speech, Language Process , vol.14 , Issue.6 , pp. 2174-2188
    • Févotte, C.1    Godsill, S.J.2
  • 32
    • 33750402597 scopus 로고    scopus 로고
    • Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling
    • Nov
    • S. Moussaoui, D. Brie, A. Mohammad-Djafari, and C. Carteret, "Separation of non-negative mixture of non-negative sources using a Bayesian approach and MCMC sampling," IEEE Trans. Signal Process. vol. 54, pp. 4133-4145, Nov. 2006.
    • (2006) IEEE Trans. Signal Process , vol.54 , pp. 4133-4145
    • Moussaoui, S.1    Brie, D.2    Mohammad-Djafari, A.3    Carteret, C.4
  • 33
    • 47849088983 scopus 로고    scopus 로고
    • Blind unmixing of linear mixtures using a hierarchical Bayesian model. Application to spectroscopic signal analysis
    • Madison, WI, Aug
    • N. Dobigeon, S. Moussaoui, and J.-Y. Tourneret, "Blind unmixing of linear mixtures using a hierarchical Bayesian model. Application to spectroscopic signal analysis," in Proc. IEEE-SP Workshop Stat. and Signal Processing, Madison, WI, Aug. 2007, pp. 79-83.
    • (2007) Proc. IEEE-SP Workshop Stat. and Signal Processing , pp. 79-83
    • Dobigeon, N.1    Moussaoui, S.2    Tourneret, J.-Y.3
  • 35
    • 67651111832 scopus 로고    scopus 로고
    • Bayesian separation of spectral sources under non-negativity and full additivity constraints
    • Dec
    • N. Dobigeon, S. Moussaoui, J.-Y. Tourneret, and C. Carteret, "Bayesian separation of spectral sources under non-negativity and full additivity constraints," Signal Process., vol. 89, no. 12, pp. 2657-2669, Dec. 2009.
    • (2009) Signal Process , vol.89 , Issue.12 , pp. 2657-2669
    • Dobigeon, N.1    Moussaoui, S.2    Tourneret, J.-Y.3    Carteret, C.4
  • 36
    • 0001703594 scopus 로고    scopus 로고
    • Further results on relationship between spectral unmixing and subspace projection
    • May
    • C.-I Chang, "Further results on relationship between spectral unmixing and subspace projection," IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 1030-1032, May 1998.
    • (1998) IEEE Trans. Geosci. Remote Sens , vol.36 , Issue.3 , pp. 1030-1032
    • Chang, C.-I.1
  • 37
    • 0006606953 scopus 로고    scopus 로고
    • Least squares subspace projection approach to mixed pixel classification for hyperspectral images
    • May
    • C.-I Chang, X.-L. Zhao, M. L. G. Althouse, and J. J. Pan, "Least squares subspace projection approach to mixed pixel classification for hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3, pp. 898-912, May 1998.
    • (1998) IEEE Trans. Geosci. Remote Sens , vol.36 , Issue.3 , pp. 898-912
    • Chang, C.-I.1    Zhao, X.-L.2    Althouse, M.L.G.3    Pan, J.J.4
  • 38
    • 70350496913 scopus 로고    scopus 로고
    • N. Dobigeon and J.-Y. Tourneret, Bayesian sampling of structured noise covariance matrix for hyperspectral imagery, Univ. Toulouse, Toulouse, France, 2008 [Online]. Available: http://dobigeon.perso. en-seeiht.fr/publis.html
    • N. Dobigeon and J.-Y. Tourneret, "Bayesian sampling of structured noise covariance matrix for hyperspectral imagery," Univ. Toulouse, Toulouse, France, 2008 [Online]. Available: http://dobigeon.perso. en-seeiht.fr/publis.html
  • 39
    • 1842481508 scopus 로고    scopus 로고
    • Wavelet-based feature extraction for improved endmember abundance estimation in linear unmixing of hyperspectral signals
    • Mar
    • J. Li, "Wavelet-based feature extraction for improved endmember abundance estimation in linear unmixing of hyperspectral signals," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 644-649, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 644-649
    • Li, J.1
  • 40
    • 31344465213 scopus 로고    scopus 로고
    • Weighted abundance-constrained linear spectral mixture analysis
    • Feb
    • C.-I Chang and B. Ji, "Weighted abundance-constrained linear spectral mixture analysis," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 2, pp. 378-388, Feb. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.2 , pp. 378-388
    • Chang, C.-I.1    Ji, B.2
  • 41
    • 70350511240 scopus 로고    scopus 로고
    • Rééchantillonnage de l'échelle dans les algorithmes MCMC pour les problèmes inverses bilinéaires
    • T. Veit, J. Idier, and S. Moussaoui, "Rééchantillonnage de l'échelle dans les algorithmes MCMC pour les problèmes inverses bilinéaires," Traitement du Signal, vol. 25, no. 4, pp. 329-343, 2008.
