메뉴 건너뛰기




Volumn 7, Issue 2, 2010, Pages 371-375

Spectral mixture analysis of hyperspectral scenes using intelligently selected training samples

Author keywords

Hyperspectral imaging; Intelligent training; Neural networks; Spectral mixture analysis

Indexed keywords

AIRBORNE DATA; APRIORI; ARTIFICIAL FOREST; ARTIFICIAL NEURAL NETWORK; CANOPY MODEL; DIGITAL AIRBORNE IMAGING SPECTROMETERS; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGING; IMAGING SPECTROMETERS; INPUT DATAS; LINEAR MIXTURE MODELS; MULTI LAYER PERCEPTRON; NEURAL ARCHITECTURES; OBJECT GEOMETRIES; PRIOR INFORMATION; RADIATION INTERCEPTION; REFLECTIVE OPTICS; SPATIAL RESOLUTION; SPECTRAL MIXTURE ANALYSIS; TRAINING SAMPLE;

EID: 77951207013     PISSN: 1545598X     EISSN: None     Source Type: Journal    
DOI: 10.1109/LGRS.2009.2036139     Document Type: Article
Times cited : (34)

References (19)
  • 1
    • 0001395470 scopus 로고
    • Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site
    • Jul.
    • J. B. Adams,M. O. Smith, and P. E. Johnson, "Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site," J. Geophys. Res., vol. 91, no. B8, pp. 8098-8112, Jul. 1986.
    • (1986) J. Geophys. Res. , vol.91 , Issue.B8 , pp. 8098-8112
    • Adams, J.B.1    Smith, M.O.2    Johnson, P.E.3
  • 2
    • 12144289543 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of endmember algorithms from hyperspectral data
    • Mar.
    • A. Plaza, P. Martinez, R. Perez, and J. Plaza, "A quantitative and comparative analysis of endmember algorithms from hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol.42, no.3, pp. 650-663, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 650-663
    • Plaza, A.1    Martinez, P.2    Perez, R.3    Plaza, J.4
  • 4
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery
    • Mar.
    • D. Heinz and C.-I. Chang, "Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol.39, no.3, pp. 529-545, Mar. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.1    Chang, C.-I.2
  • 6
    • 0035481565 scopus 로고    scopus 로고
    • A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks
    • Oct.
    • K. J. Guilfoyle, M. L. Althouse, and C.-I. Chang, "A quantitative and comparative analysis of linear and nonlinear spectral mixture models using radial basis function neural networks," IEEE Trans. Geosci. Remote Sens., vol.39, no.10, pp. 2314-2318, Oct. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.10 , pp. 2314-2318
    • Guilfoyle, K.J.1    Althouse, M.L.2    Chang, C.-I.3
  • 7
    • 39049103365 scopus 로고    scopus 로고
    • Comparison of non-linear mixture models
    • W. Liu and E. Y. Wu, "Comparison of non-linear mixture models," Remote Sens. Environ., vol.18, pp. 1976-2003, 2004.
    • (2004) Remote Sens. Environ. , vol.18 , pp. 1976-2003
    • Liu, W.1    Wu, E.Y.2
  • 8
    • 0028389048 scopus 로고
    • Nonlinear spectral mixing models for vegetative and soil surfaces
    • Mar.
    • C. C. Borel and S. A. W. Gerslt, "Nonlinear spectral mixing models for vegetative and soil surfaces," Remote Sens. Environ., vol.47, no.3, pp. 403-416, Mar. 1994.
    • (1994) Remote Sens. Environ. , vol.47 , Issue.3 , pp. 403-416
    • Borel, C.C.1    Gerslt, S.A.W.2
  • 9
    • 0034261087 scopus 로고    scopus 로고
    • A snapshot of canopy reflectance models and a universal model for the radiation regime
    • N. S. Goel and R. L. Thompson, "A snapshot of canopy reflectance models and a universal model for the radiation regime," Remote Sens. Rev., vol.18, no.2-4, pp. 197-225, 2000.