    • (2008) Traitement du Signal , vol.25 , Issue.4 , pp. 329-343
    • Veit, T.1    Idier, J.2    Moussaoui, S.3
  • 42
    • 33645288059 scopus 로고    scopus 로고
    • Non-negative source separation: Range of admissible solutions and conditions for the uniqueness of the solution
    • Philadelphia, PA, Mar
    • S. Moussaoui, D. Brie, and J. Idier, "Non-negative source separation: range of admissible solutions and conditions for the uniqueness of the solution," in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process. (ICASSP), Philadelphia, PA, Mar. 2005, vol. 5, pp. 289-292.
    • (2005) Proc. IEEE Int. Conf. Acoust., Speech, and Signal Process. (ICASSP) , vol.5 , pp. 289-292
    • Moussaoui, S.1    Brie, D.2    Idier, J.3
  • 44
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • Jan
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens. vol. 26, no. 1, pp. 65-74, Jan. 1988.
    • (1988) IEEE Trans. Geosci. Remote Sens , vol.26 , Issue.1 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 45
    • 0242462295 scopus 로고    scopus 로고
    • The Bayesian Choice: From Decision-Theoretic Motivations to Computational Implementation
    • 2nd ed. New York: Springer-Verlag
    • C. P. Robert, The Bayesian Choice: From Decision-Theoretic Motivations to Computational Implementation, ser. Springer Texts in Statistics, 2nd ed. New York: Springer-Verlag, 2007.
    • (2007) ser. Springer Texts in Statistics
    • Robert, C.P.1
  • 46
    • 0036504268 scopus 로고    scopus 로고
    • Bayesian curve fitting using MCMC with applications to signal segmentation
    • Mar
    • E. Punskaya, C. Andrieu, A. Doucet, and W. Fitzgerald, "Bayesian curve fitting using MCMC with applications to signal segmentation," IEEE Trans. Signal Process., vol. 50, pp. 747-758, Mar. 2002.
    • (2002) IEEE Trans. Signal Process , vol.50 , pp. 747-758
    • Punskaya, E.1    Andrieu, C.2    Doucet, A.3    Fitzgerald, W.4
  • 47
    • 34147145294 scopus 로고    scopus 로고
    • Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach
    • Apr
    • N. Dobigeon, J.-Y. Tourneret, and M. Davy, "Joint segmentation of piecewise constant autoregressive processes by using a hierarchical model and a Bayesian sampling approach," IEEE Trans. Signal Process. vol. 55, pp. 1251-1263, Apr. 2007.
    • (2007) IEEE Trans. Signal Process , vol.55 , pp. 1251-1263
    • Dobigeon, N.1    Tourneret, J.-Y.2    Davy, M.3
  • 48
    • 0003414592 scopus 로고
    • 3rd ed. London, U.K, Oxford Univ. Press
    • H. Jeffreys, Theory of Probability, 3rd ed. London, U.K.: Oxford Univ. Press, 1961.