    • (2000) Remote Sens. Rev. , vol.18 , Issue.2-4 , pp. 197-225
    • Goel, N.S.1    Thompson, R.L.2
  • 11
    • 0035330750 scopus 로고    scopus 로고
    • Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data
    • May
    • A. Baraldi, E. Binaghi, P. Blonda, P. A. Brivio, and P. Rampini, "Comparison of the multilayer perceptron with neuro-fuzzy techniques in the estimation of cover class mixture in remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol.39, no.5, pp. 994-1005, May 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.5 , pp. 994-1005
    • Baraldi, A.1    Binaghi, E.2    Blonda, P.3    Brivio, P.A.4    Rampini, P.5
  • 12
    • 12844275025 scopus 로고    scopus 로고
    • A semilabeled-sample-driven bagging technique for ill-posed classification problems
    • Jan.
    • M. Chi and L. Bruzzone, "A semilabeled-sample-driven bagging technique for ill-posed classification problems," IEEE Geosci. Remote Sens. Lett., vol.2, no.1, pp. 69-73, Jan. 2005.
    • (2005) IEEE Geosci. Remote Sens. Lett. , vol.2 , Issue.1 , pp. 69-73
    • Chi, M.1    Bruzzone, L.2
  • 13
    • 0036401420 scopus 로고    scopus 로고
    • Investigation of linear spectral mixtures of the reflectance spectra using laboratory simulated forest scenes
    • B. Hu, J. R. Miller, J. Wang, and N. S. Goel, "Investigation of linear spectral mixtures of the reflectance spectra using laboratory simulated forest scenes," in Proc. IEEE Int. Geosci. Remote Sens. Symp., vol.3, 2002, pp. 1535-1537.
    • (2002) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.3 , pp. 1535-1537
    • Hu, B.1    Miller, J.R.2    Wang, J.3    Goel, N.S.4
  • 14
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar.
    • C.-I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol.42, no.3, pp. 608-619, Mar. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.-I.1    Du, Q.2
  • 15
    • 0034353084 scopus 로고    scopus 로고
    • Bayesian MLP neural networks for image analysis
    • Dec.
    • A. Vehtari and J. Lampinen, "Bayesian MLP neural networks for image analysis," Pattern Recognit. Lett., vol. 21, no. 13/14, pp. 1183-1191, Dec. 2000.
    • (2000) Pattern Recognit. Lett. , vol.21 , Issue.13-14 , pp. 1183-1191
    • Vehtari, A.1    Lampinen, J.2
  • 17
    • 0033372875 scopus 로고    scopus 로고
    • The significance of border training patterns in classification by a feedforward neural network using back propagation learning
    • Dec.
    • G. M. Foody, "The significance of border training patterns in classification by a feedforward neural network using back propagation learning," Int. J. Remote Sens., vol.20, no.18, pp. 3549-3562, Dec. 1999.
    • (1999) Int. J. Remote Sens. , vol.20 , Issue.18 , pp. 3549-3562
    • Foody, G.M.1
  • 18
    • 0033310314 scopus 로고    scopus 로고
    • N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
    • Oct.
    • M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," Proc. SPIE, vol.3753, pp. 266-277, Oct. 1999.
    • (1999) Proc. SPIE , vol.3753 , pp. 266-277
    • Winter, M.E.1
  • 19
    • 67649409707 scopus 로고    scopus 로고
    • Nonlinear mixture models for analyzing laboratory simulated-forest hyperspectral data
    • J. Plaza, A. Plaza, P. Martinez, and R. Perez, "Nonlinear mixture models for analyzing laboratory simulated-forest hyperspectral data," Proc. SPIE, vol.5508, pp. 660-670, 2003.
    • (2003) Proc. SPIE , vol.5508 , pp. 660-670
    • Plaza, J.1    Plaza, A.2    Martinez, P.3    Perez, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.