    • (1961) Theory of Probability
    • Jeffreys, H.1
  • 50
    • 70350519180 scopus 로고    scopus 로고
    • N. Dobigeon and J.-Y. Tourneret, Efficient sampling according to a multivariate Gaussian distribution truncated on a simplex, IRIT/ ENSEEIHT/TéSA, Tech. Rep., Mar. 2007 [Online]. Available: http:// dobigeon.perso.enseeiht.fr/publis.html
    • N. Dobigeon and J.-Y. Tourneret, "Efficient sampling according to a multivariate Gaussian distribution truncated on a simplex," IRIT/ ENSEEIHT/TéSA, Tech. Rep., Mar. 2007 [Online]. Available: http:// dobigeon.perso.enseeiht.fr/publis.html
  • 52
    • 0001153986 scopus 로고
    • Simulation of truncated normal variables
    • C. P. Robert, "Simulation of truncated normal variables," Statistics and Computing, vol. 5, pp. 121-125, 1995.
    • (1995) Statistics and Computing , vol.5 , pp. 121-125
    • Robert, C.P.1
  • 54
    • 70350519181 scopus 로고    scopus 로고
    • ENVI User's Guide Version 4.0 RSI (Research systems inc.), Boulder, CO, 2003.
    • ENVI User's Guide Version 4.0 RSI (Research systems inc.), Boulder, CO, 2003.
  • 56
    • 46749110285 scopus 로고    scopus 로고
    • Calif. Inst. Technol, Pasadena, CA, Online, Available
    • AVIRIS Free Data Jet Propulsion Lab. (JPL). Calif. Inst. Technol., Pasadena, CA, 2006 [Online]. Available: http://aviris.jpl.nasa.gov/html/ aviris.freedata.html
    • (2006) AVIRIS Free Data Jet Propulsion Lab. (JPL)
  • 57
    • 27744549755 scopus 로고    scopus 로고
    • Quality criteria benchmark for hyperspectral imagery
    • Sep
    • E. Christophe, D. Léger, and C. Mailhes, "Quality criteria benchmark for hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 9, pp. 2103-2114, Sep. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.9 , pp. 2103-2114
    • Christophe, E.1    Léger, D.2    Mailhes, C.3
  • 58
    • 27844467218 scopus 로고    scopus 로고
    • Super-resolution reconstruction of hyperspectral images
    • Nov
    • T. Akgun, Y. Altunbasak, and R. M. Mersereau, "Super-resolution reconstruction of hyperspectral images," IEEE Trans. Image Process. vol. 14, pp. 1860-1875, Nov. 2005.
    • (2005) IEEE Trans. Image Process , vol.14 , pp. 1860-1875
    • Akgun, T.1    Altunbasak, Y.2    Mersereau, R.M.3
  • 59
    • 0001522035 scopus 로고
    • Mapping minerals with imaging spectroscopy, U.S. geological survey
    • R. N. Clark, G. A. Swayze, and A. Gallagher, "Mapping minerals with imaging spectroscopy, U.S. geological survey," Office of Mineral Resources Bulletin, vol. 2039, pp. 141-150, 1993.
    • (1993) Office of Mineral Resources Bulletin , vol.2039 , pp. 141-150
    • Clark, R.N.1    Swayze, G.A.2    Gallagher, A.3
  • 60
    • 1542318143 scopus 로고    scopus 로고
    • Imaging spectroscopy: Earth and planetary remote sensing with the USGS tetracorder and expert systems
    • Dec
    • R. N. Clark et al., "Imaging spectroscopy: Earth and planetary remote sensing with the USGS tetracorder and expert systems," J. Geophys. Res., vol. 108, no. E12, pp. 5-1-5-44, Dec. 2003.
    • (2003) J. Geophys. Res , vol.108 , Issue.E12
    • Clark, R.N.1
  • 61
    • 70350504681 scopus 로고    scopus 로고
    • R. N. Clark et al., The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 Microns U.S. Geological Survey, 1993 [Online]. Available: http://speclab.cr.usgs.gov
    • R. N. Clark et al., The U. S. Geological Survey, Digital Spectral Library: Version 1: 0.2 to 3.0 Microns U.S. Geological Survey, 1993 [Online]. Available: http://speclab.cr.usgs.gov


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.